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Abstract

This paper develops a model of education production and uses it to study optimal school sys-
tem and curriculum design. Curriculum design is modeled as a time-allocation problem. A school
teaches students many skills and allocates time to different skills based on student characteristics.
Our framework provides a novel interpretation of studies that find zero achievement effects at se-
lective school admission cutoffs. We show that such findings may be consistent with highly effective
schools implementing optimal curricula, rather than necessarily indicating ineffective schools. The
interpretation depends on the alignment between measured outcome skills and skills emphasized in
the curriculum. We test several model predictions using data from a prominent exam school and

find supporting evidence that would be difficult to rationalize if selective schools were ineffective.
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1 Introduction

A growing body of research studies how education may affect multiple skills (see, e.g., Cunha and
Heckman (2007), Jackson (2018), and Deming (2023)). This work has important implications for the
evaluation of K-12 school effectiveness, particularly when relying solely on standardized test scores.
Studies of elite exam schools illustrate this challenge. Abdulkadiroglu, Angrist, and Pathak (2014)
and Dobbie and Fryer (2014) use regression discontinuity designs to find that exam schools in Boston
and New York do not increase standardized test scores for students who clear admission cutoffs.!
However, these schools offer distinct educational experiences. For instance, Boston Latin School
requires four years of Latin study, and exam schools generally provide more advanced coursework
options than traditional schools. Since state assessments neither test Latin proficiency nor typically
evaluate advanced material, they may miss important aspects of what these schools teach. This
disconnect between taught and tested skills raises fundamental questions about how to interpret
studies of selective schools and, more broadly, how the multidimensional nature of education affects
the measurement of school effectiveness.

This paper develops a theoretical framework for understanding how schools optimize their cur-
riculum design, with a particular focus on selective schools. We model curriculum design as a time-
allocation problem: schools must decide how to distribute teaching time across different skills based
on their student population. Selective schools deploy curricula optimized for the background and
ability of their students. The framework offers a new interpretation of research on the effectiveness
of selective schools. While a traditional interpretation of the finding of no achievement differences
between barely-admitted and barely-rejected students is ineffective schools, our model demonstrates
that such findings can actually be consistent with schools making optimal choices about both stu-
dent selection and curriculum design. Measured school effects depend crucially on which skills are
being tested versus which skills the school emphasizes in its curriculum. When schools optimize their
curriculum for their student population, they may prioritize skills that aren’t captured by standard
achievement measures. To test this theory, we examine data from a prominent exam school. We find
evidence supporting several novel predictions of our model, patterns that would be difficult to explain
if selective schools had no effect on student learning.

Section 2 introduces the paper’s theoretical framework with a model where a school system makes

! Abdulkadiroglu, Angrist, and Pathak (2014) also examine PSAT, SAT, and AP scores and both Abdulkadiroglu,
Angrist, and Pathak (2014) and Dobbie and Fryer (2014) look at college-going. We revisit the effects on these outcomes
with additional data.



two key choices: how to design curricula at two different schools, and how to allocate students between
them. In this model, curriculum design means deciding which type of student each school will serve
most effectively. This simple framework leads to an important finding about the limitations of iden-
tifying how schools produce educational outcomes. Specifically, when we look at achievement effects
for students right at the admissions cutoff, we cannot distinguish between two different scenarios: one
where the selective school has an optimally designed curriculum that significantly benefits students,
and another where the selective school has no meaningful impact.

Since we can’t distinguish between effective and ineffective schools just by looking at achievement
at the admission cutoff, we explore a richer analysis and derive several new testable implications of
the curriculum-matching model. First, while achievement levels might be continuous at the admission
cutoff, the relationship between admission test scores and outcomes should show a change in slope at
this cutoff. Second, the model predicts that all students, even those performing well at less selective
schools, would maximize their expected achievement by stating a preference for the more selective
school. We also examine how peer effects influence these predictions. We show that any findings
about peer effects from these studies involve tests about both their existence and their particular
functional form.

Section 3 develops a more detailed model that views curriculum design as a problem of time
allocation. Schools must choose how to divide their limited instructional time across a continuous
range of skills, and their optimal allocation depends on their student population. This model serves
two purposes: it provides theoretical foundations for the simpler curriculum framework presented
in Section 2, and it generates more specific predictions about how school effects should appear in
test scores. The observation that an optimally designed system has no discontinuity in achievement
at the cutoff requires that the test be perfectly aligned with the value that the designer places on
mastery of each skill. With imperfect alignment, there will typically be an upward or downward
jump. This leads to two additional testable predictions: first, there should be a discontinuity in
the gap between students’ performance on basic versus advanced material at the cutoff; second, there
should be discontinuities at the admission cutoff when examining performance on individual questions.

Section 4 tests our model’s predictions using data from Boston Latin School (BLS), Boston’s most
prestigious exam school. We analyze seventeen cohorts of students who applied to BLS for 7Tth-grade
admission. Our outcome measures include detailed data on student performance: scores for each
individual question on the Grade 10 MCAS (Massachusetts’ mandatory high school graduation exam

during our sample period), scores on both PSAT and SAT exams, AP exam results, and comprehen-



sive college trajectory data including enrollment, persistence, and graduation. This analysis builds
upon Abdulkadiroglu, Angrist, and Pathak (2014) in two key ways: by adding seven more years of
application data to better measure long-term outcomes, and by specifically examining only applicants
for 7th grade to the most selective exam school. This focused approach provides a clearer view of
how curriculum matching affects students, which may be most relevant at highly selective schools.
Our first result confirms the Abdulkadiroglu, Angrist, and Pathak (2014) finding that students just
above the BLS admission cutoff show no overall improvement on Grade 10 MCAS scores compared to
students just below the cutoff in our expanded dataset.

The empirical analysis examines five distinct predictions from the curriculum-matching model
developed in Sections 2 and 3. First, BLS admission increases performance on SAT English, an im-
portant college preparatory assessment. The data also shows changes in the slope of how admission
test scores relate to PSAT and SAT performance for English. Second, student application patterns
align with the model’s predictions about rational choice: the probability of preferring BLS over the
next-best school increases with entrance exam scores, with more than half of students preferring BLS
even when scoring below the cutoff. Third, examining individual MCAS questions reveals disconti-
nuities in student performance at the admission cutoff, exactly as the model predicts. Fourth, when
comparing advanced versus basic test performance, the gap between SAT/PSAT scores and MCAS
scores exhibits significant jumps at the cutoff for both Math and English. Finally, looking at measures
that capture BLS’s advanced curriculum directly, admission increases measures of both AP test par-
ticipation and performance. These findings collectively provide support for the curriculum-matching
model and demonstrate that while BLS has no effect on MCAS scores, it does impact more advanced
academic outcomes.

This paper connects to two main areas of research. The first concerns educational settings where
curriculum and match effects plays a crucial role. This includes studies of selective schools, track-
ing, and gifted programs by Duflo, Dupas, and Kremer (2011), Bui, Craig, and Imberman (2014),
Pop-Eleches and Urquiola (2013), Card and Giuliano (2016), Cohodes (2020), Bau (2022), Card
and Giuliano (2025) and Aitken, Gray-Lobe, Joshi, Kremer, de Laat, and Wong (2025). Related
work examines the effects of selective universities (see, e.g., Dale and Krueger (2002) and Mountjoy
and Hickman (2021)). Three studies using regression discontinuity designs find positive earnings ef-
fects from attending selective public universities (Hoekstra (2009), Zimmerman (2014), and Bleemer
(2024)). Chetty, Deming, and Friedman (2023) examine selective private universities, focusing on

non-traditional outcomes like elite graduate school attendance and public service leadership positions,



outcomes specifically targeted by these institutions.? Their emphasis on measuring outcomes that
match institutional goals aligns closely with our approach. The importance of curriculum also ap-
pears in research on school accountability. For instance, Jacob (2005) shows that Chicago’s school
accountability system improved performance on skills tested by high-stakes exams but not on other
assessments, while Cohodes (2016) looks at responses on specific test questions to study whether
Boston charter schools are more effective on commonly tested standards compared to infrequently
tested standards. Our study also uses item-level test responses to measure effects on specific skills.
The paper also contributes to the economics of education literature that uses microeconomic theory
models to understand empirical findings. For example, Lazear (2001) explains class size effects through
a model where student disruption affects learning, while Urquiola and Verhoogen (2009) shows how
school and household choices about class size can invalidate regression discontinuity designs by creating
discontinuities in family income at cutoffs. Our work follows this tradition by showing how curriculum
design can explain why selective schools might show no achievement effects at admission cutoffs despite
being effective. We then develop and test specific predictions to distinguish between this explanation

and the simpler interpretation that these schools are ineffective.

2 A Curriculum-Matching Model of School System Design

This section develops a model of how school systems can be optimally designed. The model has two
key elements: first, an agreed-upon outcome (“achievement”) that depends on both individual learning
style and school curriculum; second, schools observe an indicator of each student’s learning style. The
school system then makes two choices to maximize total expected outcomes: it decides which students

attend which schools, and it chooses each school’s curriculum.

2.1 Model of School System with Selective Schools

Consider a school system with two schools serving a continuous distribution of students. Each student
has a learning style 6 (“type”) that, after normalization, can be represented as their percentile in the
uniform distribution on [0,1]. The school system observes a signal r; for each student i’s learning
style. This signal r has a continuous distribution with full support on interval R. The signal satisfies

the monotone likelihood ratio property (meaning higher signals suggest higher learning styles), and

2Specifically, the paper studies “non-monetary measures of upper-tail success, such as attending elite graduate schools
or achieving positions of influence in public service.”



has conditional density g(f|r) that varies smoothly with 7.3
A school system makes two key design choices: 1) an assignment, denoted by function A : R —
{1,2} that maps each student’s signal r; to either school 1 or 2, and 2) a curriculum choice, ¢; and
ca, for each school. Let the achievement of a student 4 of type #; in a school s with curriculum cs be
given by
yi = h(0;) + m(6;,cs) + 75 + €, (1)

where h(6;) represents the student’s underlying ability (assumed to be differentiable in ), m(6;, cs)
captures how well the curriculum matches the student’s learning style, 75 represents school-specific
effects that apply equally to all students, and ¢; represents random individual shocks independent
of other factors. The curriculum match function m(0,c) is smooth and exhibits strictly increasing
differences with no single curriculum working best for all students. A simple example is m(f,c) =
—(# — ¢)?, where achievement decreases with the square of the distance between student type and
curriculum. School effects 75 can differ between schools, but not so dramatically that putting all
students in one school becomes optimal.

The school system aims to maximize average student achievement by choosing both curricula and
student assignments. The model makes two important simplifying assumptions: each school must
offer just one curriculum, with no costs for curriculum choices, and schools can accommodate any

distribution of students without capacity constraints or crowding effects.

2.2 Grouping Students by Learning Style

This curriculum-matching model generates a rationale for grouping students by their learning

style, as summarized in the following proposition.

Proposition 1 In any optimal school system design, there exists a cutoff 7 such that all students with

r; > T attend one school and all with r; < 7 attend the other.

Proof. In the optimum, c¢; cannot equal cy because aggregate achievement can be improved by
assigning all students except those in a small interval around some type ¢’ for which ¢ is suboptimal

to school 1 and sending students with types very close to €' to school 2 with ¢ = arg max. m(¢’, ¢).

3The MLRP assumption is that f.(r|0)/f-(r'|0) is increasing in @ when r > 7. It holds, for example, if r; = 0; +n;
with 7; an independent draw from a distribution that satisfies f,(z — A)/fy(z) increasing in © when A > 0. This
condition is satisfied by many common distributions, including the normal.



Suppose the optimal design has ¢; > ca. Define y(0,¢) = h(0) + m(0,c). Because m has in-
creasing differences, y(0,c1) — y(0, c2) is increasing in 0. Given that (6,r) satisfies MLRP, the con-
ditional distribution, g(#|r), is increasing in r in the first-order stochastic dominance sense. Hence,
By [y(0, c1) —y(0, c2)] is increasing in 7, which implies that if it is weakly optimal to send a student

with signal r to school 1, then it is strictly optimal to send all students with higher signals there. m

2.3 Continuity of Achievement at Admissions Cutoffs

Our next result examines discontinuities in achievement at admissions cutoffs. It shows that discon-

tinuities do not exist with optimal curriculum design.

Proposition 2 Let # be the cutoff type in the optimal school assignment. Write y*(r) for the expected
achievement level of a type r student when school assignments and curricula are chosen optimally.

Then, y*(r) is continuous at 7.

Proof. Define ys(r) = Eg|p [2(0) + m(0, cs)] + 75. The continuity of h and m as functions of 6 and
of g(0|r) as a function of r imply that y;(r) and y2(r) are both continuous. The distribution of r is
assumed to have full support, so if lim,_,s— y2(r) < lim,_,s+ y1(r), then expected achievement could
be increased by moving an interval of students with signals just below 7 to school 1. If the opposite
inequality holds, achievement can be increased by shifting students with types just above # to school

2.

The logic behind this result is both intuitive and broadly applicable: if achievement shows a jump
at the cutoff, the school system could improve overall outcomes by simply reassigning students just
above or below the cutoff to the other school. However, this logic depends on the assumption that
schools can accept any number of students. The result might not hold if, for example, school 1 faced
capacity constraints that limited its enrollment.

Proposition 2 shows that when curricula and student assignments are optimally designed, regression
discontinuity estimates will find zero effect of attending a selective school. However, this same zero
effect could also emerge from what we call the zero value-added model of selective schools, where
schools are identical (71 = 72) and curriculum matching doesn’t matter (m(f,c) = 0 for all # and c).

We collect testable implications as follows:



PRrEDICTION 0: In both the curriculum-matching model and the zero value-added model

there is no discontinuity in student achievement at the admission cutoff.

Finding no achievement effect at the admission cutoff creates a fundamental identification challenge
because this result is consistent with two very different models of education. In the zero value-
added model, school assignment doesn’t matter. It affects neither individual nor aggregate student
achievement. In contrast, under the curriculum-matching model, school assignment impacts both
individual and total achievement. While these models produce identical predictions about achievement
at the cutoff, they can be distinguished through other means. The following analysis presents several
testable predictions that emerge from examining the broader relationship between school assignment

and various measures of achievement.

2.4 Slope Changes at Admissions Cutoffs

While the curriculum-matching model predicts no jump in achievement levels at the admission cutoff,
it does predict other discontinuities. Specifically, because schools offer different curricula across the
cutoff, the model predicts a sudden change in how student achievement responds to ability - that is,

a discontinuity in the slope of y*(r) at the cutoff.
Proposition 3 Let 7 be the cutoff type in the optimal school assignment and let y*(r) be the expected

achievement level of a type r student when school assignments and curricula are chosen optimally.

Then, the derivative of y*(r) is discontinuous with an upward jump at 7.

Proof. The change in the derivative at 7 is

lim d/(h(@) +m(0,c1))g(0]r)d0 — lim 4 /(h(@) +m(6,c2))g(0|r)do
0 0

r—it dr r—i— dr
) dg(6lr) A9t01r)
= /H(h(e) + m(Q,Cl))T . do — /9(h(9) +m(0,c2)) dr |, _; @
- /(m(0,01) - m(9,02))dg$, DN
0 r=f
d (1 = G(6Ir)

_ /ede(m(ﬁ,cl) (0, )



are both zero. The first term

dG(gf\r) and 46N

The final step follows by integration by parts since i

of the product in the integral is strictly positive. The second term is non-negative and positive for at
dg(6r)
dr

least some 6 by the assumption that is not identically zero. Hence, the integral is positive. m

To understand why the slope changes at the admission cutoff, consider the simple case where the
signal r perfectly indicates learning style 6. Near the cutoff 7, student achievement varies with r for
two reasons. First, it varies through the school-independent component h(r), which changes smoothly
across the cutoff. Second, it varies through the curriculum match m(r, ¢s(r)), which behaves differently
on each side. Below 7, students face a curriculum in school 2 that’s too basic for them, so the match
quality decreases as r rises. Above 7, students face a more advanced curriculum in school 1, so the
match quality improves as r rises. This creates a discontinuity in the slope at the cutoff.

While Proposition 3 formally describes the difference in left and right derivatives at the cutoff
point 7, the logic suggests this slope difference extends beyond just that point. Over a broader range
below 7, students face increasing mismatch with the basic curriculum, while above 7, students become
better matched to the advanced curriculum. Therefore, unless the relationship between ability and
achievement (IEy |15 (6)) is highly nonlinear near 7, we should observe a consistently lower slope below
the cutoff than above it.

A simple numerical example illustrates how slopes change in the model. Consider these assump-
tions: student types 6 are uniformly distributed on [0,1], the signal perfectly reveals type (r = 6),
and curriculum mismatch creates quadratic losses: m(6,c) = —(0 — ¢)2. Under these conditions, the
optimal design features a cutoff at 6 = % and school curricula at ¢; = % and ¢y = %. In the graph,
the bold blue line shows achievement for students in school 2 (left side), while the red dashed line
shows achievement for school 1 students (right side). While achievement levels remain continuous at
the cutoff, the slope increases sharply there. Moreover, because mismatch costs are convex (making
match quality concave), any non-local estimate of the slope change would actually underestimate the

true jump in derivative at the cutoff due to match quality effects.

PREDICTION 1: In the curriculum-matching model, there is an upward jump in the slope of

the performance-entrance score relationship at the admissions cutoff.

This slope discontinuity provides a key way to distinguish between the curriculum-matching and

zero value-added models. In the zero value-added model, there should be no sudden change in slope



Student Achievement in the Simple Model
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at the cutoff, as long as E g, h(0) is differentiable at 7.4

2.5 Application Behavior at Admissions Cutoffs

Abdulkadiroglu, Angrist, and Pathak (2014) highlight an apparent paradox: parents strongly desire
to send their children to selective schools, yet there’s no jump in student outcomes at the admission
cutoff. They suggest two possible explanations: either parents wrongly assume that high-achieving
peers indicate high school quality, or they value these schools for reasons unrelated to academic
achievement.

The curriculum-matching model suggests another explanation for strong parent demand: while
there might be no benefit right at the admission cutoff, students above the cutoff could still gain sub-
stantially from attending the selective school. Furthermore, when parents apply, they face uncertainty

about their child’s learning style (6) and test performance (7). In this situation, stating a preference

4This raises a practical question about estimating slope changes at cutoffs. If Eg(s1r)h(0) is convex around 7, a highly
non-linear relationship might be mistaken for an upward jump in slope. Such convexity could occur if each percentile
increase in r yields progressively larger increases in future test scores - as would happen if r perfectly predicted normally
distributed test scores. Conversely, if the entrance exam becomes less discriminating among high achievers, it would
create a concave relationship, making it harder to detect a positive slope change. However, in our application, where the
cutoff isn’t far in the tail of the distribution, such highly nonlinear relationships seem unlikely in small windows around
the cutoff.
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for the selective school is rational because if the choice becomes relevant in the sense that their child
scores well enough for admission, then the student will be above the cutoff and thus benefit from the
school’s curriculum.

Consider extending the curriculum-matching model to include student choice. Students observe
a noisy signal t; = r; + & of how the school system will assess them, where &; is a random variable
distributed independently of (6;,7;). Each student’s utility from attending school s is given by u; =
y(0;, cs) + vis, where the v;s are iid preference shocks. Students must submit their school preferences
after seeing t; but before knowing their true 6; or r;. Under these conditions, the model predicts
that every student, even those likely to achieve higher scores in school 2, will prefer school 1 with

probability of at least one-half.

Proposition 4 In the model above, the probability p(r) that a student later classified of type r lists

school 1 as his first choice is at least % for all r.

Proof. The preference ranking submitted by the student is irrelevant if r; < 7. Conditioning on r > 7,
the expected gain in achievement from school 1 is E[y*(r)|r > 7], which is strictly positive because
y*(r) is positive for all » > 7. With iid preference shocks, v15— 1o, is symmetrically distributed around

zero, so the probability that school 1 is the utility-maximizing choice is greater than one-half. =

In this model, students with higher r values are typically more likely to prefer school 1. This occurs
because higher r values tend to produce higher observed signals ¢, and students who see higher ¢ values
estimate a higher r and thus greater expected benefit from school 1. However, the relationship between
r and school preference isn’t as straightforward as the previous results. While a first-order stochastic
dominant increase in r raises the probability of admission to school 1, if this increase mainly affects
cases where 7 is just above 7, the expected achievement advantage from attending school 1 (conditional
on admission) might not increase monotonically with ¢. This means we can construct distributions
where the probability of preferring school 1 doesn’t monotonically increase with r.

Consider a simple example that illustrates the key insights while avoiding pathological cases.
Assume that 6 is uniform on [0,1], schools have equal base effects (11 = ), base achievement equals
type (h(0) = 0), curriculum mismatch has quadratic costs (m(6,c) = —(m — ¢)?), schools perfectly
observe type (r; = 0;), signal noise ¢ is uniform on [—o, ], relative school preferences v;; — v are
uniform on [—§, 6], signal noise is moderate (o < 0.25), and preference shocks are at least as large as

signal noise (6§ > o).
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In this model, students who end up exactly at the cutoff choose school 1 with probability strictly
above one-half: p(#) = § + &. To understand why, consider what happens when the cutoff is  (as
in the uniform model). Students who later score at the cutoff initially saw different signals. Those
who saw the lowest possible signal (6" = 6 — o) knew their choice would only matter if their true type
was exactly 6. At this point, achievement would be equal at both schools, so exactly half choose each
school. Students who saw signals between 6 — o and 6 + o knew their true type would be uniformly
distributed on [é,&’ + 0].> This knowledge leads them to prefer school 1 with probability greater
than one-half. For instance, students who saw the highest possible signal (é + o) choose school 1
with probability % + 55 because their expected achievement gain is 0. The probability varies linearly
between these extremes, yielding the formula above.

In this model, we can prove several properties about p(r), the probability of choosing school 1: it
weakly increases with r, its derivative at 7 is %, and it equals 1 for r > 7 + 0 + . The graph shows
these probabilities calculated with o = 0.15 and 0 = 0.15. Under these parameters, the probability of

preferring school 1 rises smoothly from one-half for very low-type students to one for very high-type

students, reaching about three-quarters for students near the cutoff.®

PREDICTION 2: In the curriculum-matching model, if parents receive an imperfect signal
about their children’s types and have independent identically distributed idiosyncratic prefer-
ences about schools, then the probability of ranking the top school first will be strictly greater

than one-half for students at the cutoff and will be increasing in the admissions score.

2.6 Peer Effects in Education Production

The model developed so far assumes student achievement depends on three factors: individual learning
style (6;), school characteristics, and curriculum. This section explores how the addition of peer effects

alters our results.

5This formula assumes that o < 0.25.

5The model reaches exact probabilities of % and 1 (rather than approaching these values asymptotically) because £
and 7 have finite supports. For instance, students with sufficiently high types will receive signals indicating that their
gain from the best school certainly exceeds any possible taste shock. The finite support also leaves choice probabilities
undefined for students whose signals make admission to the selective school impossible. For the graph, we assume these
students choose school 1 with probability one-half, effectively treating them as if they believe their type would be 7 (the
minimum for admission) if admitted.

12



Application Behavior in the Simple Model
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Suppose we modify our achievement model to include peer effects:

yi(0i,c) = 0; + m(0i,¢) + b wjib;, (2)

J#
where b > 0 measures peer effect strength, and w;; > 0 represents student j’s influence on student
1. We make two key assumptions in this formulation. First, each student’s total influence on others
remains constant (), w;, = 1 for all j), so school assignment can only redirect this influence, not
change its magnitude. Second, students only influence peers at their own school (wj, = 0 if students
j and k attend different schools). To simplify the discussion below, we assume that schools observe

perfectly. Given these assumptions, an immediate extension of Proposition 1 is:

Proposition 5 When outcomes are given by equation (2), in the optimal assignment there is a cutoff
0 such that students with type above 0 are assigned to school 1. Student achievement with the optimal
assignment and curricula will have an upward jump at the cutoff with the magnitude of the jump being
equal to the difference in the achievement boost from peer effects received by students with types just

above and below the cutoffs.

Pop-Eleches and Urquiola (2013), Abdulkadiroglu, Angrist, and Pathak (2014) and Dobbie and
Fryer (2014) suggest interpreting regression discontinuity estimates of exam school effects as measuring

the impact of exposure to different peer groups. However, Proposition 5 shows that the size of
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this effect depends crucially on how we model peer influence. Under the common assumption that
all students in a school affect each other equally, the discontinuity in peer effects at the cutoff is
b(E[0]0 > 0] — E[0]0 < 6]), where b represents the strength of peer effects.

At the other extreme, consider a scenario where students only interact with peers who are most
similar to themselves. Specifically, each student is influenced by exactly one other student: the one
whose characteristics are most closely matched to their own. In mathematical terms, for any two
students j and k, wj, = 1 if student ; is closer to ) than is 0 for any &' & {k,j}, and wj, = 0
otherwise.” In this case, there would be no discontinuity at the cutoff point. The change in the peer
effect at the cutoff would be equal to b multiplied by the difference between the second-lowest value
above the cutoff and the second-highest value below the cutoff. This difference would be similar in
magnitude to the difference between the students closest to either side of the cutoff and an RD analysis
would not detect any jump at the cutoff.

As a result, any conclusions about peer effects drawn from RD studies of selective schools must
be interpreted carefully. These findings actually test two things simultaneously. They test whether
peer effects exist, but only under specific assumptions about how peers influence each other. This is
particularly evident in the curriculum-matching model. Without first specifying exactly the functional
form of how peers affect one another, we cannot interpret what the sudden changes at cutoff points

tell us about peer effects in general.

3 A Model with Explicit Curriculum Design

Our discussion so far has treated curriculum design in a simplified way: schools simply pick a single
number that represents their curriculum. In our earlier example with a quadratic mismatch function,
this number could be thought of as identifying the type of student the curriculum serves best, with
other students’ outcomes depending on how far their abilities differ from this ideal student. We will
now develop a more detailed and realistic model of curriculum design. In this new model, schools
teach multiple skills and must decide both which skills to teach (the extensive margin) and how much
time to devote to each skill (the intensive margin). This expanded framework allows us to examine
how different types of assessments might measure student performance differently. Additionally, this

more detailed model provides theoretical support for the simpler approach we used in the previous

"Note that to keep the model simple we have departed from the assumption that > wir =1 for all j, allowing some
students to influence 0 or 2 peers.
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section.

3.1 A Model of Skill Accumulation

Consider a model in which achievement is measured by how many skills a student acquires from a
range of possible skills, labeled from [0,1]. Learning happens probabilistically during instruction:
when a school spends time dt teaching a skill x at unit intensity, a student with ability level 8 has a
probability of fzdt of mastering that skill (assuming they don’t already know it). Additional teaching
of an already-mastered skill offers no benefit. Skills with higher x values are easier to learn, and
students with higher 6 can be thought of as higher ability students who will (in expectation) learn
any skill more quickly.

When a skill x is taught for a total duration ¢, the probability that a student of ability 6 will learn
that skill is given by the formula

a(z;t,0) =1—e %,

While our model treats learning as an all-or-nothing event (either knowing or not knowing the skill),
this formula can also be interpreted as describing how students gradually master skills over time, with
a student’s mastery increasing smoothly in the time devoted to the skill. The exponential structure
naturally captures an important learning principle: the marginal benefit of additional instruction time

decreases as more time is spent teaching a skill.

3.2 Curriculum Design as a Time-Allocation Problem

The model treats curriculum design as a decision about time allocation: for each skill z, we must
choose how much teaching time t(x) to devote to it. When a student of ability level 6 is taught under
a particular curriculum, their achievement is calculated by taking a weighted average across all skills.
Each skill’s contribution to this average is weighted by its importance v(x). The formula for expected

achievement is: .
y(0,t(+) = / v(z) (1 - e_amt(””)> dzx.
0

This formulation builds on our previous model by adding multiple dimensions to curriculum design,
while preserving the core property that each student ability level 6 has an optimal curriculum, and
student achievement falls when the curriculum moves away from this optimum.

We first consider a single school teaching a group of students whose ability levels 6 are distributed
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according to a density function g(6) over a set ©. The school has a fixed amount of total instructional
time 7" and must decide how to allocate this time across different skills to maximize overall student

achievement. This optimization problem can be written as:

max /e y(6,1()) g(0)db (3)

1
s.t. / t(zx)de =T.
0

Here, the school tries to maximize the average achievement across all its students (the first equation)
while ensuring that the total time spent teaching all skills equals the available time T (the constraint).
For any curriculum design t(x), we can calculate the benefit of adding a little more teaching time

to skill . This marginal benefit is given by:
E, [Dze ™0t @) g ().
When we start teaching a new skill (¢(x) = 0), the initial marginal benefit is:
zv(x)Eq[0].

This marginal benefit gets smaller as we spend more time teaching the skill, and eventually approaches
zero as teaching time becomes very large (t(z) — oo). This pattern of diminishing returns helps us

characterize the optimal curriculum design t*(x).

Proposition 6 Let t*(x;v,g,T) be the solution to the optimal curriculum design problem (3). Then,

(a) there exists a cutoff w(v,g,T) > 0 such that the set of skills that are taught for a nonzero period
of time is {x|zv(z) > w(v,g,T)},

(b) the lower bound w is decreasing in T, and

(c) the function t*(x) may be non-monotone in x even when v(x) is constant.

The argument for (a) is that the optimal curriculum design equalizes the marginal return of
teaching each skill that is taught. The marginal return to the first instant is zv(z)E4(6). Hence, the

set of skills taught must be where this expression is above some cutoff. For (b), the cutoff decreases
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in T because the marginal value of instructional time is decreasing. The potential non-monotonicity
of t*(x) in x is a natural consequence of the decreasing returns to teaching a given skill.

Suppose v(x) = v for all v. At the lower bound of the set of skills taught, i.e., for z = w/v, t*(z) is
zero. The t function is increasing in x for slightly larger x since there is a greater benefit to teaching a
skill that will be learned more quickly. But when ¢(z) is larger, another effect can dominate: the easier
skill is more likely to already have been learned, making additional time teaching it less valuable. The

numerical example in the next subsection illustrates this possibility.

3.3 Example of Optimal Time Allocation to Teaching Different Skills

We now solve for the optimal teaching time ¢*(x) in a simplified case in which the school values all
skills equally (v(z) = 1) and teaches students of the same ability level. By examining numerical
solutions, we can illustrate how the optimal curriculum changes based on the students’ ability level
and the total available instruction time.

When all students have the same ability level 6, the condition that marginal benefits are equalized

across skills for any skill that is taught (¢*(x) > 0) implies:
Qe 07" (@) — ),

Solving for the optimal teaching time gives us:

Ox) — log(A)
Ox '

() = 108

This formula shows how the relationship between teaching time and skill difficulty depends on A.
When A > /e, more difficult skills receive more teaching time. However, when A is smaller, teaching
time is non-monotone. It peaks at skill level % and then declines. Since A\ equals # when total
teaching time T is very small and approaches 0 as T' becomes very large, this means that schools with
limited time will focus more on harder skills, while schools with more time will have a more balanced
distribution of teaching time across skill levels.

To compute the optimal time spent teaching skill z, we solve for A\ using the fact that the total

instructional time equals T

1 J—
T :/ log(0x) IOg()\)dx.
/6 Ox
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Integrating by [)arts giVGS
= 72 7] )

which implies that A = fe~ V2T Hence, the optimal solution is:

t*(x) = log(as)e—;m for z € [6_\/297, 1} )

The graph on the left below demonstrates how optimal teaching time ¢*(z) changes with total
available time 7. When teaching time is limited (7" = 0.5), shown by the lowest curve, schools spend
progressively more time on harder skills. However, as more total time becomes available (7' = 1 and
T = 2), shown by the higher curves, two changes occur. Schools teach a wider range of skills, and they
no longer always devote more time to harder skills. Instead, they develop a more balanced curriculum
where moderate-difficulty skills might receive the most instruction time.

The graph on the right below illustrates how optimal teaching time ¢*(z) varies with student
ability # when total teaching time is fixed at 7' = 1. For lower-ability students (6 = 0.5), shown by
the rightmost curve, the optimal curriculum focuses progressively more time on easier skills. However,
as student ability increases (f = 1 and 6 = 2), the optimal curriculum changes in two key ways: it
includes a broader range of skills, extending into more difficult skills, and it redistributes time away
from the easiest skills toward harder ones. The differences are most dramatic at the extremes. For
the easiest skills (those with z close to 1), the curriculum for high-ability students (f = 2) spends
only half as much time as the curriculum for lower-ability students (0 = 0.5). Notably, the skills that
receive the most attention in the high-ability curriculum are skills that the lower-ability curriculum

considers too difficult to teach at all.

3.4 Explicit Curriculum Design and Student Achievement

Consider now a system with two schools where school 1 enrolls higher-ability students (6 € [0,1])
and school 2 enrolls lower-ability students (6 € [0,0]). Let g;(#) represent how student abilities are
distributed within each school i. School time allocations will have a single-crossing property. School
2 (the lower-ability school) will devote more time to skills that offer high immediate returns (large
xzv(x)), while school 1 (the higher-ability school) will spend more time on skills with lower immediate

returns (small zv(z)).
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Proposition 7 Suppose that v(x) is continuous. Let t5(x) and t5(x) be the optimal time allocations
in the explicit curriculum design model. Then there exists a value for w such that t5(x) > ti(x) for
all x with xv(x) > w and t](x) > t5(x) for all x with xv(x) < w, with the inequality in time allocation

being strict except when ti(x) = t5(z) = 0.

Proposition 7 extends our understanding of how schools allocate teaching time across skills of
varying difficulty. When all skills are equally valuable, the school with lower-ability students focuses
more on basic skills. This happens because higher-ability students master basic skills quickly, leading
their school to shift time toward more challenging skills. The proposition generalizes this insight by
showing that what matters is not just skill difficulty, but rather the product of difficulty and value
(zv(x)), which represents the initial benefit of teaching a skill. The complete proof can be found in
Appendix A.

An important implication of Proposition 7 follows: except in rare cases where many skills have
exactly the same initial benefit (xv(z) = w), the two schools will spend different amounts of time on
almost every skill that school 1 teaches (¢1(x) # to(z) for almost all © where ¢;(x) > 0). This means
that which school a student attends directly affects what they learn, even for students right at the
cutoff ability level 6. Students who attend school 1 (the higher-ability school) will learn more of the
skills with low initial benefits (zv(x) < w), while those who attend school 2 (the lower-ability school)
will learn more of the skills with high initial benefits (zv(x) > w). This result generates our next

testable prediction.
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PrEDICTION 3: In the curriculum-matching model with explicit curriculum design, there
will be a discontinuity in student understanding of skill x at the cutoﬁé for almost all skills

x.

When researchers use RD designs to study selective schools’ effects, they typically measure student
achievement through comprehensive exams that test many different skills. Even though students will
learn any given skill better at one school than the other, our earlier impossibility result (Proposition 1)
still holds in this more detailed curriculum model, provided that the test used to measure achievement

aligns with the school system’s educational goals in a particular way.

Proposition 8 Suppose students are assessed on a test that includes a mass q(x) of questions on skill
x. If q(x) is directly proportional to v(x), then there will be no discontinuity in student performance

on the test at the cutoff type 6.

The logic behind this proposition is simple. When the test score calculations match the objectives
that schools are trying to maximize, we can apply the same reasoning as in our simpler model: an
optimal school system cannot show a sudden jump in performance at the admissions cutoff. We can,
therefore, extend the earlier prediction to include the analysis of peer effects and explicit curriculum

design as follows:

PREDICTION 0': (a) In both the zero value-added model and the optimal curriculum matching
model with a test tailored to the learning objectives, there is no discontinuity in student
achievement at the admission cutoff if there are no peer effects. (b) Peer effects can, but
need not, lead to upward jumps at the cutoff. (c) Mismatches between the test and learning
objectives can lean to upward or downward jumps at the cutoff in the curriculum design

model.

Students typically take many different tests throughout their education. Our model makes specific
predictions about their relative performance on these tests. Generally, students at the higher-ability
school (school 1) will perform relatively worse on tests of basic skills but better on tests of more

advanced material. We can express this pattern more precisely as our next result.

Proposition 9 Let g;j(z) be the fraction of questions on test j testing skill x. Suppose the school

assignment is optimal and test A has more questions on hard skills and fewer on easy skills in the
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sense that qa(x) < qp(x) if and only zv(x) < w where w is the single crossing point defined in

Proposition 7. Then E(y4(0) — yp(0)|0) will have an upward jump at 6 = 6.

This proposition leads to our last prediction.

PREDICTION 4: If more and less difficult tests satisfy the condition in Proposition 9, then
the difference between students’ scores on more and less difficult tests will show an upward

Jump at the cutoﬁé.

This prediction helps distinguish our curriculum-matching model from a model where schools add
no value. In a zero value-added model, where test scores are given by v;; = h;j(0;) + 75 + €, the
difference between scores on two tests A and B would be Ely;a — yipl0] = ha(0) — hp(f). This
difference would show no sudden jump at the cutoff if performance on each test varies smoothly with
student ability. We can test this prediction by comparing two types of scores: SAT/PSAT scores
(which focus on more advanced material) and state standardized test scores (which were required for

graduation until recently and emphasize more basic skills).

4 Evidence from the Boston Latin School

We now test the predictions of both the curriculum-matching model and the zero value-added model
by analyzing data from students who applied to the Boston Latin School (BLS).

Boston Public Schools (BPS) is an appealing setting to test our models for two reasons. First,
its exam schools use strict admissions cutoffs, which remained consistent during our study period.®
Second, BPS provided seventeen years of detailed student data, including application preferences,
entrance exam scores, and various outcomes. We focus specifically on Boston Latin School (BLS),
the most selective of Boston’s exam schools, because curriculum-matching concerns seem most salient
there.? BLS serves as a pathway to elite colleges and employs a rigorous college preparatory curriculum

that differs markedly from curricula designed to maximize MCAS scores.!’ To analyze educational

8BPS changed its policy in 2021 to include neighborhood characteristics and GPA (Barry 2021).

9BLS significantly outperforms the other two exam schools in terms of test scores. For the 2023-24 school year, BLS
students averaged 1304 on the SAT, while students at Boston Latin Academy and O’Bryant High School for Science and
Mathematics scored notably lower, averaging 1123 and 1105 respectively.

0The BLS student handbook states (BLS 2016): “Boston Latin School is open primarily to students who intend to
go to college and wish to prepare in the liberal arts tradition. Students, who are admitted only into grades seven and
nine, pursue a six-year or four-year college preparatory program. The curriculum of Boston Latin School is diverse and
demanding. Besides classroom work, students are expected to do about three hours of home study every day.”
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outcomes, we examine three assessments: the 10th grade MCAS, 11th grade PSAT, and SAT tests
(using the maximum SAT score for students who take it multiple times). These tests are particularly
useful because they occur after students have experienced several years of BLS curriculum, test dif-
ferent types of material, and take place during the latter part of high school (grades 10-12). We also
examine college enrollment patterns using National Student Clearinghouse data.

Abdulkadiroglu, Angrist, and Pathak (2014) conducted RD analyses around the admissions cutoffs
for all three Boston Exam schools for both 7th and 9th grade applicants. Their pooled estimates
averaged potentially different effects across schools and across varying years of exposure to the exam
school curriculum. Our dataset extends theirs by seven additional years, providing a larger sample
that enables us to investigate more subtle patterns that weren’t examined in the earlier paper. These
include changes in test score slopes and question-level differences, and the longer-term outcome of
college completion. The larger sample also allows us to focus specifically on Boston Latin School,
where curriculum matching concerns seem most relevant.'! Further details about data processing can
be found in the data appendix.

Table 1 reports descriptive statistics on the sample. As in many large urban districts, most
Boston 6th graders are Black or Hispanic. Boston students have average scores below the state
average on MCAS tests and below national averages on the PSAT and SAT. 60% of students for
whom we have college attendance data attend college and only 22% graduate from college.'? Students
who apply to BLS, particularly those who list it as their first choice, differ from the general Boston
student population: they are less likely to be minorities, achieve higher MCAS scores, and have higher
college attendance rates. This pattern becomes even more pronounced when we look at applicants
within 20 percentile ranks of the BLS admissions cutoff. In this group, less than half are Black
or Hispanic. Their Grade 6 MCAS scores exceed the state average by 1 standard deviation (o) in
Math and 0.70 in English. (For all MCAS outcomes, we standardize scores to have mean zero and
standard deviation one across all Massachusetts test-takers.) These students also score significantly

above national averages on the SAT and have much higher rates of college attendance, persistence,

HYWe also limit our analysis to applicants for 7th grade — the entry point for 85-90% of BLS students — ensuring that
students in our sample had the same number of years of potential exposure to the BLS curriculum prior to the test we
examine.

20ur college attendance data only include student who reached 12th grade at a public high school in Massachusetts.
There is nontrivial dropout prior to 12th grade in BPS, so these statistics overstate college attendance/graduation in
the full BPS population. Dropout is much less common for the students who apply to BLS and score around the cutoff,
and Table Al shows that we do not find evidence for discontinuities in the availability of the data at that cutoff.
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and graduation compared to the overall Boston student population.'® These distinct characteristics
emphasize the importance of examining educational outcomes that are particularly relevant for this

high-achieving student population.

4.0 Prediction 0: Discontinuities in Standardized Test Scores at the Admissions
Cutoff

We start by using our expanded dataset to verify a main finding from Abdulkadiroglu, Angrist, and
Pathak (2014). We look for sudden changes in Grade 10 MCAS Math and English scores at the BLS
admission cutoff. The MCAS exam was required for high school graduation in Massachusetts during
our sample period and is a central metric in the state’s accountability system.

Let r; be BLS applicant ¢’s admissions test score, normalized so that r; = 0 at the BLS cutoff.
Applicants within 20 percentiles of the BLS cutoff are grouped into one-percentile bins. Figure 1
shows how students’ Grade 10 MCAS scores (measured in standard deviations) relate to their ranking
on the BLS entrance exam, where ranking is expressed as a percentile among that year’s exam school
applicants. The dots give the average normalized MCAS scores for students in each bin. The curves
are local linear regression estimates of the conditional mean function.

The dashed vertical lines Figure 1 mark the BLS admission cutoffs. Like Abdulkadiroglu, Angrist,
and Pathak (2014), we find no sudden changes in either math scores (left panel) or English scores
(right panel) at these cutoffs. This finding aligns with both the zero value-added model and certain
versions of the curriculum-matching model. In the curriculum-matching framework, this pattern could
emerge in two scenarios: either when the school system optimizes its curricula and student assignments
to maximize MCAS performance without peer effects, or when the curricula target more advanced
material than what appears on the MCAS and peer effects are precisely strong enough to offset what

would otherwise be a drop in performance at the cutoff, as we explained in Section 2.6.

4.1 Prediction 1: Changes in Slopes at the Admissions Cutoff

We now test additional predictions of the curriculum-matching model, starting with Prediction 1. We
look for changes in the slope of the relationship between achievement and entrance exam scores at
the BLS cutoff. This prediction stems from how well students match with their school’s curriculum.

Below the cutoff, match quality decreases as students become increasingly overqualified for their

13We define persistence as attending college for at least four semesters.
! The estimates use the edge kernel with the IK optimal bandwidth as in Abdulkadiroglu, Angrist, and Pathak (2014).

23



school’s curriculum. Above the cutoff, match quality improves as students become better suited to
the more advanced curriculum. This shift from declining to improving match quality should create a
discrete upward jump in the derivative of the achievement-entrance score relationship at the cutoff.
Figure 2 shows plots similar to Figure 1, but for four college-preparatory tests: PSAT and SAT
math, and PSAT reading and SAT critical reading. We standardize PSAT and SAT scores to have
mean zero and standard deviation one within each subject-year, considering only BPS exam applicants.
As before, each dot represents the average score for students in one-percentile bins within 20 percentiles
of the BLS cutoff, and the curves show local linear regression estimates on either side of the cutoff.
The graphs show evidence of slope changes in the relationship between PSAT and SAT Reading
scores and entrance exam percentile rank at the BLS cutoff. However, these figures also highlight
the challenges of isolating such slope changes, as they may reflect broader non-linear patterns around
admissions cutoffs rather than true changes in the slope. To assess whether these observed slope
changes are statistically significant, Table 2 presents regression discontinuity estimates of the slope
changes at the cutoffs, along with their standard errors. Let y;; be the score on a given test for a

student ¢ who applied for BLS in year t. We report local-linear estimates of
Yit = o +v0f(ri) + 71 Dig(ri) + pDi + 13- (4)

In this equation, D; indicates an offer of admissions (that is, if ; > 0), f(r;) and g(r;) are potentially
nonlinear functions of the entrance exam score normalized to have slope one at » = 0, and a; controls
for the application year. The coefficient of interest is the change in slope, 71, at the admissions cutoff.
We use the optimal bandwidth computed from Imbens and Kalyanaraman (2012) (IK) with a tent-
shaped edge kernel for these estimates.'®> This specification is a simpler version of the one used in
Abdulkadiroglu, Angrist, and Pathak (2014), as we focus only on applicants for 7th grade who list
BLS as their first choice.'6

Table 2 presents estimates for math and reading scores across three tests: MCAS, PSAT, and
SAT.'7 For PSAT and SAT Math outomes, the estimated slope changes are positive, but not statisti-

151¢’s important to note that our analysis differs from studies using regression kink design (see Card, Lee, Pei, and
Weber (2015) and Ganong and Jager (2018)), where the probability of assignment changes slope at a certain point. In
our case, there is a sharp discontinuity in assignment at the admissions cutoff.

16See page 154 of Abdulkadiroglu, Angrist, and Pathak (2014). Since we look at only first-choice applicants, we don’t
need the additional controls for assignment risk that were used in Abdulkadiroglu, Angrist, Narita, and Pathak (2022).

17 Appendix Table A1 examines whether students above and below the cutoff differ in how likely they are to have
recorded outcomes. We find no differences in data availability for PSAT, SAT, PSAT-MCAS, or SAT-MCAS scores,
suggesting that missing data is unlikely to affect our estimates for these outcomes.
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cally significant. For the PSAT and SAT English outcomes, the estimated slope changes are positive
and statistically significant. which support Prediction 1 of the curriculum-matching model. Specif-
ically, we find significant slope changes at the 5% level for PSAT English and at the 1% level for
SAT English. These findings are particularly compelling given how challenging it is to estimate slope
changes in an RD framework.!®

The traditional model of peer effects, where each student receives the same additive benefit based on
average student quality, wouldn’t create a slope change at the cutoff. Similarly, our alternative model
from equation (2), where benefits come from the most similar peer, produces neither a discontinuity
nor a slope change at the cutoff. However, other peer effect models could generate slope changes.
Consider a model where a student of type 8 at school s benefits from higher average peer quality but
is penalized for being different from their peers, expressed as agfs — a1(8 — 6,)%. This formulation
closely resembles our curriculum-matching model and could produce a slope increase at the cutoff

through the same mechanism.

4.2 Prediction 2: Stated Applicant Preferences

Section 2.5 showed how the curriculum-matching model helps explain why parents strongly prefer
selective schools despite limited evidence of benefits for students near the admissions cutoff. According
to Prediction 2, school preferences for a selective school are only relevant if the student turns out to be
above the cutoff, in which case benefits do exist. If purely idiosyncratic preferences are symmetrically
distributed, a majority of students at every entrance exam score level (even those who would actually
be better matched to the less selective school) should state a preference for the more selective school.
Additionally, the proportion of students preferring the more selective school should increase with
entrance exam scores.

To test this prediction, we estimate how entrance exam scores affect the probability that students
rank BLS above Boston Latin Academy (BLA), the second-most selective exam school, while account-
ing for how far students live from each school. Our analysis includes all students who applied to either

BLS or BLA, not just those near the BLS cutoff. This broader sample includes many students with

8Note that our results are derived from local linear regressions. Standard errors of the slope changes estimated via
Calonico, Cattaneo, and Titiunik (2014) are much larger than the effects we estimate. We believe our approach is more
appropriate for two reasons. First, under the zero value-added hypothesis, the second derivative of E(y|r) is identical
on both sides of the cutoff, so our theory suggests the bias their method corrects for should be zero. Second, since our
model predicts a consistent difference between slopes on either side of the cutoff (not just a change at the cutoff point),
we aren’t concerned that the IK bandwidths consider a substantial interval around the cutoff.
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scores well below the cutoff who weren’t included in our previous figures that focused only around
the cutoff. Let p; equal 1 if applicant ¢ in cohort ¢ ranked BLS over BLA. We count a student as
preferring BLS if they either ranked BLS higher than BLA or included only BLS on their preference

list. We estimate this relationship using:

=+ Y. B+ g(ri) + vir
se{BLS,BLA}

Here, p; represents cohort fixed effects, df, measures the distance between the student’s home and
school s € {BLS, BLA} with coefficient 3%, and g(-) is a flexible function of the admission test score.'”
While we include controls for distance since it might affect school preferences, the patterns remain
almost identical without these controls.

Figure 3 plots the local-linear fit of this equation, which align with the curriculum-matching model’s
predictions for students who have imperfect information about their match quality. More than 50%
of applicants prefer BLS over BLA at every entrance exam score level, even among the lowest-scoring
students. Around the BLS cutoff, about 80% prefer BLS, with this percentage increasing across a
wide range of nearby scores. Among the highest-scoring students, about 90% prefer BLS. These are
rational choices in the curriculum-matching model: students near the cutoff expect they’ll be better
matched at BLS if admitted (though this expectation may prove wrong ex post), while top-scoring
students (correctly) anticipate they’ll be much better matched at BLS.

As we discussed in the theory section, it’s hard to explain these strong preferences for BLS using
a zero value-added model with fully rational choice. Abdulkadiroglu, Angrist, and Pathak (2014)
suggest parents may be operating under an “elite illusion,” mistakenly believing in value-added that
doesn’t exist. However, this explanation requires either that higher-scoring students (or their parents)
make larger errors in their beliefs, or that unobserved characteristics correlate with both entrance

exam performance and BLS preference relative to BLA.

4.3 Prediction 3: Discontinuities in Question-Specific Performance

The curriculum-matching model with explicit curriculum design predicts discrete changes in perfor-
mance on individual test questions at the admissions cutoff. This occurs because schools optimize

their teaching time differently across skills. The most selective school might quickly cover basic skills

19 Appendix B provides more details on the distance calculation.
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to spend more time on advanced material, while the less selective school might skip difficult skills
entirely due to time constraints. These different teaching choices should create discontinuities in per-
formance on specific questions that test different skills. Question-level discontinuities can exist even
when overall test scores show no jumps for instance, if the test weights different skills in the same way
that schools do when designing their curricula.

We now analyze how students perform on individual MCAS questions. This analysis faces several
challenges. Since questions change yearly, we have fewer observations for each specific question.
Individual question scores (0 or 1) provide noisier measurements than overall test scores. We're also
limited to MCAS data, as question-level information isn’t available for PSAT /SAT. Additionally, given
the (relatively low) level of difficulty of the MCAS exam and the (relatively high) level of achievement
of students who are around the BLS cutoff, many students near the cutoff either knew the material
tested by some Grade 10 MCAS questions when they were in 6th grade, or they’re capable of answering
these questions correctly in 10th grade even without specific instruction. Despite these limitations,
we find results that support the curriculum-matching model.

We begin by asking whether any individual questions show discrete changes in performance at
the BLS cutoff. The answer is clearly yes. We ran 1,054 separate regression discontinuity analyses
corresponding to one for each Grade 10 MCAS question, using a binary (0-1) outcome for each
question instead of standardized scores. Figure 4 shows histograms of p-values for these estimated
discontinuities, separated into English and Math sections. If there were no true discontinuities, these
histograms should be roughly uniform across [0,1]. For example, only 5% of estimates should be
significant at the 5% level. Instead, we find many more significant results: 16% of math questions and
12% of English questions show significant discontinuities at the 5% level. We also find notably fewer
p-values above 0.5 than expected. For math exams, only 35% of questions have such p-values. These
patterns demonstrate that performance discontinuities exist across many questions within each test
and across both subjects.

The large number of estimates that are significant at the 5% level reflects that a number of
questions for which the estimated upward or downward jump at the cutoff is quite large. As an
illustration, Figure 5 provides RD plots for two questions from the same exam: questions 10 and 39
on the 2003 10th grade MCAS math exam. Question 10, shown on left, was answered correctly by
100% of (several dozen) students with entrance exam scores just below the BLS cutoff, but by only
about 60% of students with scores just above the BLS cutoff. The identical set of students performed

very differently on question 39. It was answered correctly by about 60% of students with scores just
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below the BLS cutoff and by 80-90% of students with scores just above the cutoff.

We next examine test questions where performance gaps are largest to investigate the potential
role of curriculum design, drawing on math curricula expertise developed by one of the authors in
the course of writing math textbooks, Ellison (2010) and Ellison (2013). Figure 6 lists five Grade
10 MCAS Math questions where BLS students performed significantly worse (showing roughly 30
percentage point drops in performance). This includes the question corresponding to the RD plot on
the left above, which was a probability problem about two spinners. The questions seem to fall into
two distinct categories. The first group includes questions that favor recent middle school knowledge:
the probability problem (2003 Q10), a proportional reasoning question about cylinder volume (2007
Q28) that’s solvable by recognizing that tripling the radius leads to a nine-fold volume increase, and
a problem (2007 Q30) that’s more efficiently solved using pre-algebra trial-and-error rather than the
more complex quadratic equation approach that high school students might attempt. The second
group covers optional curriculum topics: a question about undefined slopes (2010 Q34), a concept
that many schools might consider peripheral compared to core skills like using slope-intercept form,
and a sequence problem (2006 Q1) that can be solved through various approaches.?’ The examples
suggest BLS may have deliberately chosen not to emphasize these particular skills in their 9th and
10th grade curriculum, focusing instead on other mathematical concepts and approaches.

Figure 7 shows the five Grade 10 MCAS math questions where BLS students demonstrated the
strongest performance advantage, with upward jumps of approximately 30 percentage points.?! These
questions show more diversity in content and difficulty. Two algebra questions (2014 Q11 and Q13)
test fundamental skills that well-trained students should master, though some schools might avoid
using numbers like 3 and 9 as exponents, and the negative numbers in Q13 could cause confusion.
Another question asks students to write an equation for a “best fit” line on a scatterplot, a topic that
wasn’t traditionally part of high school curricula until its inclusion in the 2000 Massachusetts state
standards. As of 2003, some schools serving students just below the BLS cutoff may not have updated
their curricula to cover this material. The remaining two questions cover relatively basic concepts:

rounding to the nearest whole number (a skill perhaps more commonly reinforced in science classes

20The elegant solution here would note that the differences between adjacent terms are 3, 5, 7, and 9, so the next
difference is 11, implying the answer is 41. The technique is given less than a page in Hard Math for Middle School and
is not covered in some standard algebra textbooks. The brute force approach that might occur to students who been
studying systems of equations — assuming that the nth term is an® + bn + ¢ and using the values of the first three terms
to find 3 equations in the unknowns a, b, and ¢ — is much harder.

2 Most have point estimates of about 30 percentage points on the upward jump, and each is significant at the 99.9%
level, ignoring issues of multiple hypothesis testing.
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than math) and similar triangles (a topic that spans both middle and high school geometry). While
these questions don’t present as clear a pattern as the previous set, the results suggest that BLS
students’ stronger performance stems from more thorough training in advanced algebra and geometry

concepts.

4.4 Prediction 4: Discontinuities in Score Differences on More and Less Difficult
Tests

Prediction 4 presents another method for testing whether schools strategically allocate curriculum
time based on student needs. We can subtract each student’s “easy” test score from their “hard”
test score to create a score difference variable. If schools are indeed tailoring their curriculum to their
student population, we should observe a sudden increase in this score difference at the admissions
cutoff.

The Grade 10 MCAS Math exam’s design provides a valuable test case because it heavily fea-
tures below-grade-level content. As detailed in Appendix A.2, the 2013 exam’s alignment with Mas-
sachusetts’s 2011 curriculum framework shows that 23 of 42 questions test middle school standards:
5 questions from grade six, 13 from grade seven, and 5 from grade eight. In contrast, the Grade
10 MCAS English exam operates at a more grade-appropriate level, combining challenging canonical
high school literature (including translations of Greek and Latin works, Shakespeare, Beowulf, Austin,
Cervantes, Conrad, Dickens, Garcia Marquez, Kafka, and Shelley) with more accessible contemporary
articles and texts.?? The literary selections are approximately at a 10th-grade reading level, while the
non-literary texts tend to be somewhat easier. Additional details about both exams’ difficulty levels
can be found in Appendix A.2.

We analyze four test score differences for each student, comparing their performance on harder
versus easier exams. Specifically, we calculate: (1) highest SAT math score minus Grade 10 MCAS
math score; (2) highest SAT critical reading score minus Grade 10 MCAS reading score; (3) Grade 11
PSAT math score minus Grade 10 MCAS math score; and (4) Grade 11 PSAT reading score minus
Grade 10 MCAS English score. The PSAT comparisons offer the advantage of a smaller time gap,
with only five months between tests. The SAT comparisons provide a larger difficulty gap between
the tests. We normalize all scores to z-scores within each year’s pool of BLS first-choice applicants for

this calculation so that score differences are a natural measure.

22The MCAS tests include a few footnotes giving definitions of some words in the passages. For example, the Garcia
Marquez passage gives definitions for taciturn, stigma, breviary, and vignettes.
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Estimates from this equation help differentiate between two competing models. The zero value-
added model predicts no sudden changes in test score differences at the cutoff. In contrast, the
curriculum-matching model (Prediction 4) suggests we should see upward jumps at the cutoffs, espe-
cially in the math score differences, as schools align their teaching to student ability levels.

Using the score difference as the dependent variable offers a potential side-benefit: it may reduce
idiosyncratic noise. In equation (4), part of the noise term is the difference between actual and expected
student ability, Eg|,,h(0) — h(r;). This noise term cancels out in the score difference, provided that
ability affects performance similarly on both exams. Additionally, differencing removes Fjy, h(6) from
the dependent variable, eliminating a potential source of nonlinearity that could bias RD estimation.
This allows us to use wider bandwidths.?> Examining score differences also has the potential to
eliminate peer effects as an alternative explanation for discontinuities at the cutoff. To understand
why, consider the curriculum-matching model, expanded to include peer effects. If a student’s score
on test k is

Yik (05, ) = hi(0;) + mi(0,¢) + 75+ b Y wiiby + e, (5)
J#
with the peer effect term b ot wj;0j, not being test-dependent, then it will also cancel out when
we difference leaving curriculum match quality as the only remaining explanation for any observed
discontinuity at the cutoff.

Figure 8 displays our analysis of test score differences. We group BLS applicants who scored within
20 percentiles of the cutoff into one-percentile bins. Each dot represents the bin’s average difference
between students’ standardized PSAT/SAT scores and their MCAS scores. Local linear regression
estimates trace the conditional means. The top panels show comparisons of math tests. On the left,
PSAT math scores show a substantial upward jump (approximately 0.160) at the BLS cutoff. The
right panel reveals a smaller but clear upward jump in SAT math scores. The bottom panels compare
reading tests, where there are discontinuities of roughly 0.090 for each outcome.

Table 3 provides formal statistical analysis of the discontinuities shown in the figure, using local
linear estimates of equation (4) with test score differences as dependent variables. Both math com-

parisons (PSAT-MCAS and SAT-MCAS) show significant upward jumps of approximately 0.160 and

Z3Under the null hypothesis of no curriculum-matching effects, the relationship between score difference and entrance
exam performance should have the same second derivative on both sides of the cutoff. This property reduces concerns
about bias when using wider analysis windows. Furthermore, we wouldn’t expect the conditional expectation, E(h(0)|r),
to show strong nonlinearity near the cutoff, since students at the cutoff score around the 70th percentile on MCAS - well
within the middle range of the distribution rather than in its tails.
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0.080 at the cutoff, respectively. Both English comparisons have jumps of 0.08, though these are
less precisely estimated than the math comparisons. These findings support the curriculum-matching
model over the zero value-added model in explaining how BLS affects student performance across tests

of varying difficulty.

5 Advanced Placement and College Outcomes

We next turn to measures of more advanced educational outcomes, targeted towards the high-achieving
students at BLS. The Advanced Placement (AP) program offers college-level material to high school
students, with tests scored from 1-5. Many colleges grant credit for scores of 3 or higher, which we
define as passing. Following Abdulkadiroglu, Angrist, and Pathak (2014), we focus on popular and very
popular AP subjects. This typically includes core subjects like math, science, English, and history,
while excluding arts, music, and foreign languages.?* BLS’s enrollment of high-achieving students
creates sufficient demand to offer an extensive AP curriculum. Table 1 shows striking differences in
AP participation: while the average Boston 6th grader eventually takes 0.7 AP tests, students near
the BLS admissions cutoff take an average of 2.5 tests.

BLS students, while representing only about 10% of Boston Public Schools’ high school enrollment,
dominate AP test-taking and achievement. In 2022, they took 2,341 AP tests with an 84.2% pass
rate (scores of 3 or higher). This accounts for 38% of all AP tests taken in Boston Public Schools and
58% of passing scores (1,971 out of 3,379). Their dominance is even more pronounced in advanced
senior-year courses: BLS students earned 82% of all passing scores on AP Calculus BC and 84% on
AP English Literature among Boston Public Schools students.?” These AP participation patterns
align with our curriculum-matching model: BLS’s concentration of high-achieving students enables
the school to effectively offer and teach these advanced subjects.

RD analyses indicate that one reason for this dominance is a causal effect: BLS admission signif-
icantly improves AP test-taking and performance, when measured via all AP exams or very popular

AP exams.?S First, as shown in Panel A of Table 4, a BLS offer increases AP exam participation by

24Very popular AP subjects are US History, Biology, English Language and Composition, English Literature, US
Government and Policies, and Calculus AB. Popular tests include very popular AP tests as well as Calculus BC, Statistics,
Chemistry, Physics B/C, European History, Microeconomics, and Macroeconomics.

2 These statistics are available at: https://profiles.doe.mass.edu/adv_placement /ap.aspx

26Given the discreteness of AP scores, it would not be natural to normalize AP achievement as a z-score. Accordingly,
our AP estimates focus on the effect of BLS admissions on AP test-taking and performance, rather than on a differenced
dependent variable that subtracts normalized MCAS performance from normalized AP performance.
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0.6 tests overall and by 0.3 tests for very popular AP subjects. These effects are substantial relative
to the control group’s mean participation. Second, Panel B demonstrates that a BLS offer increases
the number of AP tests passed by 0.39 and the number of very popular AP tests passed by 0.15.%7
The estimates on test-taking and performance for popular AP exams are positive, but are not statis-
tically significant. The overall picture of estimates on AP participation and performance support the
curriculum-matching model over the zero-value added model: concentrating high-ability students in
one school enables the offering of advanced curricula like AP courses.

Our final outcome is college attendance and completion. As noted earlier, college completion is
a challenge for BPS students. Even among high-achieving students scoring near the BLS admissions
cutoff, Table 1 shows that about one-third of college enrollees fail to graduate. BLS has strong
connections to elite colleges. For instance, Bernhard (2013) notes that BLS was among the nation’s
top seven feeder schools to Harvard in 2013, sending 13 students. However, since selective colleges
often cap admissions from individual high schools, it is unclear whether BLS would boost elite college
admission chances for students who barely met BLS’s entrance requirements, and college dropout is
quantitatively more important than failure to enroll in college for students scoring near the BLS cutoff.

Table 5 shows that BLS admissions has positive effects on several college outcomes, but none are
statistically precise enough to rule out a chance finding. For example, at the BLS cutoff, students who
are admitted show a 3.1 percentage point increase in overall college completion and 5.5 percentage
point increase in four-year college graduation rates, but the standard errors of both estimates are
about 4.5.2% Part of the difficulty in identifying discontinuities at the BLS admissions cutoff is the
need to distinguish them from increases in the slope of the admissions-graduation relationship at the
admissions cutoff. The latter are significant in two of the regressions, and this could reflect that
students who are better-matched to the BLS curriculum benefit even more from admission, but we

are not treating any such benefits as estimated causal effects.

27 Abdulkadiroglu, Angrist, and Pathak (2014) report estimates of Boston exam school attendance on AP test-taking
and AP scores for 7th and 9th grade applicants. Those estimates much noisier than those reported here. For example,
the estimated standard error on sum of scores is 0.61 and 0.48 for popular AP tests compared to standard errors of 0.18
in Table 4. The implied confidence intervals for this outcome in Abdulkadiroglu, Angrist, and Pathak (2014) are wide
enough to include the estimates reported here.

28 Abdulkadiroglu, Angrist, and Pathak (2014) found positive effects of BLS admission on college attendance for 7th and
9th grade applicants (6.2 percentage points overall and 10 percentage points for four-year colleges, the latter significant
at 5%). Our analysis shows smaller, non-significant effects though our confidence intervals include their estimates.
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6 Conclusion

This paper presents two simple models of school system and curriculum design. In a system where
students have different learning styles, aggregate achievement is maximized by matching students to
schools based on learning styles, with schools then tailoring their curriculum to their students’ needs.
Our analysis shows that regression discontinuity estimates at selective school admission cutoffs cannot
distinguish between two different explanations: either (1) the selective school adds no value, or (2)
both student allocation and curriculum are optimally designed to maximize total achievement.

Our findings reveal how the curriculum-matching model makes distinct predictions that help dif-
ferentiate between explanations. Under curriculum matching, we expect: (1) the relationship between
entrance exam scores and later performance changes slope at admission cutoffs, as students move from
mismatched to well-matched curricula; (2) students prefer the selective school before knowing their
scores, since this preference only matters if they qualify; (3) performance on individual test questions
shows discontinuities, reflecting different time allocations to topics across schools; and (4) near the
admission cutoff, students at selective schools perform better on challenging tests, as these schools
emphasize advanced skills.

Testing the predictions of the curriculum-matching model involves several empirical challenges.
Detecting changes in performance slopes at admission cutoffs requires substantially more data than
identifying simple changes in levels. Analyzing individual test questions introduces additional com-
plexity, as these analyses rely on binary outcomes from single-year data (since test questions change
annually). Despite these methodological hurdles, our findings support several predictions of the
curriculum-matching model. The most compelling evidence emerges from what we expected to be
the most revealing test: students admitted to Boston Latin School demonstrate better performance
when measuring the gap between their PSAT and Grade 10 MCAS results and the gap between their
SAT scores and Grade 10 MCAS results for both Math and English.

The curriculum-matching model initially compared schools that valued all skills equally but special-
ized due to students’ different learning rates. However, the value of mastering specific skills likely varies
among students. For college-bound students, exposure to college-level texts and STEM-preparatory
math may be crucial. For others, mastering practical skills tested on graduation exams may be more
valuable for daily life.

This analysis highlights the importance of aligning test score measures with educational goals

when evaluating interventions. Tests vary in both content and how they translate mastery into scores.
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Schools teach a variety of skills that benefit students both in the short term and over their lifetimes.
Failing to recognize these distinctions can result in misleading conclusions about the value of selective

schools and the impact of other educational interventions.
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Figure 6: Sample MCAS questions with most statistically significant downward jumps at the Boston
Latin School cutoff
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Figure 7: Sample MCAS questions with most statistically significant upward jumps at the Boston
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Table 1: Descriptive Statistics for 6th Grade BPS Students and BLS Applicants

BPS 6th graders 6th grade BLS 6th grade Applicants 6th grade BLS Applicants

Applicants Ranking BLS First in [-20,20] window
€)) 2) 3) G
A. Demographics
Black 0.44 0.33 0.28 0.18
Hispanic 0.34 0.24 0.23 0.18
White 0.13 0.21 0.23 0.31
Asian 0.08 0.21 0.25 0.33
76,496 19,862 13,572 5,492

B. MCAS test outcomes

Grade 6 Math -0.43 0.26 0.40 0.95
Grade 6 English -0.51 0.11 0.23 0.66
Grade 10 Math -0.29 0.39 0.50 0.86
Grade 10 English -0.38 0.20 0.30 0.62

C. Pre-college test outcomes

PSAT Math 42 47 49 53
PSAT English 39 43 45 49
SAT Math 472 534 554 600
SAT English 449 507 525 569
Number of APs Taken 0.69 1.53 1.79 2.51
w/ AP Score >3 0.31 0.88 1.12 1.69
w/ Score > 3 on Popular APs 0.21 0.61 0.76 1.14
w/ Score > 3 on Very Popular APs 0.14 0.38 0.48 0.72

D. Post-secondary outcomes (among NSC-queried)

Attend Any College 0.60 0.81 0.83 0.88
Attend 4 year College 0.42 0.68 0.72 0.83
Persist Any College 0.55 0.78 0.80 0.87
Persist 4 year College 0.39 0.66 0.70 0.81
Graduate Any College 0.22 0.43 0.48 0.59
Graduate 4 year College 0.18 0.40 0.44 0.57

Notes: This table presents characteristics of Boston 6th graders and samples of BLS applicants. Applicants in [-20,20]
window have running variable values within twenty percentile ranks of the admissions cutoff. We defined two exam
groupings: Popular exams, those with at least 500 test-takers as identified in Abdulkadiroglu, Angrist, and Pathak (2014),
including U.S. History, Biology, Chemistry, Microeconomics, Macroeconomics, English Language, English Literature,
European History, U.S. Government, Calculus AB, Calculus BC, Physics B, Physics C: Mechanics, Physics C: Electricity
and Magnetism, and Statistics; and a narrower Very Popular subset, those with at least 1,000 test-takers, consisting
of all exams in Popular exams and U.S. History, Biology, English Language, English Literature, U.S. Government, and
Calculus AB. Number of APs Taken “w/ Score > 3” counts the number of AP tests with a 3 or higher. Number of APs
Taken with “w/ Score > 3 counts on Popular APs” counts the number of Popular AP tests with a 3 or higher. Number
of APs Taken with “w/ Score > 3 counts on Very Popular APs” counts the number of Very Popular AP tests with a 3
or higher. Any college refers to either a 2 or 4-year college. Persist means attend any college for at least four semesters.
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Table 2: Discontinuities in Achievement-Entrance Score Relationship at Admissions Cutoffs

Math English
MCAS PSAT SAT MCAS PSAT SAT
A (2) 3) 4 (5) (0)
Change in level at cutoff (p) -0.034 0.074 0.025 0.000 0.047 0.122%*
(0.029)  (0.049) (0.047) (0.033)  (0.045) (0.048)
Change in slope at cutoff (y) -0.004 0.005 0.003 0.005 0.014%* 0.021%**
(0.004)  (0.006) (0.006) (0.004)  (0.006) (0.006)
Control mean 0.77 0.25 0.31 0.51 0.26 0.25
Observations 3349 3200 3393 3933 3467 3120
Bandwidth 13.83 14.79 16.47 16.20 16.11 15.05

Notes: This table reports estimates of changes in levels and the slope of achievement outcomes at the BLS admissions
cutoff. Control mean reports the outcome means for the [-20, 0] window. Standard errors are in parentheses. * p < 0.10,

** p < 0.05, ¥*** p < 0.01.

Table 3: Discontinuities in SAT/PSAT Relative to MCAS at Admissions Cutoffs

Difference in Math Difference in English
PSAT-MCAS SAT-MCAS PSAT-MCAS SAT-MCAS
1 (2) 3) 4)
Change in level at cutoff (p) 0.159%** 0.072%* 0.087%* 0.089%*
(0.041) (0.035) (0.046) (0.048)
Control mean -0.23 -0.16 -0.17 -0.16
Observations 3864 4120 4295 4123
Bandwidth 18.23 29.33 26.31 20.79

Notes: This table displays the changes in differences in academic achievement measured as the difference between a
student’s highest score on the math/critical reading SAT and their score on the Grade 10 Math/English MCAS and the
difference between a student’s score on the math/reading PSAT and the Grade 10 Math/English MCAS. Control mean
reports the outcome means for non offers within [-20, 20] window. Standard errors are in parentheses. * p < 0.10, ** p

< 0.05, *¥** p < 0.01.
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Table 4: Advanced Placement Test Outcomes at Admissions Cutoffs

All AP Exams Popular AP Exams Very Popular AP Exams
€9 (2) 3)
A. Test Taking
Change in level at cutoff (p) 0.617%** 0.141 0.266%**
(0.161) (0.124) (0.084)
Change in slope at cutoff (y) -0.019 -0.007 -0.001
(0.025) (0.019) (0.013)
Control mean 1.75 1.33 0.84
Observations 3140 3168 3127
Bandwidth 12.91 13.01 12.87
B. Number of AP Tests Passed
Change in level at cutoff (p) 0.387%** 0.027 0.152%*
(0.147) (0.115) (0.074)
Change in slope at cutoff (y) 0.008 0.001 0.004
(0.023) (0.020) (0.012)
Control mean 0.93 0.69 0.43
Observations 3063 2844 2961
Bandwidth 12.59 11.73 12.18

Notes: Panel A shows the change in the level and slope of the number of students taking AP exams at the cutoff for all
AP tests, and Popular and Very Popular AP tests. Very Popular AP tests are defined as U.S. History, Biology, English
Language and Composition, English Literature and Composition, U.S. Government and Politics, and Calculus AB.
Popular AP tests are defined as those including all Very Popular AP tests as well as as well as Calculus BC, Statistics,
Chemistry, Physics B/C, European History, Microeconomics, and Macroeconomics. Panel B reports the change in the
number of students passing AP exams defined as scoring 3 or higher at the cutoff. Standard errors are in parentheses.
*p < 0.10, ¥ p < 0.05, *** p < 0.01.
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Table 5:

College Outcomes at Admissions Cutoffs

Attend Persist Graduate
€9) (2) 3)
A. Any College
Change in level at cutoff (p) 0.005 0.001 0.031
(0.023) (0.025) (0.045)
Change in slope at cutoff (y) -0.002 -0.002 0.008*
(0.003) (0.003) (0.004)
Control mean 0.86 0.84 0.53
Observations 3658 3305 2298
Bandwidth 17.26 18.80 19.86
B. 4 Year College
Change in level at cutoff (p) 0.031 0.037 0.055
(0.026) (0.030) (0.046)
Change in slope at cutoff (y) 0.004* 0.005 0.008
(0.002) (0.003) (0.005)
Control mean 0.78 0.77 0.50
Observations 4276 3420 2156
Bandwidth 20.58 19.32 18.81

Notes: This table reports the change in the level and slope of the number on college attendance, persistence, and
graduation rate. Persist means attend any college for at least four semesters. Control mean reports the outcome means
for non-offers within [-20, 20] window. Standard errors are in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.
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A Appendix

A.1 Proof of Proposition 7

Since the functions ¢](x) and t4(x) are continuous in z and have the same integral over [0,1] there
must be an z¢ € [0, 1] with ¢J(z¢) = t5(xo).

Given any x with zv(x) < zov(xg) define () to be the allocation of time to skill = that would
equate the marginal value of time spent studying = and z( for a student of type 6 (provided such a
nonzero amount exists), i.e.

fzv(x)e 0@ = frgo(ag)e—0w0%@0),

We show below that for any 6 < é,

:m;(x)e_exi(m) < zou(zg)e %0tz (@o),

Integrating over the interval [0, ] gives
/va(z)eémf(x)gg(e)aw < /onv(xo)eGxotz(zo)gg(e)d&

This equation implies that the marginal value of time spent teaching skill = at school 2 would be less
than the marginal value of time spent teaching skill zy at school 2 if the times spent on those skills
were f(z) and t3(xg), respectively. Hence, the optimal amount of time spent on skill 2 at school 2
must satisfy t5(z) < £(z).

A similar argument implies that ¢j(x) > #(x). In combination these two imply that t}(x) > t3(z)
which finishes the proof for skills  with zv(x) < zgv(xg). The argument for the zv(z) > xgv(xo) is
analogous.

To complete the proof, we need only show the inequality whose proof we deferred:
efexf(

79x0t§ (330)

xv(z) ) < xov(zo)e

for § < 0. To see this note that

X . 0/ R /6
e—0zt(z) _< e—0zt(z) ) / B (W(%)) / - xov(xo)

e~ 0oty (xo) | —baots(ao) xv(z)

zov(z0)

with the final step coming from the combination of 6/ 6 <1 and wo(z) > 1. Multiplying through by
the denominators gives the desired inequality. |
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A.2 MCAS difficulty and grade-level alignment

While Massachusetts has among the highest test scores and standards in the nation, MCAS pri-
marily tests material that students learn in earlier grades. The clearest evidence in support of this
claim comes from data from the Massachusetts Department of Elementary and Secondary Education
(DESE). DESE provided question-by-question mappings of the 10th grade Math MCAS exam to the
common-core aligned 2011 Massachusetts curriculum framework. This maps the majority of 10th
grade questions to middle school standards. On the 2013 Grade 10 Math exam, for example, DESE
linked 23 of 42 questions to middle school standards. For example, question 3, which asked “What is
the value of % -6 (4 +9++v4- 9)7” is mapped to a 7th-grade standard, 7.EFE.3 Solve multi-step real-
life and mathematical problems posed with positive and negative rational numbers in any form (whole
numbers, fractions, decimals), using tools strategically. Question 10, which provided a 10-observation
histogram showing areas in square miles and asked “What is the median area, in square miles, of the
towns in the county?”, is mapped to a 6th-grade standard, 6.SP.5 Summarize numerical data sets in
relation to their context, such as by ... Giving quantitative measures of the center (median and/or
mean).

Comparable MCAS math reports from some earlier years, e.g. 2003, mapped almost all questions
to 10th grade standards. However, we do not think that this correspondence reflects the fact that
the grade-level of the material covered on the MCAS has varied. Instead, it appears that in those
years, an earlier-grade standard was listed when no 10th-grade standard included the topic. To
quantify this, we went through the 2003 Grade 10 Math exam and compared the alignment of each
question with then-prevailing (2001) Massachusetts curriculum standards for all grades. For example,
we noted that question 1, “A landing pad for a helicopter is in the shape of a circle with a radius
of 7 meters. Which of the following is closest to the area of the landing pad?” could be mapped
to the 6th grade standard 6.M.5 Identify, measure, and describe circles and the relationships of the
diameter, circumference, and area ... and use the concepts to solve problems, whereas the 2003 MCAS
document mapped it to 10.M.1 Calculate perimeter, circumference, and area of common geometric
figures such as parallelograms, trapezoids, circles, and triangles. Across the full 2003 test, we found
25 of 42 questions on the 10th grade tests could be mapped to elementary or middle school standards,
a similar rate to DESE reports in 2013.%°

While it is harder to quantify “difficulty” than “grade level,” we believe that it is also true that
MCAS questions are fairly easy questions (easier than SAT questions) on the content they are covering.
To illustrate this, we reproduce in Figure Al the three most difficult of the 36 short answer/multiple
choice questions from the 2013 test, based on the fraction who responded correctly. The first, question
35, requires that students factor quadratic equations to simplify a fraction, but note that the quadratics
have been chosen to be about as easy to factor as possible and it is also easy to see, e.g. by plugging
in x = 1, that three of the four choices could not possibly be correct. The second, question 37, asks
students to find the relationship between distance and time. This question could also be solved quickly
and easily without using algebra. The question tells you that the formula is supposed to give 1% as

29We mapped one question to a 4th grade standard, two to 5th grade standards, seven to 6th grade standards, six to
Tth grade standards, nine to 8th grade standards, and seventeen to 10th grade standards. (Massachusetts had not at
the time published corresponding 9th grade standards.)
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the answer when you plug in ¢t = % The answer choices were selected so that if you plug in % of an

hour for ¢, only one formula gives 1% miles for d. The final question, question 16, does require that
students remember order-of-operations from 7th grade, but the calculations, 60 -4 = 15, 15 x 3 = 45,
and 100 — 45 = 55, are designed to be easy computations.

Students are not under any time pressure when attempting these questions: the test is untimed and
students can spend as long as they like on each section. Most other questions on the test were much
easier than these. The average score statewide on these questions was only 40% correct, whereas 71%
of students got the correct answer on the median-difficulty question. The PSAT and SAT are more
speed-oriented, e.g. the PSAT requires that students complete 44 questions in 70 minutes, and also
include some easy questions, e.g. the PSAT’s official practice exam includes “What is 23% of 1007”7
But, the peak difficulty is clearly above those of the MCAS examples above. For example, questions
on the PSAT’s released practice exam include asking for the positive solution to 5z — 27z + 24, and
asking for the value of k for which the sum of the solutions of the equation 6422 — (16a + 4b)x +ab = 0
is k(4a + b).

@ Which of the following is equivalent @D The distance traveled by a student

to the expression below for all positive walking at a constant rate varies directly

9 . .
values of x? with the amount of time the student

2+ x—6 walks. The student walked I%miles
X+ 5x 46 in %hour.

Which of the following represents the
relationship between d, the distance in
miles walked by the student, and ¢, the
amount of time in hours the student
walked?

Zlo

x —2
C‘x+2 A. d

I
|
~

W[
~

(x +3)x — 2) B. d =
(x +6)(x — 1)
C.d=

o|3

D. d =

wro

t
@ What is the value of the expression below?
100 — 60 ~ 4 + 3

Figure Al: The three most difficult questions on the 2013 MCAS Grade 10 math test

Quantifying the grade level of material covered on English tests is more difficult. One measure
that is available for many classic and school-marketed books due to agreements between its seller,
Metametrics, and a number of publishers is the “Lexile” measure, which reflects how common the
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words in a text are and the average lengths of the sentences.?? Table A1 list the Lexile indexes we
could find for books that had excerpts used as reading passages on 2004-2013 Grade 10 MCAS English
exams. While there is very limited scientific justification for the measure, the 2010 Common Core
Standards for the English Language Arts did include a recommendation that the grade 9-10 students
read texts in the 1080-1305 range to be on a path to be reading college-level texts in 12th grade.?!
In addition to being skeptical of the measures themselves, we think this seems a little high given that
Lexile’s promoters at the time recommended texts in the 960 to 1115 range for grades 9-10. In any
case, we encourage readers to use the ordered list and their own knowledge of some of the texts to get
a sense of the grade level. We feel that the books are close to grade level and certainly much closer
than the Grade 10 MCAS math problems.

Table Al: Lexile ratings of books excepted on MCAS English tests: 2004-2013

Year Author Title Lexile
2007 Chevalier Girl with the Pear]l Earring 770

2011 Rand The Fountainhead 790

2011  O’Brien The Things They Carried 880

2008 Wright Black Boy 950

2010 Conrad Heart of Darkness 970

2009 Dickens Oliver Twist 1000
2013 Zoya (with Follain and Christoforo) Zoya’s Story 1000
2008 Shelley Frankenstein 1000
2007 Hamilton Mythology 1040
2006 Lahiri Interpreter of Maladies 1050
2004 Dickens Hard Times 1060
2011 Almond Candyfreak: A Journey through the ... 1080
2012 Unknown (trans. Heaney) Beowulf 1090
2013 Kafka The Trial 1150
2005 Austin Pride and Prejudice 1190
2012  Sullivan Rats: Observations on the History & ... 1230
2004 Allende (trans. Bogin) The House of the Spirits 1280
2006 Cervantes (trans. Grossman) Don Quixote 1410
2008 Ellis Founding Brothers: The Revolutionary ... 1410
2010 Garcia Marquez (trans. Grossman) Love in the Time of Cholera 1440

30See Hiebert (2009).
#1See Hiebert and Mesmer (2013).
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A.3 Attrition

Table Al: Differential Attrition

Have MCAS Have PSAT Have SAT Have PSAT-MCAS Have SAT-MCAS NSC Queried

) 2) 3) “4) (5) (6)
A. Math
Change in level at cutoff (p)  -0.004 0.007 0.026 -0.016 0.014
(0.019) (0.023) (0.024) (0.023) (0.024)
Control mean 0.89 0.82 0.79 0.81 0.78
Observations 4227 4533 4812 4651 4933
Bandwidth 15.49 17.55 18.87 18.03 19.29
B. English
Change in level at cutoff (p) -0.011 0.026 0.007 -0.014 0.017
(0.020) (0.024) (0.023) (0.024) (0.024)
Control mean 0.89 0.79 0.82 0.81 0.78
Observations 3872 4812 4533 4486 4662
Bandwidth 14.25 18.87 17.55 17.38 18.35

C. Other Outcomes

Change in level at cutoff (p) -0.013
(0.011)
Control mean 0.86
Observations 4721
Bandwidth 17.33

Notes: This table reports on outcome availability at admissions cutoffs. Standard errors are in parentheses. * p < 0.10,
** p < 0.05, ¥*** p < 0.01.
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B Data Appendix

The analysis draws on a comprehensive set of administrative records from Boston Public Schools (BPS)
and the Massachusetts Department of Elementary and Secondary Education (DESE), supplemented
by standardized testing agencies and the National Student Clearinghouse (NSC). We begin with BPS
data on exam school applicants from 1995 to 2017, restricting the sample to those applying to the 7th
grade between 1999 and 2015. These records include student demographics, school preferences, and
composite admission scores, and are cleaned to exclude ineligible or inconsistent cases. We use cross-
walks connecting BPS student identifiers to state-assigned student identification numbers (SASIDs)
to link datasets. Enrollment trends are compiled from both BPS (1995-2012) and DESE’s Student
Information Management System (SIMS) (2008-2019). Academic achievement is measured using the
Massachusetts Comprehensive Assessment System (MCAS) scores in Math and English Language Arts
(ELA) for grades 3—-10 (2002-2019), including both scaled scores and Grade 10 item-level responses.
We obtained Scholastic Assessment Test (SAT) and Preliminary SAT (PSAT) scores from BPS and
DESE. These scores were standardized by subject and year, utilizing College Board concordance tables
to accommodate changes in test formats. Advanced Placement (AP) data from 2005 to 2020 were
sourced from BPS for the earlier years and from DESE in subsequent years. Our NSC post-secondary
outcomes, spanning 2007 to 2020, include information on college enrollment, persistence, and gradu-
ation rates, which were linked through SASIDs with appropriate timing adjustments for each cohort.
Detailed preparations for each dataset are elaborated in the subsections below.

Exam School Applicants Data

We use applicant-level data from BPS covering exam school applications from 1995 to 2017 school
years. The dataset includes a record for each applicant, detailing their application ID, SASID, name,
gender, race, date of birth, application year, grade level at application, ranked preferences for the
three exam schools, and their composite admission score. To ensure analytic validity, we restricted
the sample to students who met the criteria for valid exam school applicants. We begin by dropping
students who applied to grade 10 and those outside the application year window of 1999-2015. We
remove duplicate observations within each school year and application grade. We exclude students
applying from private schools, those who did not apply to any exam school, and those without a
rank for any exam school. Additionally, we drop students who received offers from schools they did
not rank, as well as students who were not offered admission despite having scores above the average
admitted student. The analysis sample includes exam school applicants applying to the Tth grade
for school years 1999 through 2015. These years correspond to those for which we have available
outcomes.

Crosswalk Data

To merge BPS administrative records with DESE outcome files, we constructed a crosswalk linking key
identifiers across datasets. For the student identifier crosswalk linking BPS IDs to state-level SASIDs,
we assembled a comprehensive panel of BPS assignment and enrollment records spanning 1997 to 2019.
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For the 19972005 cohorts, student records were extracted from BPS assignment files and merged with
enrollment files using an internal crosswalk file to retrieve names and dates of birth. For 20062013,
we processed over two dozen rounds of assignment files from BPS archives, standardizing student
names and dates of birth. For 2014-2019, data were drawn from BPS assignment megafiles. Across all
years, we standardized formatting, resolved naming inconsistencies, and removed duplicate records to
construct a unified student-level file. These BPS records were matched to DESE SIMS files from 2001
to 2019, using combinations of student number, name, and date of birth. When available, we preferred
SIMS-based matches; otherwise, we relied on earlier internally constructed crosswalks. In cases of
conflicting SASTD matches, we prioritized matches with the smallest date-of-birth discrepancies.

Enrollment Data

The enrollment data combine records from BPS and DESE. For 1995-2012, we use cleaned BPS
enrollment files, while for 2008-2019, we rely on DESE’s SIMS. Due to gaps in earlier state records, BPS
data are critical for capturing the full enrollment history of exam school applicants. The overlapping
years (2009-2012) provide a check on consistency across sources. To construct the BPS portion,
we combined multiple raw files, standardized year and grade formats, cleaned key demographic and
program participation fields, and calculated cumulative years spent in exam schools. For DESE data,
we processed fall and end-of-year SIMS submissions, harmonized variable definitions across years, and
merged observations to retain the most complete student-school-year record. The final merged file
spans 1995 to 2019 and includes variables such as school attended, special education status, subsidized
lunch eligibility, and English proficiency. When students appear in multiple schools in a year, we assign
them to the school with the longest enrollment. This cleaned enrollment dataset is then merged with
the application file to identify BPS students applying to exam schools between 1999 and 2015.

MCAS Data

The MCAS dataset, provided by DESE, covers the years 2002 to 2019 and includes both raw and
scaled scores in Math and ELA for students in grades 3 through 10. It also contains item-level data
indicating whether each question was answered correctly, incorrectly, or left blank. From this dataset,
we construct two files. The first file includes raw and scaled scores for MCAS Math and ELA across
all grades and students. This file is merged with the application and enrollment datasets to create
our main analysis file. Prior to merging, we address a small number of cases where students have raw
scores but no corresponding scaled scores by imputing scaled scores using the observed raw-to-scaled
score relationship among students who took the same test. Scaled scores are then standardized to
have a mean of zero and a standard deviation of one within each subject-grade-year, based on all
Massachusetts students with MCAS scores. The second file contains question-level data for every
multiple-choice item on the Grade 10 MCAS Math and ELA exams for each year, excluding 2016 due
to missing item-level data. For each question, we compute the number of students who answered it
correctly. Importantly, the Grade 10 MCAS exams were not affected by the PARCC (Partnership for
Assessment of Readiness for College and Careers) changes in 2015 and 2016.
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SAT Data

The SAT dataset is compiled from records provided by both BPS and DESE. For school years 2005
and 2006, SAT scores are sourced from BPS and include student identifiers (BPS IDs) along with
raw scores for the Math, Reading, and Writing sections. These records are linked to SASIDs using a
crosswalk file. From 2007 to 2020, SAT scores are sourced from DESE and already include SASIDs.
In both cases, BPS and DESE receive SAT data for exam school applicants directly from the College
Board. If a student took the SAT multiple times, we retain the highest total score (Math + Reading)
across all test attempts. To account for the 2016 redesign of the SAT, we convert pre-redesign scores
using official concordance tables provided by the College Board.?> We append the BPS and DESE
records to construct a consolidated SAT dataset. Prior to merging with the analysis file, we correct
data entry errors by multiplying any score recorded below 200 by 10. After the merge, raw SAT scores
are standardized to have a mean of zero and a standard deviation of one within each subject-year,
based on exam school applicants in our sample who took the test in that year. Additionally, we set
SAT outcomes to missing for the 2015 application cohort, as the available SAT data through 2020 do
not provide complete coverage for that group.

PSAT Data

All PSAT data were provided by BPS. In the earlier years (2004-2005), students are identified using
BPS-specific student IDs, which we link to SASIDs via a crosswalk. For the years 2006-2019, the data
already include SASIDs, eliminating the need for this step. While earlier datasets include scores for
all BPS students, the later years contain scores only for exam school applicants. Since our analysis
focuses exclusively on exam school applicants, we restrict the sample accordingly in all years. If a
student took the PSAT more than once, we prioritize their grade 11 score. The PSAT scoring scale
was redesigned in 2016. To ensure comparability across years, we convert pre-redesign scores using the
concordance tables provided by BPS and the College Board.?® Following the redesign, the Reading
and Writing sections were combined into a single Evidence-Based Reading and Writing (ERW) score.
Once scores are converted, the ERW score is divided by two to recover separate Reading and Writing
components. The PSAT data are then appended across all years, and records with valid SASIDs
are merged with the application, enrollment, MCAS, and SAT files. Following the merge, raw PSAT
scores are standardized to have a mean of zero and a standard deviation of one within each subject-
year, using only exam school applicants in our analytic sample tested in that year. Additionally,
we set PSAT outcomes to missing for the 1999 application cohort, as the available PSAT data from
2004-2005 do not provide full coverage for that group.

AP Data

Our AP data span the years 2005 to 2020 and are drawn from two primary sources. For 2005 and
2006, student-level AP scores were provided by BPS, which identified students using internal BPS

328ee Concordance Tables from the College Board.
33 Available at: https://studylib.net/doc/18228722/psat-snmsqt-Sunderstanding-Sscores-52015
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IDs. These were linked to SASIDs using a crosswalk file. From 2007 onward, AP records were
sourced from DESE and already included SASIDs. After appending all years, we constructed a
unified dataset of AP outcomes keyed by SASID. For each student, we calculated the number of AP
exams taken per year and total scores. To analyze patterns in subject choices, we defined two exam
groupings: Popular exams—those with at least 500 test-takers as identified in Abdulkadiroglu, Angrist,
and Pathak (2014)—including U.S. History, Biology, Chemistry, Microeconomics, Macroeconomics,
English Language, English Literature, European History, U.S. Government, Calculus AB, Calculus
BC, Physics B, Physics C: Mechanics, Physics C: Electricity and Magnetism, and Statistics; and
a narrower Very Popular subset—those with at least 1,000 test-takers—consisting of all exams in
Popular exams and U.S. History, Biology, English Language, English Literature, U.S. Government,
and Calculus AB. The resulting dataset was merged with application, enrollment, MCAS, SAT, and
PSAT records. Students without any AP data were assigned zeros on all AP outcome variables.

NSC Data

Data on college enrollment come from the NSC, which provides post-secondary enrollment records
based on submissions from DESE. DESE submits student names and birthdates for in-state high school
students, with NSC conducting annual searches for graduates and biennial searches for non-graduates.
We use NSC data from the 2007-08 through 2019-20 school years to construct college attendance,
persistence, and graduation indicators for Massachusetts students. After importing and cleaning the
raw NSC file, we standardized variables, and modified college codes. We then generated indicators for
attendance (at least one semester), persistence (four or more semesters), and graduation, separately
for 2-year and 4-year colleges. These outcomes were collapsed to one record per student, and merged
with other datasets (application, enrollment, MCAS, SAT, PSAT, and AP) using SASIDs. To ensure
alignment with application cohorts, we set attendance outcomes to missing for years beyond 2012,
persistence beyond 2010, and graduation beyond 2006, reflecting typical timelines for post-secondary
progression.

Measuring Distance

In our analysis, we utilize measures of school proximity based on distance. For exam school applicants,
proximity is determined by the residential coordinates, which are approximated using the centroid
coordinates of residential geocodes in Boston. Additionally, the coordinates of Boston exam schools are
derived from their addresses. These geocodes are then used to calculate the shortest distance between
the applicants’ addresses and the exam schools, specifically Boston Latin School and Boston Latin
Academy, using the Stata package. geodist. This package calculates geodetic distances, representing
the shortest paths between two points on the surface of a mathematical model of the Earth.
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