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“Breaking up is hard to do” crooned Neil Sedaka in 1962—and American divorce law

made sure of that. Until the 1970s, a stubborn spouse could veto a divorce. Then came the

revolution: states began to adopt unilateral divorce laws, allowing one partner to dissolve a

marriage without the other’s consent.

Figure 1
Average divorce rates by reform status
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Notes: This figure plots population-weighted averages of divorce rates for reform and control states. Reform
states adopted unilateral divorce in the period between 1969-85 (marked by vertical lines). Control states
left their divorce regime unchanged in this period. Data from Wolfers (2006).

Like weeds after a spring rain, divorce rates shot up across America in the 1970s, a

pattern documented in Figure 1. Newly-enacted unilateral divorce laws are a likely culprit.

How can we know whether unilateral divorce reforms are guilty of goosing divorce rates?

Trends alone rarely offer definitive evidence of causal effects. But state legislatures have

given us a series of legislative experiments that might answer this question. Some states

adopted unilateral divorce sooner than others. This variation in timing is fertile ground for

a differences-in-differences (DD) research design.
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Friedberg (1998), Wolfers (2006), and others use within-state variation in the introduction

of unilateral divorce laws to compute DD estimates of divorce law effects. Basic DD methods

(detailed in Angrist and Pischke, 2008, 2015) estimate a single post-intervention treatment

effect, a good starting point for any DD analysis. The modern event-study framework,

however, goes beyond this by tracking treatment effects over time, both before and after the

policy change of interest.

Our exploration of recent DD and related innovations starts with Wolfers’s (2006) uni-

lateral divorce data, cast in a conventional DD setup. Our divorce analysis uses data from

1958 to 1998, a period in which divorce rates are consistently available for most states (the

panel is slightly unbalanced due to a few missing values). We exclude Louisiana, for which

many years are missing, and Alaska and Oklahoma, which adopted unilateral divorce before

1958. States treated during the sample period reformed between 1969 and 1985. Dependent

variable Yst denotes the number of divorces per 1,000 persons in state s and year t; this is

the way divorce rates are defined in US Vital Statistics. Divorce law has many dimensions.

Unilateral adoption is defined as in Friedberg (1998).

After doing a little static DD, this paper focuses on event-study models with time-varying

treatment effects, a major extension of the basic DD design. We highlight the fact that event-

study identification relies on tricky normalization issues: depending on the data structure,

identification requires one or more dynamic treatment effects to be set to zero. Better to

choose these reference points deliberately than to let regression software make hidden—and

potentially misleading—choices for you.

Contemporary DD and event-study frameworks (surveyed in Sun and Abraham, 2021,

Goodman-Bacon, 2021, Roth et al., 2022) embrace heterogeneous policy effects across time

and groups. Event-study models identify time-varying causal effects, but such effects can

make simpler static DD estimates uninterpretable. And with unrestricted cross-sectional

variation in impacts, regression-based DD estimates may fail to deliver the weighted aver-

age of state-specific effects you seek. Our analysis of two applications suggests that these
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concerns, while theoretically important, are unlikely to derail DD or event-study designs in

practice.

We also examine the key parallel trends assumption underpinning all DD-type models.

Seasoned event-study researchers examine pretreatment data to scope out worrying signs of

pretrends. This sort of pretrends pretest is usually a good idea—but not always. And, as

readers of Angrist and Pischke (2008) will know, parallel trends in the log of an outcome

variable precludes parallel trends in levels. The paper closes with an examination of a valiant

recent attempt to wriggle out of this troubling functional-form constraint.

1 DD is for Divorce

Here’s the simple DD setup for the state-year panel data set we use to estimate unilateral

divorce effects. States are indexed by s = 1, . . . S and years by t = 1, . . . , T . In discussions

where specificity seems helpful, s takes on values from a list of state abbreviations (s ∈

{AL, ...,WY }) and t indexes calendar years. In both notational variations, dummy variable

Dst ∈ {0, 1} indicates states and years in which unilateral divorce is allowed. Each state

s belongs to a cohort, stored in variable c (s). This variable identifies the period when

unilateral divorce came into effect in state s. That is, Dst = 1 for all years t ≥ c (s). In this

staggered-adoption design, treatment, once switched on, stays on forever.

Potential outcome Yst (0) denotes the divorce rate in state s and year t that we’d see

in the absence of a unilateral divorce law. Yst (1) is the potential divorce rate we’d see if

such a law were on the books. Outcomes Yst (0) and Yst (1) are potential because only one

or the other is revealed for a given state and year. Also, while individual treatment effects,

Yst (1)− Yst (0), might vary with state and year, we start with a simpler setup.

Our starter DD model posits a constant, additive treatment effect τ , so that Yst (1) =

Yst (0)+τ . Conventional DD analysis relies on a regression model in which expected untreated

3



potential outcomes depend on a state effect (γs) and a time effect (λt) according to

Yst (0) = E[Yst (0)] + ηst = γs + λt + ηst. (1)

Residual ηst is a mean zero conditional expectation function (CEF) error term while γs (for

s = 1, . . . , S) and λt (for t = 1, . . . , T ) are parameters that restrict the behavior of this CEF.

Randomness arises in this setup from imagined histories for alternative outcomes (ad-

mittedly a fanciful notion, though familiar to physicists and science fiction fans). One of

these histories becomes reality. Parameters γs and λt are presumed to be constant, while ηst

is drawn from a distribution of potential histories. E[Yst (0)] is the average of the resulting

potential outcomes over all such possible draws.1

The assumption that state effects γs are time-invariant while time effects λt are common

across states plays a major role in DD analysis. It’s worth emphasizing that this model-

based presentation of DD differs from the discussion of regression at the heart of Angrist

and Pischke (2008). While the latter allows for the possibility that the regression function

of interest approximates a more complicated CEF, DD models restrict the CEF from the

get-go.

In a world where state legislators legislate by coin toss, family law is made independently

of potential outcomes. In such a world, data on state divorce rates can be analyzed as if from

a randomized trial. In the real world, legislators legislate for various and sundry reasons,

some idiosyncratic and some systematic. Motivated by this, the state effects in (1) allow for

cross-state differences in divorce rates in the absence of reform. In Figure 1, for instance,

we see that reforming states had higher divorce rates in the pre-reform years. Likewise, the

spread of unilateral divorce laws coincided with a nationwide trend towards increasing rates

of marital dissolution. This trend, common to both reforming and non-reforming states, is

captured by the time effects in (1).
1Divorce rates by state and year come from vital statistics and are measured for the relevant state

populations. In other DD applications, aggregate variables (like average wages) come from sample surveys,
in which case randomness in ηst reflects sampling variance as well as variation in realized potential outcomes.
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By including state and time effects as parameters, the DD model allows for both cross-

sectional and temporal variation in potential outcomes, variation we’d see even in the absence

of a policy change. But DD requires these effects to be additive, a point this paper repeatedly

returns to. The DD additivity requirement is stronger than the linearity assumption often

invoked for regression controls. In conventional regression control strategies, linearity is a

convenient and mostly harmless approximation. In DD applications, by contrast, functional

form assumptions are consequential.

In addition to additive state and time effects, the basic DD model assumes that the

random part of potential outcomes in each period is mean-independent of the sequence of

treatments for state s

E[ηst|Ds1, . . . , DsT ] = E[ηst|c (s)] = 0; for all s = 1, . . . , S and t = 1, . . . , T. (2)

Again, the expectation here is computed over the distribution of CEF errors ηst for each

state and year.

You might recognize (2) as a conditional independence assumption (CIA) of the sort used

to imbue regression estimates with a causal interpretation (see e.g. Section 3.2 in Angrist

and Pischke, 2008). The DD CIA embodies two key differences, however. First, the left-hand

side conditions on the entire treatment sequence (Ds1, . . . , DsT ), not just contemporaneous

treatment status. In the staggered-adoption design, this is the same as conditioning on

treatment cohort c (s). Second, as in Borusyak, Jaravel and Spiess (2024) and Callaway and

Sant’Anna (2021), our DD CIA applies each period t ∈ {1, . . . , T}, rather than averaged

across periods.

Importantly, the panel regression setup embodied in (1) and (2) implies a strong parallel

trends restriction. Parallel trends means that, in the absence of unilateral divorce laws,

divorce rates evolve similarly in all states. This is formalized as:
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Assumption 1 (Parallel Trends).

E [Yst (0)− Yst−1 (0)| c (s)] = E [Yst (0)− Yst−1 (0)] ; t = 2, . . . , T.

To see why parallel trends is implied by (1) and (2), use (1) to write the change in

potential outcomes as

Yst (0)− Yst−1 (0) = λt − λt−1 + ηst − ηst−1. (3)

By iterated expectations, E [ηst − ηst−1| c (s)] = 0 implies E [ηst − ηst−1] = 0. Consequently,

the expected trend in potential outcomes is λt − λt−1 for any and all cohorts. The parallel

trends assumption rules out a world in which states, for instance, opt for unilateral laws

in the wake of locally rising divorce rates. In principle, such idiosyncratic variation might

happen at any time, so condition (2) disallows this for each period.

DD analysis runs on regression. In combination with constant treatment effects, (1)

yields:

Yst = τDst + γs + λt + ηst. (4)

Condition (2) ensures that this is a regression model.

State and year effects γs and λt in (4) may seem mysterious since they’re defined as

parameters while appearing to play the role of conditioning variables. Like τ , however, these

are regression coefficients in a model that’s as yet unstated. We describe this model here:

each γk (where k indexes states) is the coefficient on a dummy variable, dks, that indicates

whether observation Yst is from state k. Each λl (where l indexes years) is the coefficient on

a dummy, hlt, that indicates observations from year l. Equation (4) is therefore shorthand

for

Yst = τDst +
∑
k

γkdks +
∑
l

λlhlt + ηst. (5)
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This classic two-way fixed effects (TWFE) regression specification regresses dependent

variable Yst on dummies for every state, dummies for every year, and a treatment dummy

indicating states and years having a unilateral divorce regime in place.2 The DD setup

embodied in (5) is called a TWFE regression model because it controls for two sets of

dummy variables, called fixed effects because we condition on them.

Note that (5) has no intercept. Since this model includes a dummy for every state,

however, a constant is implicit since a full set of state or year dummies adds to one. In

practice, therefore, most empirical DD analysis includes an intercept, while omitting one state

dummy and one year dummy. This leaves a set of regressors with no linear dependencies—no

news here. But normalization of this sort grows surprisingly complicated in the event-study

framework to come.

A note on estimation: let Ȳs denote mean divorce rates computed by averaging over t for

a given s, with bars over other variables interpreted similarly. By the regression anatomy

theorem, ordinary least squares (OLS) estimates of τ in (5) can be computed from a regression

in which all variables are deviations from state means

Yst − Ȳs = τ(Dst − D̄s) +
∑
l

λl(hlt − h̄) + (ηst − η̄s), (6)

where h̄ is the average time dummy (a constant for all states). The deviations-from-means

transformation eliminates state effects.3

The CIA described by (2) ensures that transformed treatments in (6) are uncorrelated

with transformed residuals. The fact that the transformation involves treatment averaged
2In the sum

∑
k γkdks, subscript k loops over all states since every state gets a dummy, while subscript

s keeps track of the state supplying the observations. So, dss = 1 and dks = 0; k 6= s. Likewise, in the sum∑
l λlhlt, subscript l loops over all years since every year gets a dummy, while subscript t keeps track of the

year supplying the observations. So, htt = 1 and hlt = 0; l 6= t.
3Regression anatomy (see e.g. Section 3.1 in Angrist and Pischke, 2008) says that multivariate coefficients

on variables of interest can be obtained by regressing these variables on covariates and using the resulting
residuals in a model without covariates. Here, the covariates are state dummies. Recall also that a regression
on a full set of dummies is saturated and so recovers the CEF given regressors, in this case, a set of state
means.
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over time, D̄s, explains why restriction (2) conditions on all leads and lags of treatment.

Assuming the regressor of interest varies over time, (2) implies that OLS estimation of (6)

yields unbiased estimates of treatment effect τ (Wooldridge, 2016).

How many states are needed for fruitful DD? At least two: a treatment state (say,

California, reformed in 1970) and a control (like New York, unreformed in the sample period).

Parallel trends, formalized in (2), ensure that New York trends provide a valid counterfactual

for California. But unbiasedness does not guarantee meaningful estimates. Both states

are subject to idiosyncratic variation—captured by ηst—that is likely to make two-state

comparisons misleading. We hope, therefore, that comparisons involving many states smooth

such idiosyncrasies, painting a picture in which evidence for a treatment effect emerges

clearly. Formally, OLS estimates are consistent in an asymptotic sequence in which the

number of cross-sectional units grows while T is fixed (Chamberlain, 1984). Figure 1 looks

promising since reform and control state averages move smoothly in tandem in pre-reform

years.

In these data, basic DD delivers an estimate of τ equal to -0.22 divorces per thousand

persons with a standard error of 0.16, a small effect that’s not significantly different from zero.

As can be seen in Figure 1, divorce rates rose country-wide from around three per thousand

in the late 1960s to over five per thousand by 1980. Yet, TWFE regression estimates suggest

unilateral divorce had little to do with this increase.

The Main Event

Modern event-study models extend simple DD by allowing for time-varying treatment effects.

The payoff to this extension is a more nuanced picture of policy effects, such as those of

unilateral divorce laws, and a framework that can be used to validate the key parallel trends

assumption.4 As it turns out, the dynamics of the unilateral divorce story are interesting

indeed.
4Miller (2023), Baker et al. (Forthcoming), and de Chaisemartin and D’Haultfoeille (2023) survey con-

temporary event-study research methods.
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Event-study DD requires additional notation. In a staggered adoption design, as in the

unilateral divorce setting, treatment stays on once switched on, so

∆Dst ≡ Dst −Dst−1

equals one in the year that state s implements unilateral divorce and is zero otherwise. This

makes ∆Dst a treatment switch.

Lagged treatment switches (lags for short), denoted ∆Dst−j, equal one in year t when

state s adopted unilateral divorce j years ago. California, for instance, adopted unilateral

divorce in 1970. DCA,t therefore equals 1 for California data in t = 1970 and later; ∆DCA,t

equals 1 only in 1970; and ∆DCA,t−2 equals 1 only in 1972. Leading treatment switches

(leads for short), denoted ∆Dst+j, equal one in year t when state s switches to unilateral

divorce j years from t.

This notation has the virtue that only one variable in the sequence of treatment switches

{. . . ,∆Dst+2,∆Dst+1,∆Dst,∆Dst−1,∆Dst−2, . . .} is equal to one for a given state, s, and

year, t. In California in t = 1972, for instance, ∆DCA,t−2 equals 1, while all other leads and

lags for California defined at time t equal 0. At the same time, the sum of all lags equals the

original treatment dummy Dst, the regressor of interest in a static-DD setup. These features

facilitate the careful record-keeping needed to interpret time-varying treatment effects, which

we call dynamic effects.

Event-study regression models retain the TWFEs used to mitigate omitted variable bias

in simple, static DD regression, while also allowing for dynamic effects. Unilateral divorce

might matter little, for instance, in the year it’s first adopted, with a growing impact there-

after. Event-study models also look ahead, identifying leading policy effects. Leads might

arise because people change their behavior in anticipation of a policy change. In the absence

of anticipation effects, however, non-zero leads signal divergence from parallel trends.

Our event-study regression model specifies q lags and m − 1 leads (with m ≥ 2). This
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model can be written

Yst =
−2∑

j=−m

τj∆Dst−j +

q∑
j=0

τj∆Dst−j + γs + λt + ηst, (7)

where parameters τj are the dynamic treatment effects of interest. These are indexed by years

since or until the year of adoption, called event time, and denoted by j in the summations

above.

The notation here looks daunting, so let’s spell things out. Recall that ∆Dst = 1 in

the year t in which unilateral divorce is adopted in state s. The coefficient associated with

the adoption year is τ0, a term that appears in the sum
∑q

j=0 τj∆Dst−j when j = 0. The

treatment effect two years after adoption is τ2; this is the period in which ∆Dst−2 = 1.

In general, coefficients on Dst−j capture evolving impacts after a policy change, revealing

whether effects increase, stabilize, or fade. Leads are a little trickier than lags. The former

are captured by the term
∑−2

j=−m τj∆Dst−j in (7). For California, the term inside this sum

that looks two years ahead switches on in 1968 (this is ∆DCA,t+2). Thus, leads allow for

pre-treatment treatment effects.

When using dummies to indicate values of any categorical regressor, we omit a reference

category to avoid collinearity with the constant. Similarly, at least one treatment switch

must be omitted in an event-study model. To see why, note that for a reform state, the

sum of treatment switches equals one. Consequently, the sum of the full set of switches,

including all leads and lags, is equal to a dummy variable indicating all reform states. The

latter, of course, is a linear combination of state dummies. The parameterization described

by equation (7) omits τ−1∆Dst+1. Treatment effect estimates in this model are therefore

measured relative to divorce rates in the year ahead of each reforming state’s reform year

(which defines a state’s cohort). Estimates of τ0, for instance, measure the extent to which

divorce rose in the year unilateral divorce was introduced, relative to the year before, while

τ2 contrasts divorce rates two years post reform with the same pre-reform benchmark.

10



Figure 2
Event-study estimates of the effect of unilateral divorce on divorce rates
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Notes: This figure plots event-study regression estimates of the effects of unilateral divorce reform on divorce
rates, with the year before reform set as the reference year. Treatment is staggered; once treated, states
remain unilateral thereafter. The shaded area marks confidence bands based on standard errors clustered
by state. Estimates are computed using data from 1958-1998.

Event-study estimates based on equation (7), plotted in Figure 2, reveal interesting dy-

namic effects masked by simple DD results. Unilateral divorce appears to boost divorce

rates by around 0.3 per thousand points in the first seven years after adoption. But the

estimates then plummet, and, nine years out, turn negative. The divorce rate ultimately

falls to roughly 0.4 per thousand points below what it would have been absent reform. This

pattern may be explained by pent-up demand for marital dissolution in pre-reform years.

Once couples held together by the old regime have separated, divorce rates settle at a new,

lower level.5

The event-study estimates in Figure 2 suggest that the shift to unilateral divorce may

indeed have contributed to the rise in divorce rates in the 1970s. But this effect appears to
5Freyaldenhoven et al. (Forthcoming) give useful advice on event-study visualization.
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have been modest as well as short-lived, particularly since only about 60 percent of states

introduced a unilateral regime in the sample window. At the same time, the long-run impact

of reforms of around -0.4 per thousand potentially explains almost half of the 1 per thousand

point decline in divorce rates seen during the 1980s and 1990s.

The long-run negative impact of unilateral divorce on marital dissolution is a striking

finding. Should the treatment effect estimates in Figure 2 be seen as causal? Evidence

of causal validity comes from the pre-treatment coefficients plotted in the figure. These

hover around zero, rarely exceed 0.1 in absolute value, and are statistically indistinguishable

from zero. Divorce trends in reforming states and years do not appear to have been diverging

ahead of the advent of a unilateral regime. In other words, the estimated leads are consistent

with a presumption of parallel trends, as we explain in Section 3.6

Our event-study regression model includes 27 leads and 29 lags, values derived below

(Figure 2 omits leads and lags beyond 15 to avoid clutter). Standard errors are higher for

treatment effects at longer leads and lags because fewer states contribute to estimates of

effects at more distant horizons. This motivates models that pool—or bin—effects distant

from the adoption date. Suppose we bin leads and lags for values of j ≥ 15 and j ≤ −15,

with the associated pooled treatment effects labeled τ≥15 and τ≤−15, respectively. As before,

the reference group for treatment effects is one year before the advent of unilateral divorce.

Our event-study regression model with binned leads and lags looks like this:

Yst =
−2∑

j=−14

τj∆Dst−j +
14∑
j=0

τj∆Dst−j (8)

+ τ≤−15

( ∑
j≤−15

∆Dst−j

)
+ τ≥15

(∑
j≥15

∆Dst−j

)

+ γs + λt + ηst.

6The evidence here is not seamless. Lee and Solon (2011) note that unweighted estimates in this context
differ from those weighted by state population. As in Wolfers (2006), the estimates here use state population
weights, thereby giving larger states more weight. Population weighting is defensible—divorce rates may be
noisier in smaller states—but not obviously essential in a group-level analysis of administrative data.
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The terms in parentheses collapse treatment indicators beyond 14 years pre-treatment and

14 years post-treatment into single dummies. Estimates from the binned model differ little

from those plotted in Figure 2 and so are omitted.

Into the Weeds: Collinearity Complications

Event-study analysis demands careful model specification; the devil is in the DD details.

We’ve seen that simple DD models omit a reference category when specifying a full set of

state and year effects. A coherent event-study regression specification requires more than

this, however. For starters, event-study models specify the number of treatment leads (m)

and the number of treatment lags (q).

How many leads and lags can be estimated? A lag of length q requires at least one

treated state with data up to q years after adoption. The longest possible lag is therefore

q = T −mins(c(s)), where T is the panel length and c(s) is the treatment cohort. Similarly,

a lead of length m requires at least one treated state with observations up to m years before

adoption. The longest lead is therefore m = maxs(c(s))− 1.

Our divorce analysis uses data from 1958 (indexed by t = 1) to 1998 (T = 41). Kansas

is the first state in this sample to introduce unilateral divorce, in 1969 (t = 12). This

determines the number of allowable lags as q = T − min(c(s)) = 41 − 12 = 29. South

Dakota, the last adopter in our sample, adopted in 1985 (t = 28). This allows for up to

m = max(c(s))− 1 = 28− 1 = 27 leads.

Even with lead and lag lengths specified, the event-study setup is not yet good to go.

Because treatment dummies sum to an indicator of reform states, it’s customary to omit

the dummy for the period before adoption, j = −1. The remaining τj terms then reflect

treatment effects relative to the period just before treatment. The estimates in Figure 2

were computed in a sample that includes some states (like New York) that are untreated

in the sample period (New York adopted unilateral divorce in 2010, while our sample runs

until 1998). When some states are never treated, omission of a reference period dummy is
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enough to identify event-study leads and lags.

With no never-treated states, model specification grows messier. Econometricians an-

alyzing panel data have long grappled with the fact that cohort (year of birth), age, and

calendar time are linearly dependent (your age in year t equals t minus your birth year).

We cannot, therefore, use dummies to control for all three of these variables, conceptually

distinct though they may be. When all states are eventually treated, the same reasoning

applies to models with state effects, year effects, and a full set of treatment leads and lags.

For treated states, event time, like age, equals calendar year minus treatment cohort, that

is, j = t − c(s). A full set of state and time dummies is therefore collinear with dynamic

treatment effects that vary linearly with event time. The presence of never-treated states

breaks this linear dependence because event-study coefficients equal zero for such states.7

Omission of at least one additional lead or lag kills collinearity when there are no never-

treated states. This omission (setting an additional treatment switch to zero besides that for

j = −1) makes treatment effects a non-linear function of calendar time and cohort. Problem

solved—perhaps. After all, it seems reasonable to omit far-ahead leads since, under parallel

trends, these should be zero anyway. Does the additional normalization needed here matter?

The question of how such specification details affect event-study results is explored in

Figure 3. The top panel plots two sets of estimates computed in a subsample that drops

never-treated states. Estimates plotted in grey in this panel are from a model that omits

the treatment switch for j = −27 (in addition to the −1 lead omitted as a reference group),

while the line plotted in black is from a model that omits the second lead (j = −2) instead

of j = −27. The top panel shows how dynamic treatment effects are substantially rotated

around the common intercept at j = −1 by the choice of additional normalization—the

linear portion of the entire path of treatment effects is no longer identified. The lower

panel of Figure 3 displays estimates in the full sample omitting the same switches as before.

Because the full sample only requires one normalization, that panel also includes estimates
7Borusyak, Jaravel and Spiess (2024) appears to be the first to make this point.
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only omitting the dummy for event time −1. All three estimates are indistinguishable.8

Figure 3
Event-study normalizations with and without never-treated states
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Notes: This figure plots event-study regression estimates of unilateral divorce effects on divorce rates, com-
puted in a sample limited to ever-adopting states (in the top panel) and in the full sample (in the bottom
panel). Plotted lines show effects under alternative normalizations, omitting either the coefficient for -2 or
-27 in addition to the reference year of -1. Estimates are computed using data from 1958-1998.

Seemingly-innocuous normalizations are consequential for event-study estimates in state

panels with no never-treated states. This problem arises from the fact that without never-

treated states, identification of event-study treatment effects hinges on an additional re-

striction. The identification problem here mirrors that arising in DD models that control

for state-specific linear trends, such as the models detailed in Angrist and Pischke (2008,
8Not for nothing does the extra normalization in this context appear to rotate the set of dynamic ef-

fects. As Borusyak, Jaravel and Spiess (2024) explains, it’s the slope of τj viewed as a function of j that’s
unidentified in an analysis with no never-treated states. To see this, suppose τj = 1 + j. This preserves our
reference-period normalization, with τ−1 = 0. Substituting for τj and combining leads and lags in a single
sum in (7), we have:

Yst =

q∑
j=−m

(1 + j)∆Dst−j + γs + λt + ηst.

The first term above equals 1 + j when ∆Dst−j switches on, and is therefore equal to 1 + t− c(s), which is
a linear combination of time and state effects.
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2015). As a reminder, TWFE regression models with state-specific trends add a term like∑
k ψkdkst, where ψs is the trend for state s, to DD and event-study regressions.

Models with state-specific trends weaken the parallel trends assumption by allowing for

diverging linear trends. With no trend break at the time treatment switches on, however, we

can’t say whether trend divergence is due to slowly rising dynamic treatment effects coupled

with anticipation of future treatment or a reflection of omitted variables bias due to trending

Yst(0). As in event-studies with no never-treated states, TWFE with state-specific trends

requires a second normalization to identify a full set of event-study coefficients. If you’re

willing to commit to zero pre-treatment effects, models with state-specific linear trends are

identified by discontinuities or jumps in outcomes at the time treatment switches on.

2 DD With Heterogeneous and Time-Varying Effects

As Mark Twain might have said had he been an economics Ph.D. student, everybody talks

about DD treatment effect heterogeneity, but nobody does anything about it. Well, not

anymore. Event-study models allowing for effect variation over time, for instance, show that

the effects of divorce laws change markedly in the years following reform. As it turns out, in

the divorce example, the classic one-parameter TWFE DD estimator delivers something close

to an average of the corresponding event-study estimates. But this result is not guaranteed;

de Chaisemartin and D’Haultfoeille (2018, 2020), Borusyak, Jaravel and Spiess (2024), and

Goodman-Bacon (2021), among others, show that DD estimates need not average time-

varying effects. Of course, you can always opt for an event-study model and average the

resulting dynamic effects yourself.

Here’s some good news from the cross-sectional heterogeneity front: with a single dummy

treatment and two periods, old-school TWFE estimation (as in many first-generation event

studies) recovers a cross-state average causal effect on the treated. This and other key points

are made here in a simplified setup inspired by Sun and Shapiro (2022), which considers
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effects of state health insurance mandates. The aptly-named “Appendix B” to Goldsmith-

Pinkham, Hull and Kolesár (2021) discusses DD models with heterogeneity more generally,

as does Sun and Abraham (2021).9

Two-period DD With Heterogeneity Too

Consider a unilateral divorce reform scenario evolving over two periods, t ∈ {0, 1}, and two

groups of states, reform and non-reform, with reformers indicated by the dummy variable

Ms. Reform is implemented in t = 1. The causal model of interest is:

Yst = γs + λt+ τsMst+ ηst, (9)

where γs and λ are state and time effects, respectively (λ is the coefficient on dummy variable

t, indicating the reform year), and τs is a state-dependent causal effect of reform. Interacting

Ms with time defines the DD treatment dummy:

Dst ≡Mst.

As in the general DD regression model (5), identification comes from parallel trends, ex-

pressed in this case by:

E[ηst|Ms] = 0; t ∈ {0, 1}.

With two periods and treatment switched on in only one, there’s no scope for time-varying

effects. We might, however, allow for variation in reform effects across states, a possibility

captured by writing τs for the causal effect of interest. In particular, treatment effects might

differ in reform and non-reform states. As in Sun and Shapiro (2022), this dependence can

be modeled as

τs = κ+ φMs, (10)
9Aptly named because, as ’metrics masters will know, IV was invented in Appendix B of the pamphlet

by Wright (1928).
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where Greek letters denote parameters. Since Ms is a dummy, this is an unrestricted model

for the relationship between causal effects and reform status. In particular, κ+φ is the effect

of reform in states that reform, while κ is the effect of reform elsewhere.

To see what this sort of heterogeneity implies for regression DD estimates, substitute

(10) into (9):

Yst = γs + λt+ (κ+ φMs)Mst+ ηst (11)

= γs + λt+ (κ+ φ)Mst+ ηst, (12)

where the second line uses the fact that M2
s = Ms for Bernoulli (dummy) Ms. From this, we

see that for simple DD with heterogeneous effects, event-study regressions recover the effect

of reform in reform states.

This DD averaging story carries over to models with covariates beyond time and state

effects. Suppose we add λ′tXs, where λt is a time-dependent coefficient vector conformable to

a vector of discrete controls, Xs. Assume these are dummies that saturate (i.e., indicate all

values of) an underlying set of discrete controls, so that E[Ms|Xs] is linear.10 Covariates are

assumed to have time-varying effects (otherwise they’re absorbed by state dummies). The

covariate vector includes a constant, so this model nests the simpler TWFE specification

embodied in (9). Replacing λt with λ′tXs in (9), and differencing to eliminate state effects,

we have

∆Ys = (λ1 − λ0)′Xs + τsMs + νs, (13)

where ∆Ys ≡ Ys1 − Ys0 and νs is the differenced residual.

Now, suppose we allow covariate interactions in heterogeneous treatment effects as well

as variation that depends on Ms. This can be expressed by writing

τs = X ′sκ+Ms(X
′
sφ), (14)

10If the control is census region, for instance, Xs includes dummies for 3 of 4 regions.
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where κ and φ are now vectors conformable with Xs. We can use regression anatomy and

(13) to show that in this case the coefficient on Ms in a regression of ∆Ys on Xs and Ms can

be written as:

τols ≡ E[M̃ s∆Ys]

E[M̃ sMs]
=
E[M̃ sMsτs]

E[M̃ sMs]

=
E[M̃ sMsX

′
s(κ+ φ)]

E[M̃ sMs]
(15)

where M̃ s = Ms − E[Ms|Xs].11 Finally, iterating over Xs gives:

τols =
E[σ2

Z(Xs)X
′
sτ ]

E[σ2
Z(Xs)]

,

where
σ2
Z(Xs) ≡ E[M̃ 2

s |Xs],

τ ≡ κ+φ, and τ ′Xs is the reform effect on reform states at covariate value Xs; the parameter

denoted τols is a variance-weighted average of these.

This result aligns with formulas in Angrist (1998) and Angrist and Krueger (1999) show-

ing that regression on a dummy treatment with saturated covariate controls recovers a

variance-weighted average of covariate-specific treatment effects. The weights in this context

are given by the variance of Ms given Xs. Abadie (2005) offers a semiparametric take on

this, deriving a weighted least squares estimator that estimates average treatment effects on

the treated in simple DD models with covariates. Happily, the DD angle requires no new

thinking in this two-period, dummy-treatment case.

Potato, Potahto: Heterogeneity in Exposure Designs

Potatoes have been welcome at European dinner tables for centuries. Hungarians hunger

for a savory goulash of stewed beef and potatoes. Ashkenazi Jews pine for potatoes shaped

11This derivation uses the facts that M̃ s is a CEF residual because E[Ms|Xs] is linear and that Ms(X
′
sκ+

Ms(X
′
sφ)) = MsX

′
s(κ+ φ) because Ms is a dummy.
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into latkes and for dense potato kugel. Josh Angrist’s Eastern European grandparents knew

these satisfying dishes well.

Potato products took off in 18th-century Europe, quickly becoming a staple. By offering a

new and inexpensive source of nourishment, the humble potato may have improved the lives

of all those who eat for a living. Nunn and Qian (2011) assess this intriguing claim in a DD

analysis of a country-by-century panel. The potato treatment here is the share of a country’s

arable land suitable for potato cultivation, interacted with the approximate date of potato

arrival from the Americas, set at 1700 worldwide. The dependent variable is log population

size (by country), a crude measure of human welfare. A positive coefficient indicates that

countries with more potato-positive arable land saw a greater increase in population growth

after 1700 relative to before 1700. This difference is estimated in centennial data from the

second millennium.

Treatment in the potato problem comes from differences in cross-sectional exposure

(specifically, land suitability) rather than differences in timing. Such identification strate-

gies are nowadays known as exposure designs (Sun and Shapiro, 2022). Pioneering exposure

designs include Card (1992), which estimates the effect of an increase in the federal mini-

mum wage in 1990 on the employment of teenagers. The Card study exploits the fact that

high-wage states (defined as such pre-increase) are less affected by a federal minimum wage

hike than are low-wage states. Similarly, Finkelstein (2007) estimates the effect of the ad-

vent of Medicare in 1966 on the hospital industry. This exposure design exploits the fact

that Medicare (America’s government insurance program for the elderly) was less important

insurance-wise in states with high pre-Medicare private insurance rates. Recently, Figlio and

Özek (2025) uses variation in pre-ban cellphone use to identify the effects of cellphone bans

on children’s learning across American school districts.

In these applications, the key exposure variable, defined in a fixed pre-treatment or

baseline period, is a fraction like the share of arable land suited for potato farming, rather

than a dummy. Typically, the sample used in an exposure design contains no never-treated
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units. Rather, treatment varies more or less continuously.12

How well do exposure designs accommodate heterogeneous effects? Sticking with the

notation used to analyze dummy DD heterogeneity at the beginning of this section, here

we assume that Ms denotes fractional baseline exposure. The potato exposure design with

heterogeneous effects can be implemented by estimating (11), which becomes:

Yst = γs + λt+ τsMst+ ηst,

= γs + λt+ κMst+ φM2
s t+ ηst. (16)

The squared term above is generated by substituting for τs using (10). Since Ms is now

a fraction rather than a dummy, (10) restricts the heterogeneity. In addition, Ms 6= M2
s

and the simplification in (12) doesn’t apply. Treatment-effect parameters κ and φ are the

coefficients on exposure and exposure squared, both interacted with time.

While this model is easily estimated, it’s interesting to examine the exposure-design

estimand when the potential-outcome CEF given s and t follows (16), while exposure effects

are estimated using a regression that omits M2
s t. 13 After all, the typical exposure design

study reports estimates of models with a linear interaction only. It seems reasonable to

expect the bivariate slope coefficient in question to be the average of state-specific τs,

E[τs] = κ+ φE[Ms],

or at least some weighted average of τs. In this matter, however, we are destined for dis-

appointment. Sun and Shapiro (2022) note that the population regression of ∆Ys on Ms

12When exposure variables are used as instrumental variables, as in Autor, Dorn and Hanson (2013), the
resulting exposure design is said to apply shift-share IV.

13In econometrics and statistics, an estimand is a population quantity to be estimated. This is distinct
from an estimator, a function of the data used to construct an estimate, and the estimate itself, which is the
numerical value generated by an estimator applied to data. In the context of a population mean of a random
variable, Xi, for instance, the estimand is E[Xi], an estimator of this is the sample mean in a sample of size
N ,

∑N
i=1Xi

N , and an estimate of this is the sample mean computed in a particular data set, which takes a
numerical value like 42.
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does not, in general, generate an average of underlying heterogeneous coefficients like those

described by (10).

To see what the usual exposure design estimates in this context, it’s again helpful to

difference (16) so as to eliminate state (or country) effects. This yields

∆Ys = λ+ κMs + φM2
s + νs, (17)

where νs is the differenced residual. Nonlinear models like this generate marginal effects,

defined as the derivative of the CEF with respect to the regressor of interest. In this case,

the marginal effect of exposure is

µ(Ms) = κ+ 2φMs.

Importantly, the average marginal effect of exposure, E[µ(Ms)], differs from the average

exposure effect, E[τs], implied by (10).

The distinction between average marginal effects and average exposure effects suggests

a reassuring explanation for the divergence between linear regression estimates and average

τs. The bivariate slope coefficient associated with a nonlinear CEF averages marginal effects

of Ms, rather than random coefficients like τs. In other words, a regression of ∆Ys on Ms

estimates something like

E[µ(Ms)] = κ+ 2φE[Ms], (18)

which, using (10), equals E[τs] + φE[Ms]. OLS does not quite estimate the average in (18);

the OLS estimand is a weighted average marginal effect. However, Angrist and Pischke

(2008) note that OLS estimates are typically close to the corresponding average marginal

effects from a nonlinear CEF (the formula for OLS weights is repeated here in a footnote).14

The upshot of this analysis is that, regardless of whether E[µ(Ms)] is computed as a
14Ignoring subscripts, denote the dependent variable by Y and a scalar continuously-distributed mean-zero

regressor by x; the associated CEF is E[Y |x] ≡ h(x), assumed to be a differentiable function of x. The OLS
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weighted or unweighted average, average marginal effects analogous to (18) are twice as

sensitive to changes in E[Ms] as the model for τs might lead you to expect. Equation (18)—

and the analogous OLS estimand—both reflect the fact that when Ms changes, outcomes

change by τs while τs itself also changes. In combination, these changes induce nonlinear

exposure effects on outcomes. Given sufficient variation in Ms, the parameters determining

µs are identified by models like (16). But the divergence between E[τs] and E[µ(Ms)] does

not necessarily make the latter a misleading guide to the population consequences of changes

in Ms.

The Nunn and Qian (2011) potato study offers an empirical testbed for this view of

heterogeneous effects in an exposure design. As we’ve noted, the exposure variable in this

context (Ms, where s indexes countries) is the share of a country’s arable land suitable for

potato cultivation, while treatment is this share interacted with a post-1700 dummy. The

estimate generated by a constant-effects version of model (9) is 0.81 (with a standard error of

0.10), indicating that a 10 percentage point increase in the share of land suitable for growing

potatoes increases population after 1700 by about 8%.15

The sample analyzed in Nunn and Qian (2011) includes a diverse set of 130 countries

in Europe, Asia, and Africa. The continent in which a country sits is an important source

of heterogeneity. In particular, the estimated impact of the arrival of the potato is larger

for Europe (0.90) than for Asia and Africa (0.42). And European soils and climate are

much more suitable for potatoes: about 52% of European farm land lends itself to potato

cultivation compared with only 7% outside Europe. In other words, Ms is much higher in

Europe than elsewhere.

estimand in this scenario can be written

E[xY ]

E[x2]
=

∫
h′(u)ω(u)du∫
ω(u)du

,

where the limits of integration range over the support of x and weighting function ω(u) is non-negative. This
weighting function is ω(u) ≡ (E[x|x > u]− E[x|x < u])P [x < u](1− P [x < u]).

15Nunn and Qian (2011) uses the log of total land area suitable for potato cultivation as regressor. In
keeping with the exposition in this section, exposure is defined here as the land area suitable for potato
cultivation as a share of the total land suitable for the cultivation of any foodstuff.
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What does this exposure-effect heterogeneity imply for the contrast between average

τs and average marginal effects? The average of the Europe and non-Europe estimates,

weighted by the number of countries in each group, is 0.55, much less than the pooled OLS

estimate of 0.81. Interpolating between the values for our two country groups, φ is roughly

.90−.42

.52−.07 ≈ 1.07. In other words, the effect of potato-positive land on log population increases

by 1.07 as the share of potato-positive land rises. The mean share potato-positive in the

sample is around 0.19. The approximate average marginal effect of potato suitability in a

model allowing an interaction with baseline exposure, therefore, roughly equals

E[τs] + φ× E[Ms] = 0.55 + 1.07× 0.19 ≈ 0.75.

The pooled OLS estimate of 0.81 is remarkably close to this.

Which is a better guide to the causal effects of potato cultivation on population growth,

E[τs] = 0.55 or the larger pooled OLS estimate? In a world where τs is a fixed attribute

of countries unchanged by changing their Ms, the average of τs is probably the effect of

primary interest. If the fact that τs increases with Ms is itself a causal effect, however, then

it should be the average marginal effect, E[µ(Ms)], that you seek. It’s especially interesting

to juxtapose the two; like the potato, neither effect is fairly said to be unsatisfying.16

Doing DD in an Eventful World

Event-study regression models offer a straightforward approach to time-varying treatment

effects. But parsimonious DD analysis with a single post-treatment estimate remains ap-

pealing, especially where event-study lags proliferate. We might be interested, for instance,

in the impact of unilateral divorce reform on divorce rates averaged over all post-treatment

years. This offers a compact summary measure of reform impact.
16Because the conditions for potato cultivation are likely correlated with other conditions favorable for

18th century growth, Nunn and Qian (2011) focuses on exposure design models with additional controls that
yield somewhat smaller potato effects. The potato estimates, it would seem, depend on what else is in the
pot when you cook ’em.
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Alas, elegant regression averaging of the sort seen in static DD analysis of exposure

designs with cross-sectional heterogeneity needn’t carry over to DD scenarios with time-

varying treatment effects. A particular concern here, first highlighted by de Chaisemartin

and D’Haultfoeille (2020) and Borusyak, Jaravel and Spiess (2024), arises from the fact that

simple DD implicitly uses already-treated units as controls.

The challenge presented by dynamic treatment effects is illuminated by a numerical

example drawn from de Chaisemartin and D’Haultfoeille (2020), reproduced here as Table

1. This scenario has two states, three periods, and two event-study coefficients. State 1 is

treated in period 2, while state 2 is treated in period 3. Untreated potential outcomes Yst(0)

are fixed at zero, while the treatment effect equals one in the initial period of treatment

and four thereafter. Causal effects are the same in each state (a subsequent example relaxes

this), but the impact of the first post-treatment lag (indicated by ∆Dst−1) is observed only

in period 3 in state 1.

Table 1
Time-varying treatment effects

State 1 State 2
Period: 1 2 3 1 2 3
treatment 0 1 1 0 0 1
Yst(0) 0 0 0 0 0 0
Yst(1) - 1 4 - - 1
outcome 0 1 4 0 0 1

Although causal effects equal either 1 or 4 in this example, static DD regression applied

to the data in Table 1 yields an estimate of -0.5. This estimate averages two partial DD

estimates, one for the first two periods and one for the last two periods. In the first two

periods, state 1 is treated and state 2 is control. The changes in outcomes from period 1

to period 2 are 1 − 0 = 1 for state 1 and 0 − 0 = 0 for state 2, generating a sensible DD

estimate of 1. In the last two periods, state 2 is treated and state 1 is control (since the

latter’s treatment status is unchanged in periods 2 and 3). The resulting DD estimate is

(1− 0)− (4− 1) = −2. DD regression averages these two to generate a pooled effect of -0.5.
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The problem here is that state 1 fails as a control group in periods 2 and 3. Since

treatment impact increases over time, state 1 outcomes increase even though this state’s

treatment status is fixed in periods 2 and 3. Thus, the putative control trend generated by

state 1 diverges from that for Y2t(0), which is fixed at zero in all three periods. This example

highlights the value of never-treated states, which are more likely than treated states to

capture counterfactual trends in the absence of treatment.

The absence of never-treated states notwithstanding, an event-study model allowing for

distinct τ0 and τ1 resolves the averaging failure illustrated by Table 1. The first partial DD

estimate comparing outcome growth from period 1 to 2 in state 1 (treated) with contempo-

raneous growth in state 2 gives an estimate of τ0, the treatment effect at event time 0 (i.e.,

the year when treatment turns on).

Identification of the first lag, τ1, is a little harder to see. Counting parameters and

observations suggests this effect is identified: we have 6 observations to identify a constant,

a state effect, two year effects, as well as τ0 and τ1. Borusyak, Jaravel and Spiess (2024)

shows that in an example with this structure, τ1 can be written as

τ1 = {(Y13 − Y11)− (Y23 − Y21)}+ {(Y12 − Y11)− (Y22 − Y21)}. (19)

To understand this formula, start with the first term in braces, which subtracts state 2

growth in periods 1 to 3 from state 1 growth in periods 1 to 3. This difference-in-differences

(equal to 3) eliminates any common trends but also subtracts the treatment effect in state

2 (treated in period 3), leaving us with τ1 − τ0. We therefore obtain τ1 by adding τ0 to

this. This is obtained from the period 2 versus period 1 DD contrast, which isolates τ0 for

state 1. This effect is 1, which leads us to the correct τ1 value of 4. Note, however, that we

extrapolate τ0 across states to make this work.

The event-study regression estimates of unilateral divorce effects plotted in Figure 2

show interesting dynamics. How far off is static DD from an average of these? The average
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post-reform effect is roughly −0.28, while the corresponding static DD estimate of −0.22 is

reasonably close to this. The fact that the divorce panel includes a fair number of never-

treated states likely contributes to this coincidence of findings.

What of cross-sectional heterogeneity in a staggered adoption design? States with higher

divorce rates in the 1960s or younger populations, for instance, may have experienced larger

effects of unilateral divorce. If so, event-study estimates such as those based on equation (7)

need not be a weighted average of underlying state-specific time-varying effects.

Table 2 illustrates a scenario with cross-sectional heterogeneity. In this case, the treat-

ment effect in state 1 is fixed at one, while the effect in state 2 is fixed at four. In contrast

to Table 1, here the static estimate computed using two states is more appealing: static

DD generates a sensible estimate of 2.5, midway between one and four. Event-study lags,

however, are τ0 = 1 on impact and, applying (19), τ1 = −2 one period later.

Table 2
Cross-section variation in dynamic treatment effects

State 1 State 2
Period: 1 2 3 1 2 3
treatment 0 1 1 0 0 1
Yst(0) 0 0 0 0 0 0
Yst(1) - 1 1 - - 4
outcome 0 1 1 0 0 4

Why does the event-study model fail to yield something sensible in this case? In contrast

with the Table 1 example, extrapolation of treatment effects across states is unwarranted in

Table 2. Specifically, τ0 = 1 in state 1 and τ0 = 4 in state 2. Thus, the first DD term in

(19) does not equal τ1 − τ0 for either state. Rather, this term contrasts τ1 in state 1 with

τ0 in state 2, a difference of −3. Adding the correct value τ0 = 1 for state 1 doesn’t fix the

problem generated by cross-state differences in impact.

This example shows how cross-sectional treatment effect heterogeneity may invalidate

the cross-state extrapolation implicit in event-study regression models. Cross-sectional het-

erogeneity in event studies is seemingly trickier than in the simpler DD setting discussed in
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the previous section. Sun and Abraham (2021), the first to discuss this problem, notes also

that the bias from cross-sectional heterogeneity may likewise compromise event-study tests

for pretrends.

Luckily, Borusyak, Jaravel and Spiess (2024) offers a home remedy for staggered models

with both dynamic and cross-sectional heterogeneity in treatment effects. The BJS estimator

proceeds in two steps. The first estimates time and state effects using the sample of untreated

observations only. These estimates are then applied to treated observations to impute the

counterfactual means implied by the DD parallel trends assumption. The difference between

treated outcomes and the imputed counterfactual gives an estimated effect for each treated

observation. A final step averages these.

The BJS estimator is undefined for periods when all states are treated since no counter-

factual time effects can then be constructed (BJS does not produce an estimate for period 3

in Table 1). In other words, BJS omits effects for states and periods where clean comparisons

are unavailable.17

Figure 4 compares BJS imputation estimates of unilateral divorce effects with regression-

based event-study estimates. Perhaps surprisingly, the two estimators generate similar re-

sults. Both show, for instance, marginally significant positive effects of unilateral divorce

early on, followed by marginally significant negative effects farther out. Cross-sectional het-

erogeneity in the impact of unilateral divorce appears to be insufficient for the extrapolation

problem highlighted in our numerical example to be consequential.

Importantly, cross-state heterogeneity can matter for reasons besides the implicit ex-

trapolation highlighted in our examples. In a staggered adoption design, the set of states

contributing to event-study estimates differs for different leads and lags. As the set of avail-

able states changes, cross-state differences in impact may generate illusory dynamics.

Table 2 illustrates this. Treatment effects are fixed over time in this example. In state

1, τ0 = τ1 = 1 and in state 2 τ0 = 4. Average τ0 = 2.5, while only state 1 contributes to τ1,
17In the same spirit, a procedure introduced in de Chaisemartin and D’Haultfoeille (2020) computes a set

of valid 2x2 DD contrasts for the effect of interest and aggregates these.
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Figure 4
Regression and BJS estimates of unilateral divorce effects
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Notes: This figure compares event-study regression estimates with event-study estimates computed as de-
scribed in BJS. Estimates are computed using data from 1958-1998.

so τ1 = 1. Although impacts are time-invariant, changing state composition generates what

looks like declining effects. This is easily remedied, however, by focusing on dynamic effects

for a fixed set of states (state 1 in the numerical example) or by limiting analysis to event

times where all states contribute (j = 0 in the example).

Time and state heterogeneity may indeed make some event-study regression estimates

misleading. But heterogeneity need not be fatal. Although one empirical example does not

a theorem make, our results highlight the remarkable robustness of event-study regression

in an application with strong dynamics and a good ex ante case for cross-sectional differ-

ences in impact. Event-study regression estimates allow for dynamic effects while imposing

constant effects across states. The BJS estimator offers a simple remedy for cross-sectional

heterogeneity in models for dynamic effects. In the divorce example, however, BJS estimates
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differ little from simpler TWFE regression estimates of the same dynamic effects. Consis-

tent with this, de Chaisemartin and D’Haultfoeille (2023) compares results from five new

wave heterogeneity-robust event-study estimators with classic TWFE estimates of unilateral

divorce effects computed in the Wolfers (2006) data. These results are similar across the

board.

3 Pondering Pretrends

Event-study lags provide a rich picture of treatment effect dynamics, while event-study leads

help us assess the parallel trends assumption. Such assessments are increasingly seen as

essential to any event-study story. Yet, examination of the size and significance of estimated

event-study leads is a pretest, and pretesting is statistically perilous. Pretesting problems

often manifest in misleading statistical inference for the post-test estimates of interest (Leeb

and Pötscher, 2005). Most importantly for our event-study agenda, pretests for parallel

trends may exacerbate rather than mitigate bias (Roth, 2022).

This section evaluates pretesting pros and cons in the context of event-study regression

models like (7). We conclude that, by flagging at least some models with divergent trends,

the bias-mitigation benefits of pretesting are likely to outweigh the risks.

Tough Talk about Standard Errors

A prerequisite for our pretesting pitch is a discussion of the thorny matter of DD inference,

i.e., standard errors. The thorns here grow out of the fact that DD often involves data with

a time dimension. One observation in a time series, whether for states, countries, people,

or firms, is likely to be highly correlated with the next. Bertrand, Duflo and Mullainathan

(2004) shows that standard errors for DD treatment effects computed without accounting for

such serial correlation are likely to be too small. Empiricists working with state-year panels

therefore cluster standard errors on state (or on whatever cross-sectional unit is relevant for
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a given DD design).

Bertrand, Duflo and Mullainathan (2004) focuses on a single treatment effect while event-

study models estimate many coefficients. This difference in modeling strategies matters for

inference. Clustered standard errors are typically biased downwards in small samples, often

badly so. Our divorce analysis uses 48 states, which may seem like enough clusters for clus-

tered inference to work. This is indeed the case for DD estimates of a static treatment effect.

But many event-study regression estimates rely on treatment switches that are switched on

for only a few observations at a time.

The inference problem here is that, in a staggered design, only a few states are observed

for extended pre-treatment or post-treatment periods. This gives these states high leverage

for estimates of long leads and lags, meaning their data matters greatly for the corresponding

estimates. Although not obvious, it’s possible to show that sample residuals generally have

less variance than the corresponding population residuals and that this variance shortfall

increases as leverage increases.18 This imparts a downward bias in clustered standard error

estimates that rely on few states. The upshot is that staggered event-study designs pose a

particular problem for clustered standard errors, and especially so for estimates of effects at

long leads and lags.

A simulation based on the divorce dataset captures the bias in robust and clustered

standard errors. States, time periods, and treatment dates in the simulation design mirror

those seen in the original divorce data. Simulated divorce rates follow an AR(2) process with

residuals drawn from a normal distribution added to the state and time effects estimated in

the original data. AR(2) parameters are set to the estimates from an AR(2) fit to original-

sample residuals. Unilateral divorce has no effect in the simulations, so the simulation

produces the sampling distribution under the null hypothesis of zero treatment effects (and

18See, e.g., Section 8.1 in Angrist and Pischke (2008). In the context of an OLS estimator β̂ =

(X ′X)−1X ′Y , where X is a an N × K regressor matrix with rows x′i, the difference between β̂ and the
OLS estimator omitting row i is (X′X)−1xiei

1−hii
, where ei is the ith residual and hii = x′i(X

′X)−1xi, is the
leverage of observation i. In a saturated model, the leverage of observation i is the reciprocal of the size of
the regressor-defined group to which i belongs. The highest leverage values here are for South Dakota and
Wyoming, the last two adopters, in years with long leads switched on.
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no pretrends). The appendix gives other simulation details.

Figure 5
Simulated event-study confidence intervals

in the unilateral divorce design
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Notes: This figure plots event-study regression estimates and 95% confidence intervals for unilateral divorce
effects in simulated data constructed to mimic the 1958-98 unilateral divorce sample. The simulation is
detailed in the appendix. Grey bands mark intervals constructed using simulation standard deviations;
other intervals use average-across-simulations clustered and robust standard errors. Simulations use 25,000
replications.

Figure 5 plots confidence intervals computed using the average over simulation draws

of robust and clustered standard errors, as well as the Monte Carlo standard deviation of

the simulation estimates. For leads up to about -15, confidence intervals based on clustered

standard errors track the actual sampling distribution reasonably well. Intervals based on

clustered standard errors also do better than intervals using unclustered robust standard

errors. Both types of standard errors are, for the most part, too small; but for moderate

lags and leads, the clustered standard errors are not off by much. Paralleling the pattern

of bias in estimated standard errors, confidence interval coverage declines steeply at longer

leads and lags.
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To make this problem concrete, observe that the last state to adopt unilateral divorce

in our data is South Dakota, which went unilateral in 1985. The previous change was in

Wyoming in 1977. The eight farthest-ahead lead coefficients are therefore estimated from

South Dakota alone. The resulting imprecision can be seen in Figure 5 in the fanning out of

sampling variance at leads longer than 15 and, even more so, for leads longer than 20. Yet,

clustered standard errors fail to reflect declining precision as a function of lead length.

Binning long leads and lags reduces the risk that an analyst makes too much of impre-

cisely estimated coefficients with misleadingly small estimated standard errors (simulations

of estimates based on (8) bear this out). This consideration leads us to bin estimates at

+/-15 in the pretesting analysis below. Happily, this leaves us with a horizon long enough

for interesting dynamics to emerge.

Clustered standard errors are sometimes misleading, even for shorter leads. Cameron,

Gelbach and Miller (2008) shows that inference using a wild block bootstrap improves on

conventional clustering. A wild bootstrap for regression estimates with regressor vector Xi

starts by computing estimates, β̂, and estimated residuals, êi. Each replication r of the

wild bootstrap retains the original values of the Xi but creates a new dependent variable

according to

Y r
i = X ′iβ̂ + wiêi,

where wi equals +1 or −1 with probability 0.5. Each wild bootstrap replication regresses

Y r
i on Xi to obtain β̂r. This estimate is then used to compute the test statistic of interest,

most often a t-statistic. This is constructed by dividing β̂r − β̂ by the clustered standard

error obtained in replication r. The bootstrap then uses R replications of the t-statistic

constructed in this manner to generate an empirically-grounded null distribution rather

than relying on asymptotic theory. Specifically, the null distribution delivers a set of critical

values that can be used for testing, but it does not deliver confidence intervals (though they

can sometimes be re-engineered). A wild block bootstrap fixes wi within each cluster (such

clustered resampling makes this bootstrap “block”). Our pretesting simulation includes tests
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computed using wild block bootstrap critical values as an alternative to clustered standard

errors with the usual normal approximation.19

We conclude this digression with a reminder that when testing event-study leads for

statistically significant pretrends one at a time, the tester risks over-rejection. As in any

multiple-testing problem, the odds of a Type I error (rejecting a true null hypothesis) increase

with the number of tests under consideration. A straightforward solution here is to test all

pretrend coefficients jointly using an F or chi-square test. But this is tricky in practice since

clustered joint test statistics tend to exacerbate the downward bias in clustered standard

errors. In particular, Pustejovsky and Tipton (2018) and MacKinnon, Nielsen and Webb

(2023) warn that the downward bias in F -statistics based on a clustered covariance matrix

grows with the number of restrictions tested.20

Rather than trying to wrangle a reliable clustered F , we can stick with individual t-tests

while adjusting critical values to control the family-wise error rate (FWER). This is the

probability that you make at least one Type I error in a set of tests. Sup-t critical values

offer such an adjustment. These are obtained as follows:

• Estimate a model with the m−1 leads you’d like to test; save the estimated covariance

matrix for these estimates.

• Draw from a multivariate (m−1)-dimensional normal distribution with mean zero and

correlation matrix corresponding to the covariance matrix for these estimated leads;

this simulates the distribution of estimates under the null hypothesis that all leads are

zero.

• For each replication, indexed by r, calculate trmax, the maximum of the absolute values

of the normal variates from draw r.
19Chapter 8 in Angrist and Pischke (2008) discusses bootstrap inference in more detail.
20Intuitively, this is because a test of multiple restrictions involves the inverse of the relevant estimated

covariance matrix. Cluster bias affects not just the diagonal but also the many off-diagonal elements of this
matrix, and so the overall bias in a joint test quickly adds up.
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• The sup-t critical value for a test with size α is the 1− α quantile of the distribution

of trmax.

Sup-t critical values are also used to construct uniform (also called simultaneous) confidence

bands that cover an entire set of parameters (like the set of leads) with a minimum probabil-

ity, say 95%. A uniform confidence band of level α guarantees that the coverage probability

for (say) a set of leads is 1−α. This is equivalent to ensuring that the FWER for the entire

set is controlled at level α.

Uniform sup-t confidence bands have the virtue that, like the usual pointwise intervals,

they’re easily plotted, while F -based confidence regions are hard to visualize with more than

two parameters (with two parameters, the relevant region is an ellipse). For correlated coeffi-

cient estimates, sup-t generates the narrowest uniform confidence bands with correct asymp-

totic coverage relative to Bonferroni and other widely-used approaches to multiple-testing

problems (Montiel Olea and Plagborg-Møller, 2019).21 The bootstrap, wild or otherwise,

delivers sup-t p-values by creating the maximum of the t-statistics, tmax, (e.g., for all the

leads) in each replication.

Pretrends Pretests: The Gripes of Roth

A pretrends pretest sensibly asks whether estimated leads are statistically significantly dif-

ferent from zero. This offers a check on the parallel trends assumption. When treatment

and control outcomes indeed follow parallel trends, such pretesting imparts no bias in down-

stream estimates of treatment effects. It’s worrying, however, that when treatment and

control trends diverge for reasons unrelated to treatment, event-study estimates that pass

a pretrends pretest might be especially misleading. Roth (2022) describes both of these
21When pretrend coefficients are uncorrelated, the sup-t procedure results in critical values similar to those

derived using a Bonferroni correction (Montiel Olea and Plagborg-Møller, 2019). The Bonferroni correction
obtains a p-value of α for a set of k tests by requiring that at least one test reject with a p-value less than
α
k . For instance, to test whether either of two leads is significant using a procedure with a 10% Type I error
rate, Bonferroni requires that at least one of the associated test statistics exceed the critical value for a 5%
test.
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features of the pretrends pretesting problem.22

The pretesting payoff is highest when a test correctly identifies DD and event-study

research designs that fail parallel trends. As Roth (2022) explains, pretrends pretests often

have low power, missing many violations. This is perhaps unsurprising given the inference

challenges detailed above. Less intuitively, however, studies with truly divergent trends that

nevertheless slip through a pretrends pretest might generate the most misleading estimated

treatment effects. This bias arises as a result of the fact that the TWFE estimates used for

pretrends pretesting are correlated with the treatment effect estimates of primary interest.

In the big picture, the question of whether pretesting benefits outweigh the corresponding

costs in terms of bias depends on the incidence of divergent trends, the bias of screened studies

that pass a pretest, and pretest power. To characterize this dependence, we imagine a pool

of possible event studies you might undertake, some of which satisfy parallel trends and some

that don’t.

Let θ denote the fraction of potential studies with divergent trends (indicated by dummy

variable B) and assume this divergence results in estimated treatment effects that are biased

by the amount δ > 0. The unconditional bias of an estimator that ignores pretrends can

then be written

E [b] = δP [B = 1] = δθ, (20)

where b is the bias in estimated treatment effects and expectations are taken over studies

chosen at random from the pool of possible studies.

In what sense is the bias of a study random? To be concrete, for our purposes, a study

is defined by a research question, a sample, and an event-study research design. We usually

think of bias as the expected difference between a parameter estimate and the corresponding

target parameter. In this view, bias is a parameter, and, like other parameters, it is non-

stochastic. Here, however, we imagine the pool of possible studies as defining a sampling

frame that we draw from at random. Fraction θ of these studies yield biased estimates due
22The first result presumes the pretest in question is two-sided, like a two-sided t-test or an F test.
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to divergent trends, but we don’t know which studies are biased.

Imagine pretesting to sort biased weeds from unbiased flowers, harvesting only those

studies that pass the pretest. Studies that pass a pretest are either unbiased or biased.

For any given study, test results are random, where randomness is determined by the usual

within-study sampling distribution of estimates. Tests that fail to reject the null hypothesis

of no pretrends when trends indeed diverge result in a Type II error. Call the bias of studies

mislabeled as unbiased δs (“s” for “screened”). This can be above or below the bias due to

pretrends in the absence of pretesting, δ, though Roth (2022) argues we should presume

δs > δ. One minus the probability of a Type II error is the power of the pretest. Call

this π, a number between 0 and 1. Let α be the corresponding test size, i.e., the pretest’s

probability of Type I error. The costs and benefits of pretesting are determined by π, α, θ,

and the bias of screened and unscreened studies.

Let TP = 1 indicate pretest rejection, with TP = 0 otherwise. We aim to compare the

magnitude of screened bias E[b|TP = 0] with unscreened bias, E[b] (which is positive by

construction). As a first step, note that

E[b|TP = 0] = δs × P [B = 1|TP = 0],

since, as Roth (2022) shows, pretesting imparts no bias in estimates for studies without

pretrends, i.e., studies for which B = 0. Applying Bayes’ Rule, we have that

P [B = 1|TP = 0] =
P [TP = 0|B = 1]P [B = 1]

P [TP = 0]

=
(1− π)θ

(1− π)θ + (1− α)(1− θ)

Using this to contrast screened bias with (20) shows that pretesting reduces bias magnitude

when

|δs|
[

1− π
(1− π)θ + (1− α)(1− θ)

]
< δ (21)
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Pretesting is always bias-reducing when π = 1 and generally more likely to be beneficial

as power increases. Suppose power is 0.5 (the Roth (2022) benchmark) and size is nominal,

a small number like .01 or .05. Then pretesting is likely to pay when

|δs|
2− θ

< δ. (22)

For a given θ, this ratio depends on the relative bias of screened and unscreened studies,

which can go either way. If |δs| ≤ δ, screening always pays since 2−θ is at least 1. Otherwise,

the payoff to screening depends on biased study prevalence, θ, as well as the relative bias

of screened and unscreened studies. Paradoxically, when divergent trends proliferate, the

pretesting payoff is less certain. This reflects the fact that the probability an unscreened

study is biased increases one-for-one with θ while the probability a screened study is biased

is a convex function of θ (as can be seen by differentiating the left-hand side of (22)).

Pretest performance might be improved by splitting the sample of interest, using half

for testing and half for estimation. In this spirit, Borusyak, Jaravel and Spiess (2024)

suggests pre-treatment leads be estimated in a sample limited to untreated observations

only. When the test passes, the BJS split-sample imputation estimator computes event-

study lags as described above, implicitly setting all leads to zero. Recall that BJS is an

imputation estimator because state and time effects are estimated using pretreatment data

and then used to impute counterfactuals for the post-treatment period. BJS shows that lead

and lag estimates computed in this manner are uncorrelated, thereby removing pretest bias

in screened studies.

The BJS imputation estimator has its virtues, especially in a world of heterogeneous

treatment effects (since BJS ensures convex weighting of these). But the case for fancy

event-study estimation footwork is decidedly mixed. Sample splitting à la BJS is meant

to break the correlation between test statistics and estimators, but some of the studies

that pass a pretest are still biased. In such studies, the BJS estimator can have more bias
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from pretrends than event-study estimates based on regression models like (7). To see why,

suppose biased studies are biased by virtue of linear trends in untreated potential outcomes

that arise only in treated states. BJS omits leads when the pretest passes and therefore

compares post-treatment outcomes to average outcome levels for the entire pre-treatment

period. An event-study regression estimator, by contrast, compares post-treatment outcomes

to outcomes at event time −1. Given linear trend divergence, more distant pre-treatment

outcomes make for a more misleading baseline than does the outcome at event time −1

(Roth, 2024, details this concern).

A simulation shows how these things shake out for pretesting in a relevant empirical

context. The simulation is built from the divorce-inspired setup deployed for the exploration

of standard errors in Figure 5. Treatment effects are set to zero as before, but half of the

simulated studies have divergent trends (i.e., θ = P [B = 1] = 0.5). These are specified as

a common linear trend that characterizes untreated potential outcomes in treated states.

As in Roth (2022), the trend parameter is set so that power equals 0.5 when B = 1 (for

a pretest using event-study regression estimates with clustered standard errors and sup-t

critical values).

Table 3
Pretrend pretests in the simulated unilateral divorce design: power and size

Size Power Power–Size
(1) (2) (3)

Baseline: Regression clustered sup-t 0.146 0.500 0.353

Regression robust sup-t 0.155 0.607 0.452

Regression clustered 0.429 0.764 0.334

Regression wild block bootstrap sup-t 0.049 0.310 0.261

BJS clustered sup-t 0.156 0.495 0.339

Notes: This table reports power and size for a nominal 5% pretrends pretest using simulated data. Simu-
lations draw from the unilateral divorce design detailed in the appendix, with 25,000 replications. Treated
states follow divergent linear trends in half of the studies from which simulated data are sampled.

Our empirical analysis of pretesting problems starts with test size and power. Pretests
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are applied to the 14 event-study leads generated by (8), binned at +/-15 (recall that the

-1 lead is omitted). Reflecting the inference challenges discussed at the beginning of this

section, only one of the test statistics in Table 3 has the correct size. Results in the first

row of the table show that a clustered t-test with sup-t critical values has a Type-I error

rate around 15% (this is the probability the pretest rejects when B = 0). Tests using robust

standard errors without clustering have similar size and greater power (the probability of

rejection when B = 1), but a clustered t-test without allowance for multiple testing rejects

more than 40% of the time under the null. The wild block bootstrap generates a test with

near-nominal size, but power here is low. Performance of the BJS split-sample pretest using

sup-t differs little from that of the corresponding TWFE regression-based test.

Power minus size provides a useful summary of test quality, at least as far as bias

detection goes. This ranges from around 0.26 to 0.45.23 Sup-t without clustering (i.e., robust

but unclustered standard errors) leads the pack at 0.45. In this day and age, however, it

may be hard to convince referees and other readers that DD standard errors needn’t be

clustered. Clustered standard errors improve size moderately, reducing power in roughly

equal measure, so power minus size falls to around 0.35.

Figure 6 compares the bias of screened and unscreened estimates of individual lag coef-

ficients computed using event-study regression models and the BJS estimator. Pretests use

t-statistics with clustered standard errors and sup-t critical values. In this model, the bias

from divergent trends increases with lag length. Pretesting mitigates the bias of event-study

regression estimates. While gains from screening are larger for BJS estimates, these are still

mostly more biased than screened regression estimates, especially at short lags. This reflects

omitted variable bias in flawed studies that nevertheless pass the pretest.
23Tests that maximize power minus size minimize the sum of Type I and Type II errors. This criterion for

test quality appears to originate in the classic DeGroot (1986) statistics text; see Gannon, de Bragança Pereira
and Polpo (2019) for details.
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Figure 6
Bias in event-study estimates with and without pretesting

in the unilateral divorce design
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Notes: This figure plots estimated event-study lag coefficients averaged over 25,000 simulation draws of the
unilateral divorce design detailed in the appendix. In the simulated model, all lags are set to zero.

Fruitful Pretests

The results in this section convince us that, in the messy world of event-study estimation, it’s

worth pretesting estimated leads. The pretesting implicit in plots like Figure 2 supports—but

cannot ensure—valid causal inference. Our analysis also suggests that in both estimation and

testing, binning poorly-estimated long-horizon leads and lags helps avoid spurious statistical

results. Finally, uniform confidence bands based on a sup-t adjustment offer a simple fix for

multiple testing problems.

Figure 7 implements these principles for estimates of unilateral divorce effects, binning

at +/-15. Confidence bands use clustered standard errors, showing both pointwise (one at a

time) and uniform (sup-t) critical values (the latter use critical values computed separately

for leads and lags). Estimated leads are close to zero and well inside the tighter pointwise
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Figure 7
Estimated unilateral divorce effects with pointwise and uniform confidence intervals
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Notes: The figure plots event-study regression estimates of unilateral divorce effects, with the year before
adoption set as the reference year. Leads and lags are binned at 15 periods. Confidence intervals use
clustered standard errors and critical values of 1.96 (for pointwise intervals) or sup-t critical values (for
uniform intervals). The sup-t critical value adjustment is done separately for leads and lags. Estimates are
computed using data from 1958-1998.

bands. Estimated leads are also much smaller than estimated post-treatment lags. The

latter paint a picture of plausible dynamic effects in the treatment period.

Overall, the pretrends picture here seems salutary. It’s noteworthy that many estimated

lags fall outside of the range covered by uniform bands for the estimated leads. This is

especially true for short leads and lags, unsurprisingly, since these are estimated with the

greatest precision. Pretesting is therefore powerful enough to reject the null hypothesis of

leads as small as the short lags. At the same time, even in this relatively well-provisioned

empirical setting with 48 states and 41 periods, estimated long-run event-study lags are noisy

and marginally significant at best.

Some pretesting paths lead in directions other than those we’ve taken here. Instead of

abandoning a study that fails a pretrends pretest, you might forge ahead with a model that
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includes linear state-specific trends. In our simulations, divergent pretrends are indeed linear,

so DD estimates computed with state-specific trends are unbiased. Of course, this needn’t

work out in real life. Moreover, event-study models with state-specific trends raise further

vexing collinearity complications of the sort discussed at the end of Section 1. In such an

event-study specification, you might miss this and report estimates of parameters that aren’t

identified. Synthetic control methods offer an alternative that sidesteps collinearity concerns

while allowing for divergent nonlinear trends in event-study designs; see Abadie (2021) for

an overview.

4 Dysfunctional Forms

Outside models with parametric trends, DD-type identification strategies stipulate that

changes in average outcomes in the absence of treatment are the same for treated and control

units. This parallel trends assumption requires commitment to a specific transformation of

the outcome: when trends run parallel for logs, they diverge for levels, and vice versa. Our

DD discussion concludes with an examination of efforts to weaken commitment to functional

form.

Consider the question of how minimum wage laws affect workers’ incomes. Economists

have long argued over the distributional consequences of a wage floor.24 The fact that U.S.

states set minimum wages above the federal minimum makes this a classic DD question.

A static DD analysis of minimum wage effects on income might examine the effect of the

prevailing minimum wage (denoted Wst) on the log income of worker i in state s at time t,

denoted lnYist.

With many states and years, minimum wage effects on log income can be estimated using

a TWFE regression model like

lnYist = τ lnWst + γs + λt + ηist, (23)
24Research on this question dates back at least to Gramlich (1976).
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where γs and λt are state and year effects and ηist is a residual that’s mean-independent of

state and year. A causal interpretation of the resulting estimates is predicated on parallel

trends for log income. But parallel trends for log income implies trends for income levels

that are proportional rather than parallel. That is, this model implies

Yist = W τ
ste

γseλtνist,

where νist is a proportional error term whose log is mean-independent of state and year.

Functional-form dependence of this sort is troubling for two reasons. First, DD analysts

rarely have clear institutional or theoretical reasons to prefer a particular dependent variable

transformation. Models for log income are appealing because τ can be interpreted as the

percent change in wages due to a higher minimum wage. Effects in percentage terms are

unaffected by inflation, and proportional models seem a good fit for non-negative dependent

variables like earnings. But these dependent variables can also be zero, and we have not yet

learned how to log that.25 Second, some research questions inherently involve a variety of

transformations.

The latter concern is highlighted by research using state minimum wage changes to es-

timate minimum wage effects on the distribution of income as well as on mean income.

Specifically, Dube (2019) asks how minimum wage hikes affect the family income distribu-

tion. This question is answered by making the dependent variables in DD analysis a set of

indicators of whether family income falls below multiples of the official federal poverty thresh-

old (FPT). Dube (2019) also examines minimum wage effects on family income quantiles

like the median and lower quartile.

An analysis of this sort raises the question of when, if ever, minimum wage mavens can

reasonably invoke parallel trends for more than one transformation of a given underlying

dependent variable. Can parallel trends hold jointly for income quantiles and for a set of

indicators for income below cutoffs like the FPT? Meyer (1995) and Athey and Imbens (2006)
25Chen and Roth (2024) critiques recent efforts to deal with this quotidian problem.
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are among the first to explore possible resolutions of this enduring DD conundrum. More

recently, Roth and Sant’Anna (2023) establishes a necessary and sufficient condition—called

parallel distributions—under which parallel trends applies to all monotonic transformations

of a dependent variable.

Parallel distributions, like parallel trends, restricts the evolution of potential outcomes in

the absence of treatment over time and across groups. For the minimum wage, a continuous

treatment, we assume that untreated means the state minimum wage equals the federal

minimum. Potential outcome Yist (0) denotes the outcome for household i in state s and

period t where the minimum wage is set at the federally mandated floor. Note that outcomes

here are measured at the level of individual households rather than as state-year averages.

This allows us to model the distribution of income within states and years.

For all periods t, and for all non-negative values y, parallel distributions requires

E [1{Yist(0) ≤ y} − 1{Yist−1(0) ≤ y}] = E [1{Yict(0) ≤ y} − 1{Yict−1(0) ≤ y}] (24)

for all states indexed by s and c. Because the mean of an indicator function is a cumulative

distribution function (CDF), parallel distributions says that the change in the CDF of poten-

tial outcomes from one year to the next is the same in all states. The appendix shows that

parallel distributions imposed on microdata implies a TWFE model for state-year averages

of any transformation of the outcome.26

As a test-bed for the parallel distributions idea, Figure 8 plots event-study estimates of

the effects of minimum wage increases on transformations of household income. These trans-

formations, denoted Ỹist, include indicators for crossing two FPT cutoffs, household income

itself (measured in multiples of FPT), and log income. These estimates were computed using
26Fernández-Val et al. (2024) introduces a related restriction on the CDF of Yist (0) dubbed “no interac-

tions.” This approach has a TWFE-type linear function inside a nonlinear model like logit. The resulting
model is invariant to monotonic transformations of dependent variables. Unlike parallel distributions, how-
ever, this no-interactions assumption doesn’t deliver parallel trends in conditional mean outcomes. Abadie
(2005) and Callaway, Goodman-Bacon and Sant’Anna (2021) extend parallel trends to cover multi-valued
and continuous treatments by assuming that changes in untreated (e.g., no minimum wage change) potential
outcomes are mean-independent of the level of treatment.
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the cross-sectional household data analyzed by Dube (2019).27

The coefficients plotted in Figure 8 come from a continuous-treatment version of equation

(8). Specifically, functions of income for household i in state s and year t are modeled as

determined by leads and lags of minimum wage changes according to

Ỹist =
−2∑
j=−3

τj∆ lnWst−j +
2∑
j=0

τj∆ lnWst−j (25)

− τ≤−4 lnWst+3 + τ≥3 lnWst−3 + γs + λt + ηist.

Terms of the form ∆ lnWst−j denote leads and lags of year-to-year changes in the log min-

imum wage. Coefficients τ≤−4, τ−3, . . . , τ2, τ≥3 capture the cumulative effects of minimum

wage changes that occur at event time zero. The model is binned, with a single term (τ≤−4)

for effects of future minimum wage changes 4 or more years ahead and a single term (τ≥3)

for effects of minimum wage changes 3 or more years ago. As before, τ−1 is normalized to

zero.28

As in the divorce model, estimated leads in (25) serve as a check on the parallel trends

assumption. Provided pre-change trends are parallel and outcomes do not change in antici-

pation of minimum wage changes, these should be zero. Coefficients multiplying lnWst+3 and

lnWst−3 sum effects at horizons of 4 or higher for leads and 3 or higher for lags.29 Finally,

as in Dube (2019), estimated coefficients are divided by the dependent variable mean; this

scaling makes the reported estimates elasticities.

The estimates plotted in the top panel of Figure 8 show that in years following a minimum
27Family income comes from the 1984-2013 CPS and excludes the elderly; state minimum wages are from

the U.S. Department of Labor. As in Dube (2019), models estimated here include measures of family size
and composition as additional controls. Also, as in Dube (2019), before taking logs, zeros are replaced with
one-half times the smallest nonzero income observed in a given state-year cell. As noted above, this fudge
can be consequential.

28This setup mirrors the continuous-treatment event-study model described in Freyaldenhoven et al.
(Forthcoming).

29To see why this works, note that lnWst+3 = lnWsT −
∑
j≤−4 ∆ lnWst−j , where T is the final period in

the data, and lnWst−3 = lnWs0 +
∑
j≥3 ∆ lnWst−j , where the first period in the data is t = 0. In other

words, up to a constant for each state, lnWst−3 is equal to the sum of the first differences of lnWst and
lnWst+3 is equal to minus the binned sum, analogous to the binned terms in equation (8).
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Figure 8
Estimated minimum wage effects on household income
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Notes: This figure plots binned event-study regression estimates (reported as elasticities) and uniform 95-
percent confidence intervals clustered by state for minimum wage effects on household income. The upper
two panels show effects on indicators of family income below one and three times FPT, respectively. Effects
one year before the minimum wage change are normalized to 0. Controls include state effects, Census
division-by-year effects, state-specific indicators for each Great Recession year, state-level covariates (GDP
per capita, EITC supplement, and unemployment rate), and individual demographic controls (a quartic in
age as well as dummies for race, marital status, family size, number of children, education level, Hispanic
status, and gender). Regressions are weighted by March CPS person weights. The confidence intervals are
based on sup-t critical values, which ensure nominal simultaneous 95-percent coverage separately for leads
and lags. Data are from the Dube (2019) replication package.
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wage increase, the share of households with income below FPT declines, an effect that grows

over time. At the same time, the next panel down, which plots effects on the likelihood

of income falling below 3 times FPT, suggests the minimum wage has no effect on the

income distribution around this higher cutoff. The remaining two panels show little effect

on average income, whether income is measured in levels or logs. The figure, therefore,

supports the claim that minimum wage effects on income are concentrated at the bottom

of the income distribution. Remarkably, Figure 8 shows little evidence of pretrends for any

dependent variable. This would therefore appear to be a case of transformation-invariant

parallel trends.

Although parallel distributions appears to hold in the Dube (2019) data, this robustness

is a poor fit for the underlying theory. Roth and Sant’Anna (2023) shows that assumption

(24) implies that the population of interest can be characterized as containing a mixture of

two types of households, one for which the distribution of Yist (0) is independent of state

(but whose outcomes may be time-varying) and another for which the distribution of Yist (0)

is fixed over time (but might differ across states).30 Yet, worker income everywhere is surely

subject to time effects of the sort generated by business cycles, while states have persistently

different income distributions. It’s hard to imagine a world in which households experience

income variation subject either to state effects or time effects, but not both.

What, then, explains the transformation-robustness apparent in Figure 8? Importantly,

the models used to generate the estimates in Figure 8 (and in Dube, 2019) adjust for covari-

ates beyond state and year effects. These covariates include time-varying controls such as

GDP per capita, the aggregate unemployment rate, and changes in state-level EITC policy.

Figure 9 suggests time-varying controls matter. This figure plots event-study estimates

constructed as in Figure 8, computed here without state effects. Although noisier than

the estimates with state effects plotted in Figure 8, the estimated leads are reasonably

precise zeros. This finding suggests that, conditional on controls, ahead of a minimum wage
30The appendix details this result.
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Figure 9
Estimated minimum wage effects on household income–

without state effects
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Notes: This figure plots binned event-study regression estimates and simultaneous confidence intervals par-
alleling those reported in Figure 8, with the modification that state effects are omitted.
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increase, average incomes in states that raise minimum wages are similar to average incomes

in states without an increase. In DD applications where dependent variable levels are roughly

comparable in treatment and control states, the parallel trends assumption is insensitive to

functional form.31

The potential importance of time-varying controls in an event-study model raises two

concerns. First, controls like state GDP and unemployment may be affected by minimum

wages and, if so, are bad controls in the sense that they’re really outcome variables (an ob-

servation made in Burkhauser, McNichols and Sabia, 2023). As a rule, control for outcomes

compromises rather than supports identification (Angrist and Pischke, 2008, 2015). Second,

an empirical strategy that relies on covariates rather than state effects for identification is

not really doing DD. Rather, this is old-fashioned regression conditioning.

These concerns lead us to conclude that while parallel trends might hold for a variety of

transformations, in a setting where state and year effects are needed to identify causal effects,

it’s hard to see why we’d be so lucky. Within-state income distributions indeed appear to

evolve in parallel, but only after conditioning on a rich set of time-varying controls. In

our minimum wage analysis, these controls obviate the need for state effects, turning the

two-way fixed effects setup into one with time effects only. Research designs with time-

varying controls but no state effects inherit the robustness to functional form we expect of

conventional regression estimators, but these are no longer models with two-way fixed effects.

As we see it, DD identification strategies are inherently transformation-dependent.

31Meyer (1995) appears to be the first to make this point.
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Appendix

Simulation Details

The simulations generating Figures 5 and 6 and Table 3 start with estimates of event-study
model (7) with a full set of leads and lags. The simulation data set begins in 1956 rather
than in 1958. Predicted values are constructed using the state and time effects this regression
generates, setting event-study coefficients to zero. Call these predicted values Ŷst and the
corresponding residuals est.

Simulated residuals follow an AR(2) with coefficients taken to be those obtained by
estimating

est = ρ1est−1 + ρ2est−2 + ust, (26)

in the divorce data with t starting in 1958. Heteroskedasticity by state is calibrated by
regressing squared residuals from the AR(2) model on state effects:

u2st = ξs + vst.

The simulation variance for each state, denoted σ2
s , is set to ξs plus the variance of vst

computed over all states and years.
Simulations use a balanced panel with 41 periods (matching the 1958 to 1998 period used

for estimation) and 48 states (Alaska, Louisiana, and Oklahoma are omitted in our analysis).
Each simulation draw is a value of Yst computed as follows:

Yst = Ŷst + ψ ×BMst+ ẽst,

where ẽst is obtained from the estimated AR coefficients in (26) and ust is drawn from a
normal distribution with mean zero and variance σ2

s . ψ denotes the slope of a linear time
trend in treated states indicated byMs while B is a dummy with mean θ = 0.5 that indicates
draws from biased studies (i.e., with divergent trends).

Figure 5 displays simulation results from an event-study regression with standard errors
that are either clustered (by state) or robust. For this figure, bias (indicated by B) is fixed
at zero. Confidence limits in the figure are computed as +/-1.96 times the average estimated
standard errors across simulation draws. The confidence interval for Monte Carlo sampling
variance is +/-1.96 times the standard deviation of the estimated coefficients across draws.

To compute power and size in Table 3, a replication starts by estimating (8), binned at
+/-15. We then test whether the absolute value of the largest t-statistic for estimated leads
is significant, by criteria explained below. The table compares results for five estimation and
testing strategies. The first four rows use TWFE event-study regressions. In the first row,
standard errors are clustered and tests based on sup-t critical values, computed following
the algorithm described in the paper. The second row uses robust standard errors and sup-t
critical values. The third row uses clustered standard errors and a critical value of 1.96.
The fourth row uses the wild block bootstrap based on the Stata boottest command by
Roodman et al. (2019). Our implementation of the wild block bootstrap uses the maximum
of the pretest t-statistics. We impose the null hypothesis (that all lead coefficients are
zero), use boottype(wild), Rademacher (equal) weights, and bootstrap t-statistics with
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999 replications.
The fifth line in the table reports results using the BJS estimator, computed using soft-

ware distributed with the BJS paper. The BJS pretest involves an event-study regression
on untreated observations, with some lead coefficients set to zero while others are estimated.
The pretest in this case is based on the first 14 lead coefficients and sup-t critical values.32

The first column in Table 3 reports the fraction of rejections in draws with B = 0; this
is the Monte Carlo size of the pretrends pretest. The second column reports rejections in
biased studies with B = 1, the Monte Carlo power of the pretest. The slope of the linear
trend in treated states, ψ, is calibrated so that the baseline model has power of 0.5 using a
TWFE regression with clustered standard errors and sup-t critical values; this turns out to
be ψ = 0.03519. The third column is the difference between columns 2 and 1.

As for the event-study estimates in this chapter, simulation estimates are weighted by
state population.

More on Robust Parallel Trends

Section 4 notes that TWFE holds for a set of transformations of a given dependent variable
under a parallel distributions restriction.

This appendix expands on the connection between parallel distributions cast in terms
of distributions of individual outcomes and TWFE models for many state-year averages
(thereby extending the Roth and Sant’Anna (2023) two-group analysis).

Parallel distributions is equivalent to a mixture model for individual outcomes. Let
Fst (y) = E[1{Yist(0) < y}] denote the CDF of Yist (0) evaluated at y for state s and period
t. Roth and Sant’Anna (2023) shows that parallel distributions holds if and only if Fst (y)
can be written as a mixture of a state-specific but time-invariant distribution Gs (y) and a
period-specific but state-invariant distribution Ht (y). In other words,

Fst (y) = ωGs (y) + (1− ω)Ht (y) , (27)

where ω ∈ [0, 1] is a weight between zero and one.
Let Yst (0) denote the sample mean of Yist (0) in cell (s, t). Then Yst (0) =

∫
ydFst (y)+ηst,

where the integral
∫
ydFst (y) is the population expectation of Yist (0) in cell (s, t) and ηst is

a residual that reflects within-cell sampling variance. Using this to substitute for Fst (y) in
(27), we arrive at a version of the TWFE model for average outcomes specified by equation
(23)

Yst (0) = ω

∫
ydGs (y) + (1− ω)

∫
ydHt (y) + ηst

= γs + λt + ηst.

The same argument applies if Yst (0) is not a sample mean but a population average for
individuals living in state s at time t, as in the divorce example from Section 1. Let the

32Estimating the first 14 leads is equivalent to setting lead -1 to zero, estimating other leads, and binning
at -15, up to normalization. This choice, therefore, mimics the pretest used for the other estimators and
otherwise uses default settings in the BJS software.
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population size in state s at time t be Nst. The total population at time t across all states
is Nt :=

∑
sNst. Equation (27) implies that a fraction (1− ω) of individuals in each (s, t)

have outcomes drawn from Ht (y), which in this case is the exact finite-population cdf for
the (1− ω) × Nt individuals across all states at time t whose outcomes are drawn from a
state-invariant distribution. The mean among the (1− ω)×Nst individuals in state s whose
Yist (0) are drawn from Ht (y) behaves like a sample mean, provided the Nst individuals
in (s, t) are a random draw from the Nt individuals across all states at time t. A similar
argument applies to the ω×Nst individuals in state s at time t whose Yist (0) are drawn from
Gs (y). This is a version of the TWFE model for average outcomes specified by equation
(23).

Now consider a transformation like lnYist(0), denoted

Ỹ ist(0) ≡ m(Yist(0)).

The state-year sample mean of Ỹ ist (0) is Ỹ st (0) =
∫
m (y) dFst (y)+ η̃st. As in equation (28),

we have that

Ỹ st (0) = ω

∫
m (y) dGs (y) + (1− ω)

∫
m (y) dHt (y) + η̃st

= γ̃s + λ̃t + η̃st,

where γ̃s and λ̃t denote state and year effects in a model for the transformed outcome, with
residual η̃st.

Note that the theorem on mixture-model equivalence implies a valid TWFE model for,
say, average log income but not for log average income. A related point is that TWFE models
for something like the divorce rate are applied directly to the rates themselves. In this case,
there’s no underlying continuous microdata distribution to restrict because divorce rates are
the mean of a divorce dummy. The latter has a distribution function with one parameter
(its mean), so that parallel trends for divorce rates immediately imply parallel distributions
for individual divorce status.
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