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While the mechanism design paradigm emphasizes notions of efficiency based on
agent preferences, policymakers often focus on alternative objectives. School districts
emphasize educational achievement, and transplantation communities focus on patient
survival. It is unclear whether choice-based mechanisms perform well when assessed
based on these outcomes. This paper evaluates the assignment mechanism for allo-
cating deceased donor kidneys on the basis of patient life-years from transplantation
(LYFT). We examine the role of choice in increasing LYFT and compare realized as-
signments to benchmarks that remove choice. Our model combines choices and out-
comes in order to study how selection affects LYFT. We show how to identify and esti-
mate the model using instruments derived from the mechanism. The estimates suggest
that the design in use selects patients with better post-transplant survival prospects and
matches them well, resulting in an average LYFT of 9.29, which is 1.75 years more than
a random assignment. However, the maximum aggregate LYFT is 14.08. Realizing the
majority of the gains requires transplanting relatively healthy patients, who would have
longer life expectancies even without a transplant. Therefore, a policymaker faces a
dilemma between transplanting patients who are sicker and those for whom life will be
extended the longest.

KEYWORDS: Assignment mechanisms, deceased donor allocation, life-years from
transplantation, generalized Roy model.

1. INTRODUCTION

ASSIGNMENT MECHANISMS ARE COMMONLY USED to allocate scarce resources such as
public schools, public housing, and organ allocation. While the design of these mech-
anisms takes choice-theoretic notions of efficiency as a primary objective (Roth and So-
tomayor (1992), Abdulkadiroglu and Sonmez (2003)), this desideratum often differs from
policymakers’ situation-specific goals—school districts emphasize student achievement,
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for example, and organ transplant systems emphasize patient survival. Because canoni-
cal choice-based mechanisms are not designed to optimize these outcomes, they may not
perform well in these dimensions. Agents’ choices may not be well-informed and coordi-
nation failures may undercut intended objectives.1 If so, a planner who can dictate assign-
ments based on estimated benefits may improve performance. However, agents may also
have private information about likely outcomes and using a choice-based mechanism may
serve policymakers’ objectives.

This paper evaluates the mechanism through which deceased donor kidneys are allo-
cated on the basis of survival outcomes. We compare the performance and distributional
consequences of the mechanism to those of alternative assignments. Our benchmark as-
signments investigate whether maximizing survival conflicts with distributional concerns
(Atkinson (1970)) or prioritarianism which targets the sickest or neediest (cf. Persad,
Wertheimer, and Emanuel (2009), Waldinger (2017)). We also assess the role of choice
by examining its relationship to survival and considering alternatives that dictate assign-
ments using observables alone.

We make two contributions in service of this objective. First, we present the first
quasi-experimental estimates of the Life-Years from Transplantation (LYFT), defined as
the difference between median survival with and without a transplant, as a function of
patient/donor-specific observed and unobserved characteristics. The current standard in
the medical literature relies on observational approaches (Wolfe et al. (2008)), in part
because conducting randomized controlled trials presents both practical and ethical chal-
lenges. Second, we use insights from the literature on generalized Roy selection to ana-
lyze a joint model of choices and outcomes in an assignment mechanism in which agents
are offered sequentially arriving heterogeneous objects that they may choose to decline.
In contrast to the standard framework with multiple treatments (e.g., Lee and Salanie
(2018), Heckman and Pinto (2018)), the number of treatments grows with the size of
the market in many assignment contexts, in our case because each organ is unique. Sim-
ilar considerations arise in other sequential assignment contexts such as the allocation
of public housing units and of jobs in certain gig economy contexts. We therefore model
potential outcomes as a function of agent (patient), object (organ), and match-specific
characteristics, some of which are unobserved. Our results show how to identify and esti-
mate the effects of counterfactual assignments by using variation in offers made to agents
and choice shifters that are excluded from outcomes.

Deceased donor organs are a scarce and valuable resource. Only one-sixth of the ap-
proximately 100,000 patients waiting for a kidney are transplanted annually, and thou-
sands die while waiting.2 Increasing LYFT is an important policy goal: transplantation
committees use observational estimates of LYFT to evaluate proposed reforms.3 When a
kidney becomes available, patients on the waitlist are offered the organ in a priority order.
Patients, or surgeons acting on their behalf, may choose to reject an offer and instead wait
for a future organ. This decision may depend on the perceived benefits of transplanting
the offered organ.

1Moreover, in the kidney allocation context, surgeons who advise patients may suffer from agency problems
that can misalign decisions relative to maximizing survival outcomes.

2See https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/.
3Alternative design reports, generated by the Scientific Registry of Transplant Recipients (SRTR) for the

OPTN Kidney Transplantation Committee, use average LYFT as a summary measure of performance. The
committee’s meeting minutes indicate that this measure is focal. In fact, the U.S. has considered a priority
system based on LYFT in the past, and the UK uses a “transplant benefit score” to allocate kidneys (Watson,
Johnson, and Mumford (2020)).
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 397

We jointly model acceptance decisions and survival outcomes to incorporate the po-
tential for selection. The first component of our model considers the choices patients
make; the second and third components model patient untransplanted survival and post-
transplant survival with the offered organ, respectively. These models use a rich set of
patient and organ attributes as well as time to treatment. Given our focus on evaluating
alternative assignments, we also include patient- and patient-donor-level unobservables.

The model is challenging to identify because transplanted patients can be selected
on untransplanted survival, post-transplant survival from an average kidney, or patient-
kidney match-specific survival. Selection on these margins can be induced both because
choices can depend on survival prospects and because the mechanism prioritizes patient
waiting time.

We identify our model by combining two sources of variation. The first source is ran-
domness in the offers made to a given patient, conditional on the patient’s priority-type
in the mechanism. The second source is a continuous shifter of choices that is excluded
from outcomes.

Variation in the randomness of offers allows us to compare the survival outcomes of
patients whose final assignments differed due to the organs they were offered. Using stan-
dard arguments (e.g., Imbens and Angrist (1994)), we show that this instrument identifies
a treatment effect for the select group of patients whose assignment is affected by an of-
fer. An important limitation of this estimand is that it does not allow us to predict survival
from counterfactual assignments. It cannot consider changes in the set of patients who
are transplanted or changes in the kidneys to which a patient is matched.

To overcome this limitation and identify the effects of alternative assignments, we use
novel arguments and a shifter of choices to identify our choice and survival models. Re-
lated approaches have been used in other settings by Geweke, Gowrisankaran, and Town
(2003), Heckman and Navarro (2007), Lewbel (2007), Hull (2018) to correct for selection
and to estimate marginal treatment effects (Heckman and Vytlacil (2005)). Our choice
shifter is based on organ scarcity controlling for geography and time. We estimate the
model using a Gibbs sampler similar to Geweke, Gowrisankaran, and Town (2003).

Our estimates suggest that choices and assignments are positively correlated with sur-
vival outcomes due to both observed and unobserved factors. Patients are more likely
to accept kidneys that result in longer survival and those with match-specific benefits.
Partly because of this, transplanted patients have a higher LYFT from the average organ
as compared to untransplanted patients. Thus, prior approaches that do not account for
selection on unobservable factors (e.g., Wolfe et al. (2008)) yield biased estimates.

Next, we benchmark the observed assignment from the perspective of a utilitarian plan-
ner whose objective is to maximize LYFT. We focus on survival because it is a focal out-
come for kidney allocation. We compare the observed assignment to alternatives ranging
from a random assignment to one that maximizes LYFT.4 Because distributional con-
straints may limit the ability to select which patients receive a transplant, we also consider
alternatives that reassign organs while fixing the set of transplanted patients. Finally, we
measure the LYFT increase that can be achieved by a planner who can dictate assignments
based only on observed patient and donor characteristics.

Our analysis reveals that observed assignment produces higher LYFT than random
allocation—9.29 years versus 7.54. Most of this gain comes from allowing patient choice.

4The narrower focus on alternative assignments rather than mechanisms avoids solving for choices in coun-
terfactual equilibria, a computationally demanding task for waitlist mechanisms (Agarwal, Ashlagi, Rees, So-
maini, and Waldinger (2021)). Accounting for this channel is left for future work.
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Assignment to patients based on existing priority rules without allowing for choice only
achieves an average LYFT of 8.05. The drop from the observed assignment suggests that
choice may not be dispensable if the unobserved types are private information.

Nevertheless, there is significant room for improvement—the maximum possible LYFT
given the available organs is 14.08. The increase comes from selecting patients who benefit
more from the transplant and matching these patients to more suitable donors. A signif-
icant portion of these gains can be achieved if a planner can dictate assignments using
observables in our data set.

These potential improvements in LYFT have important distributional consequences
that may present real-world challenges. Although it is a priori unclear because the sick-
est may also have benefited the most from a transplant, increasing LYFT requires trans-
planting patients who would have lived longer without a transplant because LYFT and
survival without a transplant are strongly correlated. Such redistribution creates distri-
butional concerns because it increases the dispersion in remaining life-years (Atkinson
(1970)). While some medical ethicists may still support maximizing total survival benefits,
especially in the presence of scarce resources, others suggest worst-off prioritarianism for
the sickest (see Persad, Wertheimer, and Emanuel (2009), and references therein). Our
results indicate that the planner faces a dilemma rooted in the tension between these two
goals.

Related Literature. For evaluating assignments, we provide an alternative perspective
to the literature studying assignment mechanisms, which typically focuses on revealed
preference-based measures (Roth and Sotomayor (1992)).5 For example, the theory of
school choice typically bases welfare on student preferences (Abdulkadiroglu and Son-
mez (2003)), and the empirical literature uses a willingness to travel measure for welfare
comparisons (see Agarwal and Somaini (2020), for a survey).

The economics literature on organ donation focuses either on the number of trans-
plants (e.g., Teltser (2019), Dickert-Conlin, Elder, and Teltser (2019)) or on decision-
theoretic notions of welfare (Agarwal et al. (2021)), with an influential literature focusing
on expanding living donor kidney exchange (e.g., Roth, Sonmez, and Unver (2004), Agar-
wal, Ashlagi, Azevedo, Featherstone, and Karaduman (2019)). Our paper, by contrast,
focuses on survival outcomes and deceased donor organs, which provide the vast majority
of transplanted kidneys.

Our paper also relates to approaches that leverage quasi-experimental variation in
school choice mechanisms to estimate school quality arising either from tie-breakers (e.g.,
Cullen, Jacob and Levitt (2006), Abdulkadiroglu, Angrist, Narita, and Pathak (2017)) or
from instruments that shift assignment probabilities (e.g., Abdulkadiroglu, Pathak, Schel-
lenberg, and Walters (2020)). This literature estimates either a local average treatment
effect, which is not sufficient for analyzing outcomes from counterfactual assignments
because of changes in the set of compliers, or value-added for a school, which abstracts
away from match-specific effects. Our approach combines quasi-random variation in as-
signments with a choice shifter to solve both issues simultaneously. In contemporaneous

5Robinson-Cortes (2019) is an early exception that assumes social workers minimize disruptions when plac-
ing children into foster care. A recent set of papers, released after our work, consider how changes in assign-
ment systems affect downstream outcomes, mostly in education markets. Kapor, Karnani, and Neilson (2020),
Otero, Barahona, and Dobbin (2021), and Larroucau and Rios (2022) studied student achievement effects
of, respectively, expanding college admission platforms, affirmative action policies, and reapplying to college,
while Bates, Dinerstein, Johnston, and Sorkin (2022) studied teacher assignment.
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 399

work, Kapor, Karnani, and Neilson (2020) used this message of our paper to study out-
comes in a college admissions setting.

The techniques we use build on a large literature studying selection models (Roy
(1951)). Our model is related to those that combine outcomes with choice models to cor-
rect for selection when estimating treatment effects (Geweke, Gowrisankaran, and Town
(2003), Heckman and Navarro (2007), Lewbel (2007), Hull (2018)), causal survival mod-
els (Abbring and Van den Berg (2003)), and models of multi-valued treatments (Lee and
Salanie (2018), Heckman and Pinto (2018)). The main difference between our work and
these papers is that patients may have match-specific benefits from an organ, resulting
in a large number of unique treatments. This issue is important in assignment contexts
whenever there are a large number of heterogeneous objects. We address it by using a
model with rich observed heterogeneity across objects and unobserved heterogeneity in
outcomes along three dimensions—baseline outcomes, average outcomes given observ-
able characteristics of the transplanted organ, and match-specific effects—with each di-
mension correlated with unobservables in the choice model.

Overview. Section 2 describes the institutions and the data. The model and the instru-
ments are described in Sections 3 and 4. Section 5 presents the identification results and
the empirical model. The estimates, LYFT in the observed mechanism, and counterfactu-
als are in Sections 6, 7, and 8, respectively.

2. BACKGROUND, DATA, AND DESCRIPTIVE EVIDENCE

2.1. Institutional Features

Basics of Kidney Transplantation. Approximately 750,000 patients are afflicted with
End-Stage Renal Disease (ESRD) in the United States (USRDS (2018)). Medicare pro-
vides near-universal coverage for costs related to ESRD, irrespective of patient age, and
this coverage cost taxpayers $35.4 billion in 2016 (7.2% of Medicare claims (USRDS
(2018)), approximately 1% of the federal budget). Transplantation is considered the best
treatment for ESRD. Each transplant is estimated to extend a patient’s life by several
years (Wolfe et al. (2008)) while also saving $195,000–$400,000 in dialysis costs (Irwin,
Bonagura, Crawford, and Foote (2012), Held, McCormick, Ojo, and Roberts (2016)).
These estimates are based on survival models and comparisons of healthcare costs with
and without a transplant. We here improve on such estimates by using quasi-experimental
variation.

There is significant potential for heterogeneity in survival effects, even amongst com-
patible patient-donor pairs (Danovitch (2009)). First, survival with or without a trans-
plant can differ across patients. Some patients tolerate dialysis better than others, and
comorbidities influence post-transplant survival prospects. Second, donor quality—the
donor’s death circumstances, kidney function, and health prior to death—can significantly
influence transplant outcomes. Finally, match-specific factors, such as size and weight
match as well as tissue-protein similarity between patient and donor, may also affect post-
transplant survival.

The Allocation of Deceased Donor Kidneys. Deceased donor organ allocation is or-
ganized using a prioritized waiting list. Patients receive offers when an organ becomes
available and may choose to accept or reject it. Each donor’s kidneys are allocated to
the highest-priority patients on the waitlist who are willing to accept the organs. During
our sample period, priority was based primarily on waiting time and tissue-type similarity
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between the patient and donor. Each kidney was first offered to patients with a perfect
tissue-type match, then to patients from the local area in which the organ was recovered,
then regionally, and finally nationally. Within each priority group, patients were ordered
according to a points system that emphasized waiting time (see OPTN (2014), for details).
This allocation system evolved over time with incremental changes to enhance efficiency
(Smith et al. (2012)).6

Three features of the kidney allocation system are worth highlighting. First, unlike the
assignment systems for some other organs (e.g., livers and hearts), the kidney assignment
system does not use patient urgency to determine priority. Second, patients who reject an
offer remain on the list and may choose to accept the next offer with no penalty in priority
for refusing an offer. Third, the design is based on heuristics aided by simulations and
compromises in consideration of distributional effects rather than a formal mechanism
design approach (see Stegall, Stock, Andreoni, Friedewald, and Leichtman (2017), for a
historical perspective).

2.2. Data and Descriptive Analysis

2.2.1. Data Sources

This study uses data from the Organ Procurement and Transplantation Network
(OPTN). The OPTN data system includes data on all donors, wait-listed candidates, and
transplant recipients in the United States, submitted by the members of the OPTN. The
Health Resources and Services Administration (HRSA), U.S. Department of Health and
Human Services provides oversight to the activities of the OPTN contractor.

The data include detailed information from the Standard Transplantation Analysis and
Research data set on patient and donor characteristics and survival outcomes as well as,
from the Potential Transplant Recipient data set, all offers made by the system and ac-
cept/reject decisions. These data are populated using information gathered during the
allocation process, forms transplant centers submitted from patient follow-ups after a
transplant is performed, and patient death dates merged from social security records.

We restrict attention to patients who first joined the kidney waiting list between Jan-
uary 1, 2000, and December 31, 2010. From this set, we exclude patients who needed
multiple organ transplants and those who received a living donor kidney (see Appendix A
for a detailed discussion). Correspondingly, we only use data on donor offers to and ac-
ceptance decisions by patients in our sample. We track patient survival until February 29,
2020, to avoid confounding effects due to the COVID-19 pandemic. Thus, we track sur-
vival outcomes for up to twenty years and two months from registration for our sample
of patients. For patients without death records, we use information from the waitlist for
untransplanted patients and from annual post-transplant follow-ups for transplanted pa-
tients to construct a censored measure of patient survival.

2.2.2. Descriptive Analysis

Patients and Donors. Patients face extreme scarcity, with a significant fraction dying
while awaiting a transplant. Panel A of Table I shows that an average of 15,967 patients

6The system was revised on December 4, 2014, with the aim of improving survival benefits by implementing
a priority-based waiting list that emphasizes waiting time, geography, and patient sensitization. This change
prioritizes patients in the top quintile of expected post-transplant survival for the top quintile of predicted
organ quality. We focus on patients who registered and received offers before this change partly because of the
limited period for which we would otherwise observe survival outcomes.
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 401

TABLE I

PATIENT CHARACTERISTICS.

All Patients
Received Deceased
Donor Transplant

Mean S.D. Mean S.D.

New Patients per Year 15,967 8648

Panel A: Outcomes
Died by Year Five (%) 27�4 44�6 9�1 28�7
Survived Five Years (%) 66�6 47�2 87�5 33�1
Censored by Year Five (%) 6�1 23�9 3�4 18�2
Transplanted by Year Five (%) 47�2 49�9 87�2 33�5

Panel B: Characteristics
Age at Registration 51�4 14�2 48�8 15�1
On Dialysis at Registration (%) 77�2 41�9 74�9 43�4
Diabetic Patient (%) 42�9 49�5 33�4 47�2
BMI at Registration 28�2 5�9 27�7 5�7

Note: Sample includes 175,640 patients who registered between 2000 and 2010. Transplant and survival data are available through
12/31/2015. Patients for whom we do not observe death are censored. The observed survival duration is computed based on the
date and status of the patient when we last observe her. See Appendix A.4 for detailed computation of observed survival. Durations
presented in Panel A are time since registration.

registered on the kidney waiting list each year, of which 27.4% die within five years of
registering and only 47.2% receive a transplant during this time period. The chances of
receiving a transplant decline after the first five years, with only 54.3% of patients ul-
timately receiving a deceased donor kidney. The remaining patients either still await a
kidney or leave the list.

Panel B shows that patients receiving a transplant are younger and appear to have been
in better health at the time of registration. Transplanted patients are less likely to be
on dialysis at the time of registration, are less likely to be diabetic, and have a lower
body mass index. Thus, observed characteristics induce correlation between probability
of receiving a transplant and survival without a transplant.

Patients exercise choice despite scarcity, often rejecting undesirable organs. Table II
shows that the number of offers per donor is 547.8, but the median is much lower, at 51.
This skewed distribution arises because undesirable kidneys are rejected by many, while
desirable kidneys are accepted quickly. Indeed, 18.9% of donors have at least one viable
kidney discarded. Organs from these donors are refused by 1892.5 patients on average.

Organ quality predictors correlate with number of offers and discards in expected ways.
Donors whose kidney(s) was/were discarded are older, less likely to have died from head
trauma, more likely to be diabetic or hypertensive, more likely to have donated after
cardiac death, and have higher creatinine levels (an indicator of lower kidney function)
(Table II). An aggregate of these and other characteristics is the Kidney Donor Profile
Index (KDPI), which indicates the fraction of donors with a lower estimated risk of graft
failure.

Survival. We focus on survival as the primary outcome of interest for several reasons.
First, this outcome is arguably the most important one from the perspectives of both the
patient and the policymakers. The OPTN Kidney Transplantation Committee explicitly
used predicted LYFT from observational models to evaluate proposed designs. Second,
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402 N. AGARWAL, C. HODGSON, AND P. SOMAINI

TABLE II

DONOR CHARACTERISTICS.

All Donors Any Kidney Discarded

Yes No

Mean S.D. Mean S.D. Mean S.D.

Number of Donors per Year 6195 1171 5023
Median Number of Offers per Donor 51 483 40
Average Number of Offers per Donor 547.8 1936.0 1892.5 3684.3 234.2 968.0

Donor Age 39�2 18�4 52�0 16�6 36�2 17�5
Cause of Death–Head Trauma (%) 39�7 48�9 19�5 39�6 44�4 49�7
Hypertensive Donor (%) 28�6 45�2 55�3 49�7 22�4 41�7
Donor Creatinine 1�2 1�0 1�4 1�1 1�1 0�9
Non-Heart Beating Donor (%) 8�0 27�2 10�6 30�7 7�4 26�2
KDPI 0�5 0�3 0�8 0�2 0�4 0�3

Note: Sample includes deceased donor organs offered between 2000 and 2010 to patients in the sample.

moving an ESRD patient from dialysis to transplantation saves on expensive dialysis treat-
ment. While we do not directly evaluate this component, future research can use our es-
timates to revisit cost-benefit analyses. Third, as an outcome, survival can be measured
relatively easily. Transplantation’s other most commonly discussed effect is quality of life,
which is hard to quantify.

Figure 1 shows survival curves for transplanted and untransplanted patients, separated
by young and old patients (above/below the median age of 54) and by whether or not the
transplanted patient received a kidney from a donor with a discarded kidney. Donors with
a discarded kidney are more likely to be undesirable because only one patient accepted

FIGURE 1.—Patient survival.Notes: The figure shows the Kaplan–Meier survival curve for young and old
patients (above/below the median age of 54) who registered on the waitlist between 2000 and 2010. Survival
with transplant is measured as time since registration.
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 403

the donor’s kidneys. As indicated by the waiting times shown via the vertical dashed lines,
the average waiting time for a patient who receives a kidney from a donor without a
discard is higher than that for a donor with a discard.

These survival curves show that transplanted patients live significantly longer than pa-
tients who do not receive a transplant. Moreover, the survival curves are substantially
different for young versus old patients and for patients transplanted with desirable versus
undesirable organs. Only about half of the young patients who do not receive a transplant
survive more than 8.2 years, but more than half of the young patients who receive a trans-
plant from a donor with desirable organs live more than 19.8 years. These statistics are 5.5
and 11.5 years, respectively, for older patients, indicating that older patients have shorter
half-lives both with and without a transplant.7 For both groups of patients, a transplant
from an undesirable organ is associated with half-lives that are shorter by about a year or
more.

These observations also point to the potential for choices and assignments to be corre-
lated with survival outcomes. Next, we turn to a model that incorporates these features.

3. A MODEL OF DECISIONS AND OUTCOMES

Our model considers assignment mechanisms in which agents, indexed by i, receive
offers for sequentially arriving objects, indexed by j. Agents must decide to accept or re-
ject each offer. These decisions translate into an assignment, and an outcome that may
be agent-object specific is realized. Agents may also depart from the mechanism prior to
assignment. Given our empirical setting, we will refer to the agents as patients and the ob-
jects as organs.8 However, the model is applicable to other markets where heterogeneous
objects are sequentially assigned and decisions potentially induce selection in outcomes.
Examples include the allocation of public housing (Waldinger (2017)) or jobs on certain
gig economy platforms; in the latter, for instance, drivers must accept or reject a ride
before considering the next one (Liu, Yang, and Wan (2019)).

3.1. Assignment Mechanism and Observed Outcomes

Organs arrive sequentially, and their index j denotes their arrival order. The mecha-
nism orders patients on the waiting list according to an organ-specific priority score that
may depend on the time that a patient has waited. Offers are made in this priority order.
Acceptance by i of an offer for organ j is denoted with Di�j = 1. Organs are assigned to
the highest-priority patients who accept an offer. Finally, patients who have been assigned
an organ are removed from the list. Other patients may also leave the list.

Consider the set of organs that are feasible for patient i. Holding fixed the decisions of
the other patients, let Ji be the ordered set of organs offered to patient i if they refused
all offers made to them and they were registered indefinitely. A patient will only receive
offers from this set either until the time at which they leave the list without a transplant,
denoted Ai, or until they are transplanted. The patient is assigned the first organ they

7We focus on median survival instead of expected life-years because we can track survival for up to twenty
years. This choice is consistent with prior work measuring the life-year benefits from transplantation (see
Wolfe, Ashby, Milford, Ojo, and Ettenger (1999), Wolfe et al. (2008), e.g.).

8In our empirical context, patient decisions may be delegated or made jointly with a surgeon. We do not
distinguish between these alternatives.
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404 N. AGARWAL, C. HODGSON, AND P. SOMAINI

accept in the set of offered organs. Patient i’s assignment Ti�j therefore depends both on
the set of offered organs and their decisions,

Ti�j = 1{Ai ≥ ti�j}
∏

j′<j�j′∈Ji
(1 −Di�j′)Di�j�

where Di�j = 1 if patient i accepts organ j, ti�j is the time between patient i’s registration
and donor j’s arrival. Therefore, each patient i is assigned to the first organ that they
accept from the set Ji that arrives before they leave the list. We assume that the analyst
observes the decisionsDi�j for each observed offer. Observing the choice set and decisions
is typical when administrative data from an assignment mechanism are available.

The observed outcome Yi depends on whether a patient is assigned and to which organ
they are assigned. It is given by

Yi =
∑
j∈Ji
Ti�jYi�j +

(
1 −

∑
j∈Ji
Ti�j

)
Yi�0�

where Yi�j is the outcome of patient i from being assigned organ j.
In our empirical setting, Yi denotes survival time since registration on the organ waiting

list.9 For some patients, we will observe a censored outcome with an observed censoring
time YC

i . Although the formulation above abstracts away from censoring for simplicity of
notation, we will account for it based on the standard assumption that the censoring time
is independent of the latent duration (see equation 20.22 in Wooldridge (2010)).

3.2. Latent Outcomes and Decisions

There are three key sets of primitives in our model:
Unassigned Outcome: The outcome for patient i if the patient is not assigned any
organ is given by

Yi�0 = g0(xi� νi�0)� (3.1)

where xi ∈ R
dx are patient-specific observables; νi�0 ∈ R denotes a patient-specific

unobservable; and Yi�0 ∈ R.
Assignment Outcome: The outcome of patient i from being assigned organ j is given
by

Yi�j = g1(qj�xi� νi�1� εi�j�1)� (3.2)

where xi ∈ R
dx is a vector of patient-specific observed characteristics; qj ∈ R

dq de-
notes the observed characteristics of organ j, which we will refer to as organ-types;
νi�1 ∈ R denotes a patient-specific unobservable; εi�j�1 ∈ R denotes an unobservable
that is patient- and organ-specific; and Yi�j ∈ R.

Since Yi�j and Yi�0 denote survival outcomes in our application, they can be written as
arising from survival models with time-varying hazard rates.

Because each organ and patient is potentially unique, this model reduces dimension by
parameterizing outcomes in terms of characteristics while allowing for rich heterogeneity

9It is not essential that Ai and Yi are both durations, although this is the case in our empirical setting.
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 405

arising from both observables and unobservables.10 It also includes time between patient
registration and donor arrival ti�j since xi and qj contain the dates on which patient i and
organ j arrive. Moreover, there are multiple levels of unobserved heterogeneity. Out-
comes are heterogeneous across i due to νi�1 and νi�0 and within treatment types (defined
by qj) for a given i because of εi�j�1.

Decision Equation: We model the acceptance decision as

Di�j = gD(qj�xi� zi� νi�D� εi�j�D) ∈{0�1}� (3.3)

where Di�j = 1 denotes accept; νi�D ∈ R denotes unobserved selectivity of patient i;
εi�j�D ∈ R is a shock that is specific to the patient and the organ; and zi ∈ R

dz are
observables that influence a patient’s decision. Without loss of generality, we assume
that gD is non-increasing in vi�D and non-decreasing in εi�j�D.

The choice model nests several primitive models of decisions. It is consistent with both
myopic decision rules and a dynamic decision process in which patients do not have fore-
sight over future offers but instead base their decisions on their beliefs about the distri-
bution of offers. Although we remain agnostic about the micro-foundations, this formu-
lation and our empirical specification nest the optimal stopping problem in Agarwal et al.
(2021).11Further assumptions micro-founding the choice model would be necessary for
predicting the effects of changes to the mechanism as patients’ choices are endogenous
(Agarwal et al. (2021)). However, this micro-foundation comes at the cost of additional
assumptions and analytical burden and is not necessary for the alternative benchmarks
that we will consider. We leave an approach that extends our work by including a struc-
tural model of choice to future work.

The main difference between xi and zi is that the latter is excluded from the outcome
equations. For example, zi could include variables that influence this decision, say through
the distribution of future offers, but is unrelated to the benefits of accepting a given organ.
This exclusion restriction, combined with Assumption 1(i) below, introduces instruments
in the model that we will use in the empirical strategy. The specific instruments zi used in
our application are discussed in Section 4.

Our data-generating process samples a set of organs with characteristics qj and a set of
patients with characteristics (xi� zi� νi�Ai) independently, where νi = (νi�0� νi�1� νi�D). The
process then samples independently and identically distributed (i.i.d.) match-specific un-
observables εi�j = (εi�j�1� εi�j�D) for each patient i and organ j. Denote the random vector
(εi�1� εi�2� � � � � εi�j� � � �) with εi. These restrictions allow for dependence between Yi�j , Yi�0,

10Angrist, Hull, Pathak, and Walters (2020) and Bacher-Hicks, Billings, and Deming (2019) also reduced the
dimension of treatment effects of schools by parameterizing them in terms of mediating school characteristics.
While the underlying models are non-nested, as in these papers, we will use instruments that affect individual
assignments to measure the relationship between treatment effects and object characteristics.

11In this model, an offer is accepted if the (perceived net present) value from accepting the organ ex-
ceeds the option value of waiting. Omitting the dependence on time for simplicity, let gD = 1 if Uij =
Ui�(qj�xi� νi�D� εi�j�D) > V (xi� νi�D) = Vi , where U (·) is the net present value of accepting an offer for j, and
V (·) is the option value of waiting. Agarwal et al. (2021) estimated this model by first estimating conditional
choice probabilities using a probit model where gD = 1{f (qj�xi� εi�j�D;θ) > 0} using a reduced-form function
f parameterized in terms of θ. Their empirical specification is more restrictive than ours as it omits νi�D and zi
and does not consider survival effects from transplantation. Observe that this formulation allows for (Ui�j� Vi)
to be correlated with (Yi�j�Yi�0), for example, because patients value survival outcomes. Separating Ui�j and
Vi requires a dynamic discrete choice model with beliefs about future offers as in Agarwal et al. (2021), as-
sumptions that would not be necessary in a static context (see Abdulkadiroglu et al. (2020), e.g.). We leave this
combination of dynamic discrete choice model and survival outcomes to future work because separating these
components is not required for the counterfactuals we consider.
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406 N. AGARWAL, C. HODGSON, AND P. SOMAINI

and Di�j conditional on all observables because they allow for dependence between the
components of νi and dependence between the components of εi�j . For simplicity, this
model and the identification results in the main text abstract away from unobserved het-
erogeneity in organ quality. The empirical model we estimate allows for donor-level un-
observed heterogeneity in organ quality. Results in Appendix C.3 prove identification for
this extension.

We assume that zi is an instrument that shifts acceptance decisions but is excludable
from the outcome equations:

ASSUMPTION 1: εi, νi, and zi are mutually independent conditional on xi.

We normalize the marginal distributions of νi�0, νi�1, νi�D, εi�j�1, and εi�j�D to be uniform.
These normalizations are without further loss of generality because we have not placed
restrictions on the functional forms of g0(·), g1(·), and gD(·).

Our goal is to identify the function gD(·) and the marginal distributions of Yi�j and Yi�0
conditional on the vector (xi� qj� zi� εi�j�D� νi�D). The residual uncertainty in the distribu-
tion of Yi�0 is only because of patient-specific unobservables νi�0, whereas it is due to both
match-specific effects εi�j�1 and patient-specific effects νi�1 for Yi�j .12 Incorporating these
sources is necessary for capturing unobserved match-specific drivers of outcomes. Since
gD(·) parameterizes the choice model, the conditional distributions of Yi�j and Yi�0 given
(xi� qj� zi� εi�j�D� νi�D) yield the distributions of outcomes conditional on observed choices
and the resulting selection. In addition, we will also consider counterfactual assignments
that condition only on a subset of the variables (xi� qj� zi� εi�j�D� νi�D). The outcomes in
these counterfactuals are also identified since we can integrate over the characteristics
that are not conditioned on.

The model and Assumption 1 together impose three main restrictions. First, unob-
served patient selectivity, νi�D, is one-dimensional and fixed across all organs and time.
This implies a fixed ordering of patients on selectivity for all organ types. This single-
index assumption rules out certain models with random coefficients, for example, on or-
gan characteristics qj or on scarcity zi.13 Second, selectivity and survival outcomes can be
correlated through νi, but we abstract away from time-varying information about survival
that is unobserved by the econometrician and also affects decisions. Relaxing these two
restrictions is challenging. Identifying time-varying unobserved heterogeneity in survival
is challenging because we only observe a single survival outcome for each patient (see
Abbring and Van den Berg (2003), Unkel, Farrington, Whitaker, and Pebody (2014), for
related issues). Similarly, identifying general models of time-varying unobserved hetero-
geneity in selectivity is complicated because patients can accept at most one offer.14 Third,
a patient’s decision does not depend directly on the specific decisions of other patients for
a given organ since νi and εi�j are independent of νi′ and εi′�j′ .

In addition, we rule out statistical dependence between the subset of organs offered to
a patient and their unobservables:

12For example, the first moments of the marginals we identify are E[Yi�0|xi� zi� νi�D] =∫
g0(xi� ν)fν0|νD=νi�D (ν) dν and E[Yi�j|xi�qj� zi� εi�j�D� νi�D] = ∫ ∫

g1(qj�xi� ν�ε)fε1|εD=εi�j�D (ε)fν1|νD=νi�D (ν) dν dε,
where the distributions of νi�1 and νi�0 may depend on νi�D, and the distribution of εi�j�1 may depend on εi�j�D.

13Our identification arguments will condition on patient observables xi . This approach will admit models in
which patient-specific random coefficients interact only with xi in order to preserve a single-index structure, for
instance, if Di�j = gD(qj� f (xi;νi�D)� zi� εi�j�D) where xi and νi�D are multi-dimensional and f (·) is real-valued.

14While we conjecture that assuming time-invariant unobserved selectivity is testable using information
about the timing of rejected offers, we were unable to use this information to prove positive identification
results.
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 407

ASSUMPTION 2: The sequence of offers Ji is conditionally independent of (νi� εi) given xi
and zi.

Assumption 2 is satisfied if xi and zi control for a sufficiently rich set of patient char-
acteristics such that the remaining variation in potential offers is independent of unob-
served determinants of a patient’s outcomes and decisions. The assumption allows for Ji
to depend on the unobservables of other patients i’. But, because Ji is excluded from i’s
potential outcomes and affects assignment, it is an instrument for which organ is assigned
to i. Section 4.1 argues that the assumption is plausible in our empirical setting.

An implication of this assumption is that patients cannot alter their decisions or their
outcomes in response to specific future offers, ruling out foresight over the organs that
will be offered in the future. This restriction parallels the “no anticipation” assumption
in Abbring and Van den Berg (2003). Nonetheless, recall that our choice model nests the
model in Agarwal et al. (2021), where forward-looking patients strategically refuse offers
based on the distribution of future offers.

The sequential nature of choices and treatment assignment in our model resembles that
of Heckman and Navarro (2007), with two main differences. First, a patient’s outcomes
and choices from different organs of the same type qj are heterogeneous in our frame-
work whereas the standard framework uses a finite set of known types. This allows for
the realistic possibility that patient choices and survival outcomes can vary across two ob-
servationally identical donors. Capturing such match-specific effects can be important in
other assignment problems with highly heterogeneous agents. Second, our choice shifter
zi varies at the individual level, not at the individual-treatment level. As we discuss below,
we combine this instrument with variation in offers Ji to identify treatment effects.

3.3. Sources of Selection

The model allows for selection on unobservables into transplantation along three di-
mensions: untransplanted survival Yi�0; average survival across transplants Ȳi = 1

|J|
∑

j Yi�j ;
and match-specific survival Yi�j − Ȳi. There are two potential sources of selection: se-
lection due to patient choices and selection due to patient mortality. Selection on these
sources creates endogeneity in Ti�j that our framework addresses.

Selection due to choice occurs if choices Di�j are correlated with survival outcomes Yi�0
or Yi�j . Choice can induce selection on Yi�0 if, for example, patients with higher expected
survival without a transplant due to unobserved health conditions are more selective. That
is, ifE[Yi�0|νi�D�xi] varies with νi�D, where expectations are taken over νi�0. Similarly, choice
can induce selection on average transplanted survival, Ȳi, if E[Yi�j|νi�D�xi� qj] varies with
νi�D, where expectations are taken over νi�1 and εi�j�1. Choice can also induce selection on
match-specific survival Yi�j − Ȳi if patients are more likely to accept an organ with high
Yi�j − Ȳi.

Selection due to mortality occurs because longer-lived patients (high Yi�0) are priori-
tized and have a higher chance of receiving a transplant. Moreover, such selection can
also occur due to either time-to-treatment effects or correlation between νi�0 and νi1. Our
model also features mortality-induced selection because only organs that arrive prior to
Ai are offered, and given our focus on survival outcomes, Ai ≤ Yi�0.

In addition, there is selection on a number of observable dimensions. For example, the
mechanism prioritizes patients who are perfect tissue-type matches for a patient because
the resulting transplants may have better survival outcomes. We account for these sources
by including all characteristics that influence priority as observables in the model.
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408 N. AGARWAL, C. HODGSON, AND P. SOMAINI

4. INSTRUMENTS

We now describe and probe the two instruments described above. Section 5 will for-
mally prove identification.

4.1. Conditionally Independent Potential Offers

The first instrument exploits randomness in the objects offered to an agent, relying on
Assumption 2. We argue that this assumption is theoretically and empirically plausible
in our setting. Our theoretical justification is based on the mechanism used to allocate
deceased donor kidneys. Recall that Ji is the sequence of offers to agent i if the agent
refused all offers made to them and participated in the mechanism indefinitely. Thus,
Ji depends only on the kidneys that arrive after a patient registers on the waiting list, the
decisions of other patients, and the determinants of the agent’s priority. It does not de-
pend on the decisions made by agent i or their survival outcome. Our knowledge of the
mechanism allows us to include determinants of each patient’s priority in xi as controls.
The remaining variation in Ji is only due to the stochastic arrival of organs and the de-
cisions of agents other than i. It is plausible to assume that organ arrival is independent
of (νi� εi) because it depends primarily on deaths in the local area. Furthermore, the de-
cisions of other agents are independent of (νi� εi) in a natural equilibrium model of the
waiting list (Agarwal et al. (2021)).

We now empirically investigate these assumptions using a specific function of Ji. To do
this, we construct a set of desirable donors that are achievable for patient i in the two years
following the patient’s registration. Specifically, we calculate whether patient i would be
placed above the patient in the 10th position on the list for a given donor. A patient is
highly likely to receive an offer for an organ from such a donor because only 22.7% of
deceased donors are offered to fewer than ten patients. We then calculate the number
of donors that would satisfy these criteria for each patient in the two years following the
patient’s registration date.

The variation in this variable comes from two sources: variation in the organs that ar-
rived in the two years following patient i’s registration and variation in the patients on the
waiting list and their decisions when the organ arrived. Our results use fixed effects to con-
trol for differences in a patient’s priority, geographical area, and time trends. Therefore,
Assumption 2 needs to be satisfied conditional on these controls. The first source of vari-
ation is independent of i’s decisions because specific patients are not considered in organ
donation decisions. Indeed, we cannot detect a correlation between patient characteris-
tics and donor characteristics conditional on the controls mentioned above (not reported
due to space constraints, available on request). The second source of variation is also
plausibly exogenous because, given a particular organ, other patients’ decisions should
be independent of the selectivity and outcomes of patient i.15 Consistent with this claim,
Appendix Table D.1 shows that this measure varies substantially across patients and is
not significantly correlated with the vast majority of patient characteristics conditional on
determinants of priority-type, which are exogenous and fixed at the time of registration.

Given this exclusion restriction, we establish relevance by showing that potential of-
fers strongly influence whether or not a patient receives a transplant and also the type of

15The only potential effect is if patient i accepts a kidney that would otherwise have been accepted by
another patient who would have been pivotal in determining whether i would be in the top ten positions for a
different donor.
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 409

TABLE III

TOP 10 OFFERS: FIRST STAGE.

Transplant

Any Kidney Any Kidney KDPI ≤ 50% KDPI > 50% or Missing
(1) (2) (3) (4)

log(1 + # Top 10 Offers in 2 Years)
KDPI ≤ 50% 0.0479 0.0481 0.0602 −0.0122

(0.00460) (0.00466) (0.00358) (0.00251)
KDPI > 50% or Missing 0.0234 0.0247 −0.0167 0.0414

(0.00386) (0.00387) (0.00292) (0.00245)

DSA FE, year FE, and blood type FE x x x x
Control for Pediatric at Listing x x x x
CPRA Category Controls x x x x
Patient Characteristics x x x

F-statistic 142.6 147.9 153.9 162.7
Number of Observations 132,507 130,923 132,507 132,507
R-Squared 0.171 0.180 0.140 0.048

Note: The sample restricts to non-pediatric patients who registered between 2000 and 2008 because the instrument is calculated
using offers in the two years post registration. All regressions control for donor service area (DSA) fixed effect, registration year
fixed effect, blood type fixed effect, and priority characteristics (indicators for CPRA = 0, 20 ≤ CPRA < 80, CPRA ≥ 80, and CPRA
missing at registration, and time on dialysis). Patient characteristics include an indicator for female; indicators for age 18–35, 35–50,
and 50–65; indicators and linear controls for dialysis time 1–3, 3–5, 5–10, and >10 years; and an indicator for diabetes. Standard errors,
clustered by DSA, registration year, and blood type are in parentheses. F-test tests against the null hypothesis that the coefficients on
the instruments are zero.

organ transplanted. Columns (1) to (4) in Table III present estimates from linear proba-
bility models to examine the relationship between whether the transplanted organ is high
quality (as measured by KDPI) and the number of potential top 10 offers from donors in
the corresponding group. Columns (1) and (2) show that the numbers of offers in both
donor categories are positively related to the probability of a transplant, whether or not
we control for a rich set of patient characteristics. Columns (3) and (4) show that the type
of organ transplanted is positively correlated with the number of potential offers from
the corresponding type of donor. The F-statistics point to a strong first-stage relationship
as they are much higher than the conventional cutoff of 10 used to assess whether an
instrument is strong (Stock and Watson (2012)).

4.2. A Choice Shifter: Scarcity

Our second set of instruments are measures of scarcity zi that alter an agent’s accep-
tance decisionsDi�j but are excluded from latent outcomes Yi�j . Patients who expect better
transplant opportunities in the future (lower scarcity) should be less willing to accept a
given kidney than otherwise identical patients with fewer opportunities (higher scarcity).
These instruments must be correlated with decisions but independent of latent outcomes.
Formally, Assumption 1(i) requires that, conditional on xi, (νi� εi) is distributed indepen-
dently of zi.

We construct two measures of scarcity. The first is a predictor of offers a patient can
expect in the future. Fix an offer for donor j made to patient i in the calendar quarter t.
Consider the set of offers made in the four quarters before t to other patients in a compar-
ison group consisting of other patients with the same blood type as i and that registered
in the same DSA as i. We count the subset of offers made to this group of patients when
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410 N. AGARWAL, C. HODGSON, AND P. SOMAINI

TABLE IV

SCARCITY INSTRUMENTS: FIRST STAGE.

Acceptance

(1) (2) (3) (4) (5) (6) (7) (8)

Log(1 + No. Donors) −0.0434 −0.0429 −0.0393 −0.0355
(0.00209) (0.00208) (0.00204) (0.00206)

Log(1 + No. Offers) −0.039 −0.0387 −0.0336 −0.0316
(0.00106) (0.00106) (0.00106) (0.00109)

Offer Year FE x x x x x x x x
Priority Type FE x x x x x x x x
DSA FE and blood type FE x x x x x x x x
Years Waited at Offer FE x x x x x x x x
Patient Characteristics x x x x
Donor Characteristics x x x x
Match Characteristics x x x x

F-statistic 431.9 1361.8 426.1 1337.5 371.3 998.3 296.8 838.4
Number of Observations 863,073 863,073 863,073 863,073 851,753 851,753 851,753 851,753
R-Squared 0.025 0.030 0.026 0.031 0.069 0.072 0.097 0.100

Note: We use the first 100 offers from each donor between 2000 and 2009, and the dependent variable is acceptance of an offer. All
regressions control for DSA fixed effect, blood type fixed effect, and a fixed effect for the number of years waited at the offer, as well
as priority characteristics (an indicator for pediatric at registration and indicators for CPRA = 0, 20 ≤ CPRA < 80, CPRA ≥ 80, and
CPRA missing at registration). Patient characteristics include an indicator for female; indicators for age ≤18, 18–35, 35–50, and 50–65;
indicators and linear controls for dialysis time 1–3, 3–5, 5–10, >10 years; and an indicator for diabetes. Donor characteristics include
linear age; indicators and linear controls for donor creatinine > 0.6 and >1.8; and indicators for diabetes, donation after cardiac
death, and expanded criteria donor. Match characteristics include the number of Human Leukocyte Antigen (HLA) mismatches via
indicators for 0 HLA mismatch, 0 and 1 DR antigen mismatch, identical blood type, local offers; linear controls for (+) and (−) age
difference; and interactions between CPRA indicators and # HLA mismatches and between donor and patient age. Standard errors
clustered by DSA, offer year, number of years waited at offer, and blood types are in parentheses.

they had the same number of waiting time priority points as patient i when they received
the offer for donor j. The second is a predictor of donor supply, which is constructed
analogously to the first but counts the number of unique donors in this set of offers.

Our analysis will include fixed effects for the DSA, blood type, and calendar year of the
assignment. Therefore, both instruments exploit variation in scarcity in a patient’s DSA
while controlling for secular trends. To assess balance, we investigated whether variations
in our measures of scarcity significantly correlate with the characteristics of patients that
register in a given year. Reassuringly, Table D.2 in the Appendix shows that our scarcity
instruments are not significantly correlated with patient characteristics (age, diabetes, fe-
male, height, and weight). Our scarcity instruments are also uncorrelated with measures
of donor quality (not reported due to space constraints, available on request). The threat
to the instrument therefore needs to be a DSA-specific trend in scarcity that is correlated
with survival outcomes due to factors beyond patient or donor characteristics.16

These instruments are relevant to decisions if they are correlated with beliefs about
future offers. This hypothesis is based on the idea that transplant surgeons, who advise
patients on decisions, are likely aware of the recent availability of kidneys. Columns (1)
to (8) of Table IV show the results from a linear probability model that regresses a dummy
on whether an offer is accepted on the two measures of scarcity and a variety of controls.
Both measures of scarcity are negatively correlated with acceptance. Columns (1) and (2)

16We also estimate a model with DSA-specific time trends. The results from this model are very similar to
those from our preferred specification. Compare columns 2 and 9 of Appendix Table D.3.
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 411

show that the number of donors or number of past offers made to patients in the compar-
ison group is negatively correlated with acceptance rates, controlling for patient priority
type and fixed effects for DSA, allocation year, and years waited. These magnitudes are
robust to adding an extensive set of controls for patient characteristics (columns 3 and 4),
and are not very sensitive to additional controls for donor and match-specific characteris-
tics (columns 5 through 8). A residualized binscatter plot suggests that these relationships
are monotonic (not reported due to space constraints, available on request).

5. IDENTIFICATION AND ESTIMATION

We now show that the instruments Ji and zi introduced in the previous section can
identify the target quantities described in Section 3. Our results condition on the patient
type xi and omit it for simplicity of notation. We observe the organ types qj , the choices
Di�j if i is offered j, the set of organs offered to each patient, and the survival outcome for
each patient. We do not require observing either Ai or the potential offer sequence Ji as
long as Assumption 2 is satisfied.17

The argument proceeds in three parts. First, we use standard arguments to show that
variation in the offers received by a patient can be used to recover distributions of the
outcomes conditional on certain sequences of choices. Second, we show that the choice
model described in equation (3.3) is identified. Third, we combine continuous variation
in scarcity with results from the first part to identify the effect of key unobservables on the
distribution of outcomes. All proofs are in Supplemental Appendix C (Agarwal, Hodgson,
and Somaini, 2024).

5.1. Identifying Conditional Expected Outcomes

We start by using variation in offers. Given a realization of Ji, let j(i� n) denote the
nth organ offered to i and qi = (qj(i�1)� qj(i�2)� � � � � qj(i�|qi|)) be the sequence of offer-types
offered to i. Our first result shows that variation in the offer-types can identify a condi-
tional average treatment effect for patients who accept the nth offer.18 Formally, let Ni

be one greater than the number of offers that i rejects prior to the first acceptance, that
is, Ni = min{n :Di�j(i�n) = 1}.

LEMMA 1: Suppose that Assumption 2 is satisfied. Fix z and qi. The marginal distri-
butions of Yi�j(i�n) and Yi�0 conditional on Ni = n, zi = z, qi, and Ai ≥ tj(i�n) are identi-
fied for all n ≤ |qi| such that P(Ni = n|qi� z�Ai ≥ tj(i�n)) > 0, and (qj(i�1)� � � � � qj(i�n)) and
(qj(i�1)� � � � � qj(i�n−1)) belong to the support of the distribution of offer-types induced by the dis-
tribution of Ji.

This result uses standard arguments (e.g., Imbens and Angrist (1994)) to identify coun-
terfactual outcomes for patients who would have accepted and been assigned to the nth
organ offered. For simplicity, assume that all kidneys are observationally identical and
fix z. Start with the case in which patients may either receive one offer or no offers.
This yields a standard binary instrument setup in which the compliers are the patients for

17Nonetheless, we can simulate Ji in our context using knowledge of the mechanism and data on the offers
made for each donor.

18Observe that our model and setting do not allow for always-takers since a patient cannot be assigned an
organ without receiving an offer for one.
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412 N. AGARWAL, C. HODGSON, AND P. SOMAINI

whom Ni = 1. Thus, the results in Imbens and Angrist (1994) imply that the marginal dis-
tributions of Yi�1 and Yi�0 conditional onNi = 1 are identified. Lemma 1 extends this argu-
ment to the general case using an experiment that compares otherwise identical patients
with offer-type sequences (qj(i�1)� � � � � qj(i�n)) and (qj(i�1)� � � � � qj(i�n−1)). We directly observe
the outcomes Yi�j(i�n) for patients who are offered (qj(i�1)� � � � � qj(i�n)) and are assigned to
the nth organ. These patients are the compliers in this experiment because patients can-
not be assigned an organ without receiving an offer, that is, our model does not have
always-takers. Defiers are ruled out by Assumption 2 because Ni is independent of Ji. To
complete the proof, we need to identify the expected outcomes of unassigned outcomes
for the compliers.19 The group of unassigned patients that received (qj(i�1)� � � � � qj(i�n)) con-
tains only never-takers since Ni > n whereas the group that received (qj(i�1)� � � � � qj(i�n−1))
contains both compliers and never-takers since Ni > n− 1. The weights on these groups
are implied by the distribution of Ni conditional on belonging to the experiment, which is
given by P(Ni = k|qi� z�Ai ≥ ti�j(i�n)) and is directly observed.

This result allows us to evaluate the life-years gained in the observed assignment be-
cause the alternative is that all patients are unassigned. Identifying the distributions
above, however, is not sufficient for evaluating their values under a counterfactual as-
signment of kidneys to patients because the distributions condition on Ni = n, and are
therefore selected on both patient-specific unobserved selectivity νi�D and match-specific
shocks εi�j�D. We address this selection problem below using a choice shifter and our model
of choice.

5.2. Identifying the Choice Model

The next step identifies the function gD(·). To simplify exposition, focus on the case
when ti�j = 0 where ti�j denotes the time difference between donor arrival and patient
arrival. In this case, νi is unselected due to survival while waiting on the list. Because our
empirical setting involves dynamic assignments, we prove results for the case when ti�j > 0
and differs across j in Supplemental Appendix C.4 (Agarwal, Hodgson, and Somaini,
2024).

We need to introduce some notation in order to develop our result. For each value
of z and donor type qj , consider two sets of pairs (νD�εD) such that one set yields
gD(qj� z� νD�εD) = 0 and the other yields gD(qj� z� νD�εD) = 1. These two sets are sep-
arated by the function v(εD;qj� z) = sup{νD ∈ [0�1] : gD(qj� z� νD�εD) = 1}, where we
adopt the convention that the supremum of the empty set is 0. Since εD and νD are uni-
formly distributed, observe that v(εD;qj� z) is equal to the fraction of patients that reject
an offer of an organ with type qj with probability at most εD when faced with scarcity z.
Therefore, identifying the function v(εD;qj� z) is equivalent to identifying gD(·).

Our next result makes the following assumption on v(·;qj� z):

ASSUMPTION 3: For each qj and z, v(·;qj� z) is absolutely continuous, v(0;qj� z) = 0,
and v(1;qj� z) = 1.

This assumption requires that there are no (interior) values of νD for which the pa-
tient either accepts or rejects all organs of type qj when faced with scarcity z. In other

19Identification of the expected outcomes E[ψ(Yi�j(i�n))|Ni = n] and E[ψ(Yi�0)|Ni = n] for any known
bounded function ψ(·) implies the identification of the marginal distributions of Yi�j(i�n) and Yi�0 conditional
on Ni = n because ψ(·) includes functions of the form 1{Y < ȳ} for all ȳ ∈ R. Monotonicity follows because
Assumption 2 and our choice model rule our defiers.

 14680262, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
20203 by M

assachusetts Institute of T
echnolo, W

iley O
nline L

ibrary on [17/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 413

words, there are high (low) enough match-specific shocks εD that would result in accep-
tance (rejection) of an offer, where the pivotal value of εD depends on νD, qj , and z. This
condition would be violated only if acceptance probabilities were degenerate for some qj ,
z, and νD ∈ (0�1). With this assumption, we show that variation in offers can be used to
identify the function gD(·):

LEMMA 2: Let qnj be a sequence composed by n offers of type qj with ti�j = 0, and let
vn−1(·;qj� z) be the (n − 1)th-order Fourier–Legendre approximation of v(·;qj� z). If As-
sumptions 1–3 are satisfied, and qnj is in the support of the distribution of offer-types induced
by Ji, then vn−1(·;qj� z) is identified for each z and qj . In particular, if the hypotheses hold for
all n, then v(·;qj� z) and therefore P(Di�j = 1|νi�D = νD) is identified.

The main challenge is that there are two latent reasons behind a patient’s decisions,
namely νi�D and εi�j�D, and we need to disentangle the two. Fix qj and z, and consider a
model that abstracts away from heterogeneity in patient selectivity by omitting νi�D. In this
model, the acceptance probability for the kth offer is equal to the acceptance probability
for the k+ 1th offer. In fact, the distribution of Ni is geometric. However, the data can
reject this implication. In a model that includes νi�D, the patients who reject the kth offer
are more likely to be selective (high νi�D) and the acceptance probability for the k+ 1th
offer will therefore be lower.

Formally, consider the observed probability P(Ni > k|qnj � z) for k ≤ n. Because
v(εD;qj� z) is the CDF of rejection probability across patients given qj and z, we can
write

P
(
Ni > k|qnj � z

) =
∫ 1

0
εkD dv(εD;qj� z)� (5.1)

Therefore, the observed quantity P(Ni > k|qnj � z) is the kth moment of a random variable
with cumulative distribution function (cdf) v(·;qj� z). Learning the function v(·;qj� z) is
related to the Hausdorff moment problem. In general, the cdf of a random variable with
bounded support is uniquely determined by its infinitely many moments (Theorem 2.3.11
in Casella and Berger (2002)). Under the absolute continuity assumption, we obtain a
stronger result: we show that data with finite n are informative even without variation in
the number of offers because v(·) can be well-approximated by observing decisions from
a given sequence of offer-types qnj . This follows because the moments described above
determine the nth-order Fourier–Legendre approximation of v(·). The partial mean of
these approximations converges to the true function v(·;qj� z) as n becomes large.

5.3. Identifying Selection on Unobservables

Next, we turn our attention to identifying the components that determine selection on
unobservables by using an additional regularity assumption:

ASSUMPTION 4: (i) For each z and qj , the derivative v′(·;qj� z) = ∂
∂εD
v(·;qj� z) is a contin-

uous function for εD ∈ (0�1). (ii) For each qj , the functions E[Yi�0|νD] and E[Yi�j|νD�εi�j�D ≥
εD�qj] are continuous in νD and εD for (νD�εD) ∈ (0�1)2. (iii) The unconditional expecta-
tions of Yi�0 and Yi�j exist.

The first part strengthens absolute continuity of v(εD;qj� z), imposed in Assumption 3,
by requiring the existence of a continuous derivative. Given the interpretation of v(·)
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414 N. AGARWAL, C. HODGSON, AND P. SOMAINI

above, observe that v′(·;qj� z) is the density function of the distribution of the probability
that a patient rejects an offer of an organ with type qj . The second part imposes weak reg-
ularity assumptions on conditional expectations of Yi�0 and Yi�j , where the expectation is
taken over νi�0 and (νi�1� εi�j�1), respectively. The third part requires that these conditional
expectations are integrable over the random variables νi�D and (νi�D� εi�j�D), respectively.

Our main result shows identification of the expected values of Yi�0 and Yi�j given νi�D and
εi�j�D. The result also implies identification of the analogous quantities for any bounded
transformation ψ(·) of Yi�0 and Yi�j , thereby implying identification of their marginal dis-
tributions.

THEOREM 1: Suppose that Assumption 4 and the hypotheses for Lemma 2 hold for all n.
Then, the quantities E[Yi�0|νi�D = νD] and E[Yi�j|νi�D = νD�εi�j�D ≥ εD�qj] are identified for
all εD ∈ (0�1) and νD ∈ (0�1) such that there exists z in the support of its distribution with
νD = v(εD;qj� z).

Thus, the expected value of outcomes conditional on values of selectivity and idiosyn-
cratic preferences is identified. We sketch the argument for E[Yi�0|νD] since the intuition
for identifying E[Yi�j|νD�εi�j�D ≥ εD�qj] is similar in spirit.20 The proof begins by using re-
sults in Lemma 1 to identify the conditional expectations given scarcity z, offer-types, and
Ni. Next, we use the identification results for v(·) and arguments in Lemma 2 to recover
the objects of interest. For example, Lemma 1 implies that E[Yi�0 × 1{Ti = 0}|qkj � zi] is
identified from variation in offers. This quantity can be rewritten as

E
[
Yi�0 × 1{Ti = 0}

∣∣qkj � zi] =
∫ 1

0
E

[
Yi�0|νD = v(εD;zi� qj)

]
εkD dv(εD;zi� qj)� (5.2)

If we observe this quantity for all k ≤ n, then we can recover the nth-order Fourier–
Legendre approximation of E[Yi�0|νD = v(εD;qj� z)]v′(εD;qj� z) when viewed as a func-
tion of εD, which converges uniformly to the true function in Cesàro mean (Freud (1971)).
Finally, since v′(εD;qj� z) > 0 and bounded and the function v(εD;qj� z) is identified
(Lemma 2), we can identify E[Yi�0|νD] for all νD ∈ (0�1) if we can find values of z and
εD such that v(εD;qj� z) = νD. A similar argument yields identification of E[Yi�j|νi�D =
νD�εi�j�D ≥ εD] provided that we observe values of z such that νD = v(εD;qj� z). As is
common, identification of E[Yi�0] and E[Yi�j] will require full support of v(εD;qj� z) for
each εD and qj .

This last step resembles strategies in Heckman and Vytlacil (2005), Lewbel (2007),
Heckman and Navarro (2007) whereby a continuous instrument is used to “trace-out”
the expected values of potential outcomes conditional on an unobservable. The scarcity
instrument z does this by changing the set of (νD�εD) whose treatment status changes
in response to the offer instrument. Two differences are worth noting. First, our scarcity
instrument is not treatment-specific because the discrete offer instrument generates vari-
ation in treatment assignments (cf. Heckman and Navarro (2007), Hull (2018), e.g.). Our
assumption that νi�D does not vary across j allows us to use an instrument that varies only
across patients i but is fixed across j. Second, we do not use “identification at infinity”
arguments as values of z need not push choice probabilities to degenerate values that
obviate the selection problem.

20One qualitative difference is that identifyingE[Yi�0|νD] allows us to use variation in either z or εD to “trace-
out” νD, that is, E[Yi�0|νD] is overidentified, whereas the result for E[Yi�j|νD�εi�j�D ≥ εD�qj] must condition on
εD.

 14680262, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/E

C
T

A
20203 by M

assachusetts Institute of T
echnolo, W

iley O
nline L

ibrary on [17/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 415

The results in Lemma 2 and Theorem 1 use data from the case when organs arrive at
the same time as the patient (ti�j = 0). Extending our results to the case when ti�j > 0 and
differs across j introduces two issues. First is the direct effect of time to treatment, which
can be captured by including the patient’s registration date and organ’s arrival date in
xi and qj . The second issue, which is the main challenge, is that the distribution of νi�D
conditional on waiting until ti�j is no longer unselected.

Our extension in Appendix C.4 addresses these issues and implies identification of the
marginal distributions and survival hazard functions of Yi�0 and Yi�j (Theorem 3). As in
generalized Roy models more broadly, the joint distribution of outcomes is not identified.
Thus, we cannot attribute the effect of waiting time ti�j on Yi�j to either time to treatment
or to correlation between survival outcomes. We ignore this distinction because it is not
relevant for evaluating outcomes under counterfactual assignments.

5.4. Estimation

Although our results above show nonparametric identification, directly estimating these
quantities is challenging for several reasons. First, we wish to incorporate rich observed
and unobserved heterogeneity governing both choices and outcomes. Such heterogene-
ity includes patient-specific, donor-specific, match-specific, and time-to-treatment effects.
Second, that we observe only censored versions of our outcome complicates a non-
parametric analysis. Finally, we would like to incorporate correlations between discrete
choices and these censored outcomes.

To solve these challenges, we employ a Gibbs sampling technique to estimate a param-
eterized version of equations (3.1)–(3.3):21

yi�0 = B(Yi�0;ρ0) = xiβx + νi�0� (5.3)

yi�j = B(Yi�j;ρ1) = χ(xi� qj)αx�q + αηηj + νi�1 + εi�j�1� (5.4)

Di�j = 1
{
χ(xi� qj)γx�q + ziγz +ηj − νi�D + εi�j�D > 0

}
� (5.5)

where Yi�0 is survival since registration without a transplant; Yi�j is survival since trans-
plantation if patient i is transplanted organ j; B(·;ρ) denotes a Box–Cox transformation
of the argument with parameter ρ (Box and Cox (1964));22 χ(xi� qj) is a flexible function
of patient observables xi and organ observables qj ; ηj is distributed N (0�σ2

η) with the
parameter σ2

η to be estimated; εi�j = (εi�j�D� εi�j�1)′ is distributed N (0��ε) where �ε�11 is
normalized to 1; and νi is a mean-zero multivariate normal with a distribution induced by
the following factor structure, which is without loss of generality:

νi�1 = δ1�Dνi�D + νi�f � (5.6)

νi�0 = δ0�Dνi�D + δ0�f νi�f + ν̃i�0� (5.7)

where νi�D, νi�f , and ν̃i�0 are independently distributed mean-zero normal random variables
with variances to be estimated.

21It is common to use functional form restrictions that are stronger than those necessary for identification
when estimating a model that involves selection due to choices and several types of treatments (see Geweke,
Gowrisankaran, and Town (2003), Hull (2018), e.g.).

22Formally, B(Y ;ρ) = Yρ−1
ρ

. In the special case when ρ = 0, B(Y�ρ) = logY . We set ρ by comparing an
estimated survival curve using the nonparametric Kaplan–Meier estimator to those implied by assuming that
B(Y�ρ) is normally distributed.
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416 N. AGARWAL, C. HODGSON, AND P. SOMAINI

This empirical model maps the patient and kidney types into characteristic space, which
reduces the number of parameters. The characteristics include ηj , which represents un-
observed heterogeneity in organ quality due to characteristics observed by patients and
surgeons but not incorporated into the empirical specifications. We include this term be-
cause it may be empirically important. Appendix C.3 shows identification results analo-
gous to Theorem 1 in a nonparametric model that allows for organ-level heterogeneity ηj .
The argument leverages the feature that the same donor’s organs are offered to multiple
patients on the waiting list. The correlation between these patients’ decisions that cannot
be explained by organ-level observables provides information about ηj .

This choice of functional form is motivated by several considerations. First, we wish to
allow for correlations between νi�0, νi�1, and νi�D and between εi�j�1 and εi�j�D. For example,
the factor νi�f captures the component of a patient’s unobserved frailty that is not cor-
related with decisions. Second, decisions are binary, which suggests using probit choice
models. These two considerations direct us to employ multivariate normals to model the
distributions of νi and εi�j . Third, the parameterization allows us to handle censored data
and also fit the shape of the survival curve. Box–Cox transformations yield a tractable like-
lihood function while generalizing the functional form (see Spitzer (1982), e.g.). We hold
the Box–Cox transformation parameters ρ0 and ρ1 fixed and conduct robustness analysis
to alternative choices (see Table D.3).

Directly computing and maximizing the likelihood of this model is difficult because
each patient’s data involve decisions about many donors over time as well as (potentially
censored) survival outcomes. Calculating this likelihood requires integrating a nonlinear
function over a high-dimensional space. Instead, we estimate the parameters of the model
using a Gibbs sampler (McCulloch and Rossi (1994), Geweke, Gowrisankaran, and Town
(2003), Gelman, Carlin, Stern, and Rubin (2014)). This method generates a sequence of
draws of the model’s parameters, collected in θ, and the latent variables νi, εi�j , and ηj
given the parameters from their respective posterior distributions. Our chosen parame-
terization is amenable to this approach because the latent variables can be partitioned so
that each group has a posterior distribution given the draws of the other groups that can
be solved in closed form. Details on the method are provided in Appendix B.1. Based on
the Bernstein–von Mises theorem (see van der Vaart (2000, Theorem 10.1)), we interpret
our estimator as equivalent to maximum likelihood. We conducted Monte Carlo simula-
tions to assess the properties of our estimator using one hundred simulated data sets with
10,000 patients and 2500 donors. These exercises demonstrated that our estimator has
good coverage and convergence properties.23

6. SURVIVAL AND CHOICE ESTIMATES

Table V presents estimates for survival without and with a transplant as well as the
probability of acceptance in panels A, B, and C, respectively (detailed estimates are avail-
able on request). Our specifications contain a rich set of patient and donor covariates
to capture medical history and match quality, including characteristics used in the lead-
ing models for predicting pre- and post-transplant survival for patients with kidney failure
(see Wolfe et al. (2008), e.g.) as well as determinants of patient priority. Survival estimates
show the marginal half-life effects associated with select characteristics. Effects are shown
for a one-standard-deviation increase in a continuous characteristic or a unit change in
an indicator.

23Detailed results and code are available in the replication package associated with the manuscript.
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We present estimates from three different specifications. The first specification (in col-
umn 1) replicates the observational approach in Wolfe et al. (2008) for our data set: this
specification only relies on offer randomness; does not employ the scarcity instruments
(column 1); and abstracts away selection on unobservables by assuming that νi�D, νi�0, and
νi�1 and εi�j�D and εi�j�1 are mutually independent. The second specification, which is our
preferred one, includes the number of past donors as the scarcity instrument (column 2).
To assess robustness, we estimate a third specification with our past offers instrument (col-
umn 3). Table D.3 in the Appendix shows our headline findings are robust to numerous
variations.

Survival. Proxies for baseline patient health predict survival both with and without a
transplant. A patient who is older, diabetic, or on dialysis at registration has a significantly
shorter half-life either with or without a transplant, with slightly larger effects for post-
transplant survival. For example, a diabetic patient’s half-life with or without a transplant
is shorter than that of a non-diabetic patient by 3.58 or 1.45 years, respectively.

Measures of donor quality, waiting time, and tissue-type similarity also predict post-
transplant survival, but donor characteristics have lower estimated effects than tissue-type
matching and patient characteristics. For example, a donor with a history of hypertension
yields a shorter half-life by 0.40 years, a difference which is much smaller than those
produced by the patient characteristics described above. Receiving a kidney with a perfect
tissue-type match has a large effect on half-life, consistent with a lower likelihood of an
immune response.

Choice. Measures of donor quality and match-specific benefits are also positively cor-
related with acceptance. Patients are significantly more likely to accept kidney offers from
younger donors; donors who died of head trauma; donors without a history of hyperten-
sion; and donors with whom they have a perfect tissue-type match. Kidneys that have
higher unobservable quality, ηj , are also more likely to be accepted, suggesting that deci-
sions respond to organ information that is not perfectly captured by the observable char-
acteristics.24

The last two rows record the scarcity instruments’ effects on acceptance. Consistent
with the results in Table IV, each instrument has a significant negative effect on the prob-
ability of acceptance. Other parameter estimates are similar across the instrumented spec-
ifications, suggesting that the choice between these two instruments is unlikely to be an
important driver of our results.

A comparison of estimates across the panels indicates that many organ quality mea-
sures positively affect both choice and survival. Tissue-type match and donor death by
head trauma are both strongly associated with both choice and survival. That said, the as-
sociation is not perfect: organs from younger donors are more likely to be accepted even
though the survival effects are not significant.

These results qualitatively differ from those in Abdulkadiroglu et al. (2020), who found
that preferences for schools are not correlated with value-added after controlling for peer
characteristics. An important difference in the institutional context is that choices in our
setting are advised by doctors who, given their significant experience and expertise, may
have more accurate beliefs about survival effects than parents have about value-added.

24In column 10 of Appendix Table D.3, we present results in which the coefficients in the choice and outcome
equations are allowed to differ by DSA. The results from this specification are similar to those using the main
specification.
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TABLE VI

CORRELATION TABLE.

Panel A: Selectivity (νi�D) Panel B: Match Value (εij�D)

(1) (2) (1) (2)

Probability of Acceptance −0�040 −0�040 0�066 0�065
(0�001) (0�001) (0�001) (0�001)

Post-Transplant Survival −0�054 −0�086 −0�003 0�092
(0�134) (0�131) (0�249) (0�245)

Survival without a Transplant 0�316 0�311
(0�062) (0�061)

Instruments # Past Donors # Past Offers # Past Donors # Past Offers

Note: Estimates of how a one-standard-deviation increase in choice unobservables affects acceptance and survival probabilities.
Survival durations are calculated using half-lives. Survival effects from changes in εij�D are computed using the expected change in
εij�1 from a one-standard-deviation rise in εij�D from zero, given the estimated covariance between εij�D and εij�1. Likewise, survival
effects from changes in νi�D are computed using the expected changes in νi�1 and νi�0 from a one-standard-deviation increase in νi�D
from zero, given the estimated covariances between νi�D , νi�1, and νi�0. All effects are computed at the median value of observable
covariates.

The point estimates on each characteristic are similar across the three specifications
in Table V, with perhaps more similarities between estimates in columns 2 and 3 than
the other pairings. These small differences between column 1 and the others accumulate
to more appreciable differences between the estimated effects on life-years from trans-
plantation, which will be presented in Table VII below. The difference will partly stem
from selection on unobservables, which is omitted in the specification in column 1 but
included in the other two. We now describe the estimates of the unobservables that drive
this selection.

Selection on Unobservables. Our model measures the correlation that unobservable
characteristics induce between survival and choice. Table VI shows how a one-standard-
deviation increase in νi�D (selectivity) and εi�j�D (match value) affects acceptance and sur-
vival. The selectivity effects are measured by computing the changes to νi�0 and νi�1 induced
by their estimated correlation with νi�D. Likewise, the correlation between εi�j�D and εi�j�1
yields the effects of match value.

Selective patients typically survive longer without a transplant and benefit less from the
typical transplant. A one-standard-deviation rise in selectivity lowers the probability of
acceptance by 4.0 percentage points. This effect is of a similar order as that of a kidney
from a donor with a history of hypertension. Therefore, there is positive selection into
treatment on the patient-specific component of survival benefits. Observational studies
that ignore this source of selection may underestimate the benefits of transplantation. In
contrast to selectivity, patient-donor-specific factors do not induce significant selection
via choices. The estimated covariance between εij�D and εij�1 is not statistically significant.

7. ESTIMATED LYFT

7.1. Calculating Life-Years From Transplant (LYFT)

For each patient-donor pair, we compute the difference between the median survival
time with a transplant and median survival time without a transplant, measured from the
date of transplant. Specifically, for each pair (i� j), we define LYFT conditional on a set
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TABLE VII

LIFE-YEARS FROM TRANSPLANT.

(1) (2) (3) (4)

Life Years from Transplant
Accounting for Unobservables 8�25 8�93 8�93 8�91

(0�07) (0�12) (0�12) (0�10)
Observables Only 8�25 7�97 7�87 8�09

(0�07) (0�26) (0�25) (0�24)
Untransplanted Survival

All Patients 7�21 7�21 7�21 7�21
(0�02) (0�04) (0�04) (0�03)

Transplanted Patients 7�58 7�53 7�53 7�52
(0�03) (0�05) (0�05) (0�05)

Post-Transplant Survival 15�82 16�46 16�46 16�43
(0�06) (0�09) (0�09) (0�09)

Instruments No Instruments # Past Donors # Past Offers # Past Donors
Additional Donor Characteristics X

Note: Life-years from transplant and survival durations presented in the table are calculated using half-lives. Future donors (of-
fers) is defined as the number of donors (offers) in the next four quarters (see Table IV for detailed definition). All columns control
for patient, donor, and offer characteristics, which are defined analogously as in Table V Panel B and Table V. Standard errors are in
parentheses.

of covariates Ii�j ={xi� qj�Dij�ηj� νi�D� νi�f} as follows:

LYFT(Ii�j) =M(Yi�j|Ii�j�Yi�0 ≥ ti�j) −M(Yi�0|Ii�j�Yi0 ≥ ti�j)� (7.1)

where M(Y|X) is the median of random variable Y conditional on X and ti�j is the time
between patient i’s registration and the arrival of kidney j.25,26 Therefore, this measure
accounts for selection on unobservables induced by the mechanism.

7.2. Life-Years From Transplant in the Mechanism

Table VII presents the average estimated LYFT over all realized transplants. The first
row accounts for patient- and kidney-specific unobservables and the decision to accept.
The second row conditions only on patient and donor observables, integrating LYFT(Ii�j)
over Dij , ηj , νi�D, νi�f . The average LYFT from our preferred specification is 8.93 years
(column 2). Ignoring selection on unobservables yields a lower estimate of 7.97, suggest-
ing positive selection on LYFT into transplantation based on unobservables. The specifi-
cation that does not use scarcity instruments yields biased estimates, about two-thirds of
a year less than our preferred estimate (column 1). This suggests observational methods
used in the medical literature may underestimate gains from transplantation.

The second pair of rows report average survival without a transplant, separately, for all
patients and the subset of patients who received a transplant. Across specifications, the
untransplanted survival for patients who are transplanted is higher than for patients who

25Some estimates of LYFT place a weight of 0.8 on life-years without a functioning kidney to account for
the lower quality of life (e.g., Wolfe et al. (2008)). Our approach omits this arbitrary quality-adjustment.

26We use a Gibbs sampler to compute the expectation of LYFT(Iij) by drawing ηj , νi�D, and νi�f from their
conditional distributions given observables, decisions, and observed survival outcomes. We fix the parameters
at the estimate θ̂, generate 200,000 draws, burn-in the first half, and use every 1000th draw.
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FIGURE 2.—Patient selection..

are not. Thus, choices and the mechanism result in selection on untransplanted survival
into transplantation. Results are robust to using past offers rather than past donors (col-
umn 3) and to including further covariates, such as time between organ extraction and
transplantation, present in the medical literature (e.g., Rao et al. (2009)).27

7.3. Selection and LYFT

The selection on LYFT and untransplanted survival reported in Table VII can take
place along two margins: the patients who are transplanted and the kidneys to which they
are matched. We further investigate these sources below.

Patient Selection. There are strong complementarities between baseline health and
transplantation. Figure 2(a) presents the joint density of (median) untransplanted survival
and the average (median) LYFT from all potential donors for each patient, overlaid with
a binscatter plot. LYFT and untransplanted survival are strongly positively correlated.
Patients who are expected to live longer without a transplant also have the largest life-
year gains.

When combined with the observation in Table VII that transplanted patients have
longer baseline survival, this complementarily suggests that patients who are transplanted
likely have more LYFT due to selection on baseline health. In addition, there may be pa-
tient selection into transplantation from choice and from the priorities in the mechanism.

The overall selection into transplantation is presented in Figure 2(b), which shows the
distribution of predicted LYFT across all potential transplants. This distribution is shifted
to the right for transplanted patients, with an average that is 1.1 years higher. Thus, the
mechanism selects patients with larger average LYFT, and some of this selection comes
from transplanting patients who are relatively healthy at baseline.

27Our preferred specification omits these additional covariates because it is not possible to compute cold
ischemic times for the counterfactual allocations in Section 8. In particular, cold ischemic time is determined
by the full set of offers made for a particular kidney, not just the final allocation. Furthermore, including cold
ischemic time as a control is potentially problematic since it is an outcome of patients’ acceptance decisions.
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FIGURE 3.—Patient-kidney matching..

Patient-Kidney Matching. The realized allocation also matches patients to kidneys
from which they receive greater survival benefits as compared to the average kidney. Fig-
ure 3(a) plots the joint distribution of LYFT from the realized donor for a transplanted
patient against LYFT from all potential donors. The binscatter is below the 45-degree
line, indicating that the realized transplants generate greater than average LYFT for a
patient. This finding that matches are selected advantageously complements the finding
that the mechanism selects patients with higher than average gains from transplantation.

Part of this advantageous matching comes from the correlation between patients’ ac-
ceptance decisions and LYFT. Figure 3(b) presents a binscatter plot of kidney–patient
acceptance probability against LYFT for all potential transplants and shows that the pre-
dicted probability of accepting an offer increases LYFT. As our estimates suggest, patients
are more likely to accept kidneys with greater life-year benefits (based on both observable
and unobservable characteristics).28

In sum, we find that the allocation matches kidneys to patients based on LYFT and that
at least some of this selection is induced by choices in the mechanism.

Patient Selection Versus Rematching. Figure 3(a) also provides insight into which of
these two assignment margins dominates. The heterogeneity in survival across patients
swamps the heterogeneity across donors within a patient. In fact, a decomposition of
the total variance in LYFT into patient-specific, donor-specific, and match-specific com-
ponents (the last being the remainder) shows that the patient-specific component con-
tributes to 3.26 years of the standard deviation in LYFT. The donor-specific and match-
specific components are much smaller, accounting for 0.99 years and 0.41 years, respec-
tively.

28To verify this point, we regressed the expected value of LYFTij conditional on {xi�qj�ηj� νi�D� νi�f} on
the probability of acceptance given these same covariates, controlling for patient- and donor-specific fixed
effects. A one-standard-deviation increase in the match-specific component of LYFT raises the probability of
acceptance by 0.24 percent.
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424 N. AGARWAL, C. HODGSON, AND P. SOMAINI

Thus, the potential for increasing life-years by improving the match between patients
and donors without changing which patients are transplanted (rematching) is limited. Dis-
tributional constraints may therefore limit the potential gains from improved matching. In
particular, maximizing life-year gains may mean reallocating organs away from the most
urgent cases towards patients with longer expected survival without a transplant, pointing
to a potential trade-off between efficiency and worst-off prioritarianism for the sickest.

8. POTENTIAL FOR FURTHER INCREASING LYFT

We now evaluate the performance of the mechanism on LYFT and quantify the im-
portance of patient selection versus rematching. We compare the average LYFT achieved
by the realized assignment to benchmarks ranging from a random assignment to one that
maximizes LYFT. Extending patients’ lives is a prima facie objective of the medical profes-
sion. However, this objective may raise distributional concerns or conflict with allocation
principles discussed in medical ethics. We highlight these trade-offs by comparing the
types of patients who are transplanted under the benchmarks.

We focus on our preferred specification and, to ease computation, we restrict the sam-
ple to the set of patients who registered in 2005. Our results are not sensitive to choice of
instrument; varying the Box–Cox shape parameters of our specification; omitting donor
unobserved heterogeneity ηj ; or including time between organ extraction and transplan-
tation (see Table D.3).

8.1. Comparison With Benchmark Assignments

We start with two extremal benchmarks, random assignment and optimal assignment:
Random assignment is simulated by successively assigning patients to kidneys at ran-

dom from the set of feasible kidneys. Feasibility requires that the patient must be bio-
logically compatible and the kidney should arrive between the patient’s registration date
and a simulated death date without a transplant. The latter is drawn from that patient’s
predicted survival distribution.

Optimal assignment is computed by maximizing total LYFT from all transplants. This
benchmark considers an omniscient planner who knows xi, qj , νi�D, νi�f , ηj , each patient’s
arrival and untransplanted death dates, and each kidney’s arrival date. The planner com-
putes LYFT conditional on these characteristics and can dictate assignments. Only feasi-
ble transplants are allowed and each patient can receive at most one transplant.29

The comparison to the random assignment measures the increase in LYFT achieved by
the mechanism. Both selecting patients and advantageously matching kidneys to patients
drive the difference. To decompose these sources, we evaluate an alternative that allocates
kidneys randomly among transplanted patients:

The random amongst transplanted assignment is simulated by reassigning transplanted
patients to a kidney at random from the set of feasible kidneys.

The increase in LYFT due to the mechanism results from both the mechanism’s priority
rules for kidney offers and the choices made by patients on the waiting list. To separate
the gains achieved due to the mechanism’s priority structure from the gains from choice,
we evaluate a counterfactual assignment with no patient choice.

29Call the sth simulated draw for each patient/donor pair LYFTs
ij . Let aij = 1 if i is assigned j and aij = 0

otherwise. Let cij = 1 if i is feasible for j and cij = 0 otherwise. We solve the problem maxa
∑

i�j aij LYFTs
ij

subject to aij (1−cij) = 0,
∑

i aij ≤ kj , where kj is the number of kidneys available from donor j, and
∑

j aij ≤ 1.
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FIGURE 4.—LYFT under counterfactual assignments..

The no choice assignment is computed by assigning each kidney to the patient with the
highest priority among untransplanted patients. Offers cannot be rejected by patients.

Comparing the realized assignment to the optimal assignment bounds the maximum
theoretical gain in LYFT that could be achieved by any mechanism. As in the compari-
son between the realized and random assignments, this gain is driven both by selecting
patients and matching patients to kidneys. To decompose these sources, we evaluate an
alternative that only reassigns kidneys among transplanted patients.

The optimal rematching assignment maximizes the total LYFT using the same infor-
mation set as in the optimal assignment. In addition to the feasibility constraint, a patient
in this assignment can be transplanted only if they were transplanted in the data.

Optimal assignment uses information about factors that induce selection: νi�D, νi�f ,
and ηj . However, the first two factors may not be observed by the planner and may be
hard to elicit in a mechanism. Similarly, ηj may be difficult to condition on. These obser-
vations motivate a benchmark that uses only observable information:

The optimal assignment based on observables is calculated by maximizing the total
expected LYFT conditional on xi and qj by assigning patients to a feasible kidney.30 The
solution describes the highest possible LYFT that can be achieved by a planner who can
dictate assignments based on this information.

Figure 4 presents the results. The average LYFT for the realized assignment amongst
patients who registered in 2005 is 9.29 years. This is analogous to the results in Table VII.

The realized assignment achieves a 1.75-year increase in average LYFT over random
assignment. Both selecting patients and matching patients to kidneys are important: ran-
dom amongst transplanted yields only 11.7 more months. The remainder of the gain is
due to patient-kidney matching.

Patient choice is a key contributor to the mechanism’s gains in LYFT over random as-
signment. The no choice assignment results in a similar LYFT as the random assignment.

30For tractibility, we assume the planner has foresight about when patients arrive and depart and when
kidneys arrive. Relaxing foresight would require solving a dynamic assignment problem with uncertainty about
the future.
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426 N. AGARWAL, C. HODGSON, AND P. SOMAINI

Thus, if the priority rules were used to dictate assignments, then only 29.6% of the LYFT
increase in the realized assignment would be achieved.31

Although the mechanism does better than a random assignment, there is significant
scope for further increasing LYFT. The average LYFT under the theoretical upper bound
given by the optimal assignment is 4.8 years higher than the LYFT achieved in the realized
assignment. Bias in estimates based on observational studies would miss the potential for
these gains. A significant fraction, 13.4%, of the increase can be achieved by rematching
patients and kidneys while keeping the set of transplanted patients fixed. Nevertheless,
consistent with Figure 3(a), most of the improvements in optimal allocation come from
changing the set of patients who are transplanted.

A planner who can dictate assignments using the observable characteristics could
achieve a significant fraction, but not all, of the potential increase. These observables
have been either used to determine priority or considered explicitly in proposed reforms.
The average LYFT under the optimal assignment based on observables is 11.04 years.
Although less than the theoretical maximum, it is about 1.8 years more than the average
LYFT achieved by the mechanism. Therefore, in principle, using observed characteristics
rather than choices to target transplants could substantially raise the average LYFT.

Finally, note that a planner who uses the observational model, which is employed in
the medical literature and does not account for selection on unobservables (column 1,
Table V), to allocate kidneys would not obtain the same life-year gain. The optimal re-
matching implied by this specification yields an average LYFT of 11.75 years (as opposed
to 14.08 years) when this assignment is evaluated using our preferred specification. This
allocation obtains only 51% of the maximum possible increase in LYFT over the realized
assignment.

8.2. The Planner’s Dilemma

Achieving the gains in LYFT described above would require changing the set of patients
who are transplanted. We now show that this change shifts the demographics and health
conditions of transplanted patients, thereby creating a potential barrier due to distribu-
tional considerations or the desire to prioritize patient urgency.

The LYFT increases, from random assignment to the mechanism and finally to the op-
timal solutions, require transplanting relatively healthy patients. Table VIII presents the
distributions of patient age, health, and untransplanted survival for patients transplanted
under the random assignment, the no choice assignment, the actual assignment, and the
optimal assignment. Patients transplanted under the realized assignment are healthier
than average—younger, less likely to be diabetic, less likely to be on dialysis—and have
longer untransplanted survival. Similarly, transplanted patients are also healthier under
the optimal assignment than under the realized assignment. The optimal assignment also
reallocates kidneys towards racial/ethnic minority patients, who have higher LYFT on av-
erage than white patients.

Comparing the realized assignment and the no choice assignment illustrates the role of
choice in increasing LYFT. The existing priority rules target transplants between patients
and donors with no HLA mismatches. The fraction of zero-mismatch assignments is lower
under the realized and optimal assignments as compared to no-choice. Yet, choice also
dramatically changes the selection of who is transplanted towards patients with high LYFT

31We also simulated the no choice assignment using priorities in place after 2014 and found similar results
for LYFT.
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by shifting the age distribution towards younger patients and those with longer untrans-
planted survival. Therefore, while patients benefit from kidneys with a perfect tissue-type
match, reassigning kidneys to the right set of patients without perfect tissue-type matches
can increase LYFT.32

These shifts highlight the distributional effects of optimizing LYFT—the realized out-
come increases LYFT by selecting younger, healthier patients to transplant. The op-
timal assignment exacerbates these distributional changes. These results are driven by
the strong correlation between survival with and without a transplant, illustrated in Fig-
ure 2(b). Thus, in order to maximize LYFT given the scarcity of kidneys available, the
planner must transplant healthier patients and let sicker patients go untransplanted.33

This stark trade-off represents a dilemma. Society may have a moral imperative to pri-
oritize sick patients who may soon die, as done in deceased donor liver allocation. But
some medical ethicists discard this principle when faced with scarcity, arguing instead for
maximizing total survival or treating people equally (random assignment) (see Persad,
Wertheimer, and Emanuel (2009)). Our results suggest that these two principles are in
conflict for kidney allocation, with utilitarian principles also raising concerns about both
discrimination based on patient characteristics such as age and increased inequality in
patient survival.

9. CONCLUSION

An important but understudied goal in designing assignment mechanisms is to produce
matches that improve associated outcomes such as patient survival or student achieve-
ment. With few exceptions (noted in the Introduction), the prior empirical literature fo-
cuses on revealed preference measures of welfare. We take a first step towards an em-
pirical analysis that incorporates downstream outcomes by studying the LYFT generated
through the transplantation of deceased donor kidneys. To do this, we show how to use
variation generated in an assignment mechanism to estimate and identify a model that
jointly considers choices and outcomes.

We find that the waitlist mechanism used to allocate deceased donor kidneys does bet-
ter than a random allocation but leaves much scope for improvement. The mechanism
transplants patients for whom life would be extended longer, as compared to the aver-
age patient, and matches them to more suitable than average kidneys. However, average
LYFT could be boosted by several years. The potential economic value of realizing these
gains is enormous. Aldy and Viscusi (2007) valued a statistical life-year at $300,000. At
even half this value and ignoring costs savings on dialysis, the potential benefits from one
more year of life from the approximately 13,000 deceased donor kidneys transplanted
each year accrues to almost $2 billion per year.

Achieving most of these gains will require confronting important distributional con-
siderations because survival without a transplant is a strong predictor of life-year gains.
Therefore, the planner faces a dilemma between transplanting the sick and transplanting
those for whom life will be extended the longest.

32Appendix Table D.4 shows the optimal assignment using this observational model, which does not account
for selection on observables, substantially moves kidney reallocation towards younger patients, as compared to
the optimal assignment using our preferred specification. This suggests that relying on an observational model
may not only result in biased estimates of LYFT, but also lead to misallocation that appears to exacerbate the
planner’s dilemma.

33Indeed, an assignment that transplants the sickest patients first (as measured by Yi�0) results in an LYFT
of 3.41 years.
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 429

This work opens several avenues for further research. First, our approach avoids mi-
crofounding the choice model at the cost of evaluating benchmark assignments rather
than the equilibria of alternative mechanisms. This leaves counterfactual selection in an
equilibrium model to future work. Second, we focus on an aggregate measure of LYFT
that abstracts away from distributional or non-utilitarian ethical considerations. Formal-
izing these considerations and incorporating them into the design problem could yield a
valuable policymaking tool. The underlying trade-offs are particularly central to designing
mechanisms when outcomes are the target and deserve further research in other contexts
as well.

APPENDIX A: DATA APPENDIX

A.1. Obtaining Original Data Files

The data reported here have been supplied by UNOS as the contractor for the Organ
Procurement and Transplantation Network (OPTN). The interpretation and reporting
of these data are the responsibility of the author(s) and in no way should be seen as an
official policy of or interpretation by the OPTN or the U.S. Government.

We will retain copies of the data until permitted by our Data Use Agreement with
the Organ Procurement and Transplantation Network (OPTN). Further, we plan to send
OPTN a copy of our replication archive if and when we are required to destroy our data
set. Researchers interested in using our data set should directly contact OPTN to obtain
permission: https://optn.transplant.hrsa.gov/data/request-data/. We are happy to provide
copies of our data to researchers with permission and a data use agreement with the
OPTN.

A.2. Data Description

Our data on patients, donors, transplants, and offers are based on information sub-
mitted to the Organ Procurement and Transplant Network (OPTN) by its members. The
main data sets are the Potential Transplant Recipient (PTR) data set and the Standard
Transplantation Analysis and Research (STAR) data set.

The PTR data set contains offers made to patients on the deceased donor kidney wait-
list who were not automatically rejected based on pre-specified criteria. Information in-
cludes identifiers for the donor, patient, and patient history record that generated the
offer; the order in which the offers were made; each patient’s acceptance decision; and, if
the offer was not accepted, a reason for rejection. Each offer record also contains certain
characteristics of the match, including the number of tissue-type mismatches.

The STAR data set contains separate files on deceased donor characteristics, patient
histories, patient characteristics and transplant outcomes, and follow-up data, which are
collected at six months and then annually, for kidney transplants. The patient and donor
characteristics from these data sets are used to estimate our models of acceptance be-
havior and patient survival. The patient characteristics and transplant outcomes data set
contains patient death information. For patients who received a transplant through the
deceased kidney donor waitlist, the follow-up data set records whether the patient is still
alive at the follow-up point. This information allows us to compute the survival duration
for each patient. UNOS also provided supplemental information, including the ordering
of distinct match runs conducted for the same deceased donor; the transplant centers of
donors and patients in our data set; and dates of birth for pediatric candidates, who joined
the waitlist before turning 18 years of age.
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The data contain identifiers that allow us to link the offer and acceptance data to patient
and donor characteristics. Each deceased donor has a unique identifier. Similarly, each
patient registration generates a unique patient waitlist identifier. Because patients may
move to different transplant centers or be registered with multiple centers simultaneously,
some individual patients have multiple waitlist identifiers. For this study, we focus on
each patient’s earliest registration. The follow-up data contain a unique identifier for each
transplant, allowing us to connect follow-up information to each transplanted patient.
The patient history file contains a unique patient record identifier corresponding to a
particular state of the patient on the waitlist, including the patient’s CPRA, activity status,
and pre-set screening criteria. Each offer in the PTR data set contains the identifiers for
the donor, the patient registration, and the patient history record that were used in the
match run. When appropriate, we de-duplicate offers so that each patient can receive at
most one offer from each donor.

A.3. Sample Selection

We consider the first waiting period for patients who were actively waiting for a de-
ceased donor kidney between January 1, 2000, and December 31, 2010. This restriction
is to avoid selection arising from patients who remain on the list at the beginning of the
sample period. We omit patients who received a living donor transplant as their first trans-
plant or were cross-registered for other organs simultaneously. The outcomes for these
patients are likely very different from patients who receive only a kidney from a deceased
donor. Most patients who can receive a living donor receive one within the first year of
registration and would prefer such a transplant to a deceased donor transplant. The latter
restriction is made to focus on a more homogeneous group of patients.

In addition, we made a number of other minor adjustments to work with a more co-
hesive sample of patients. The number of patients that survive each step of the sample
selection process is described in Table A.I.

A small minority of patients are simultaneously registered in multiple donor service ar-
eas, indicating that multiple listings and moves are not common. Our analysis keeps only
one waitlist record from each patient. If the patient received a kidney transplant through

TABLE A.I

SAMPLE SELECTION: PATIENTS.

Number of
Patients

Number of Wait
List Records

Patient’s first waiting period that intersects the period 2000–2010 308�370 372�681
Exclude patients who received living donor transplants in their first waiting
period

241�209 295�075

Exclude patients were waiting for other organs in their first waiting period 213�685 244�580
Keep one kidney waitlist record for each patient 213�685 213�685

Patients with multiple waitlist records 32�191 32�191
Patients with single waitlist record 181�494 181�494

Exclude patients who had a previous kidney transplant 212�258 -
Exclude patients with administrative waitlist removal reason 207�316 -
Restrict to patients whose remaining waitlist registration is between 2000
and 2010

178�944 -

Exclude patients who received non-standard kidney allocations 175�695 -
Exclude patients with poor death data 175�640 -
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 431

TABLE A.II

SAMPLE SELECTION: DONORS.

Number of Donors

Deceased donors offered to any kidney waitlist patients between 2000 and 2010 71,738
Exclude deceased donors offered through non-standard kidney allocations 68,140
Restrict to deceased donors offered to patients in the sample 58,466

the deceased donor waitlist before December 31, 2015, we keep the waitlist record with
the earliest transplant date; if the patient remained untransplanted as of December 31,
2015, we keep the waitlist record with the earliest registration date.34 Next, we exclude a
small number of patients who received a prior kidney transplant to focus on the survival
effects of the first transplant. We also exclude patients removed for administrative rea-
sons. These are patients who were listed on the waitlist by error, who departed because
a transplant took place but no transplant was recorded in the STAR data set, and who
could no longer be contacted while waiting on the waitlist. These departure reasons are
recorded in the STAR patient and the transplant outcome data set.

Then, we keep the waitlist records with registration dates between Janurary 1, 2000, and
December 31, 2010, because we do not have data on offers prior to 2000. For example,
an untransplanted patient active between 2000 and 2010 may not be included in the final
sample because said patient’s first waitlist registration is before 2000. This step amounts
to one of the largest cuts.

Finally, we exclude patients who received a transplant through non-standard allocation
rules. This can occur, for example, if the donor is an armed service member; if the donor
specified a particular recipient (directed donation); if there is a medical emergency or
expedited placement attempt; or if the kidney is not offered due to operational issues.
We identify these cases by analyzing the PTR data as a large number of offers will be
bypassed with a code indicating one of these reasons. In some cases, there is also text
specifying specific circumstances justifying a rejection, and we parse such text to identify
invalid offers in cases where the refusal code does not provide a specific reason.

Our sample of deceased kidney donors comes from the intersection of the STAR de-
ceased donor data set and the PTR data set. These are deceased donors whose kidneys
were allocated to patients on the waitlist between January 1, 2000, and December 31,
2010. We further exclude donors allocated using non-standard rules or not offered to
patients in the sample.

Table A.II details the number of donors that survive each filter. The largest cuts come
from the last step. This is because the priority for waiting time implies that many offers
are only given to patients who registered prior to 2000.

We consider a sample of offers made between January 1, 2000, and December 31, 2010,
that could have resulted in transplants between our donor and patient samples. The PTR
data set includes records of all initial patient contacts and patients skipped due to ad-
ministrative reasons irrespective of whether an offer was made. Such skipping happens
mainly for three reasons. First, some patients who were contacted have lower priority
than the patients who accepted and were transplanted with the kidneys from a donor. In
this case, we determine the cutoff point for each donor and exclude all offers made after
the cutoff. Second, some match runs were abandoned due to logistical reasons and then

34In the sample selection process, we use transplant data through December 31, 2015.
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TABLE A.III

SAMPLE SELECTION: OFFERS.

Number of Offers

Offers made between 2000 and 2010 from donors in the sample 14�982�656
Exclude non-responsive offers 14�335�386
Restrict to offers made to patients in the sample 8�508�757

re-run. We only keep the offers from the last match run for a donor. Third, in some cases,
the PTR data set records administrative or logistical reasons for skipping patients in the
offer sequence. This can occur, for example, if the kidney has antigens that would result
in an immune response; a patient was bypassed due to logistical reasons; or if the kidney
does not meet the patient’s minimum criteria. We also exclude non-responsive offers, for
example, because either the surgeon or the patient is unavailable or because the patient
is temporarily inactive/unsuitable for transplantation. Finally, we restrict to offers made
to the patients in the sample. This step cuts the offer sample by 41% because many offers
are made to patients who were not in our sample, for example, patients who registered
prior to 2000. Table A.III describes how we arrive at the final sample of offers.

A.4. Patient Survival

The patient characteristics and transplant outcomes data set collects patient death
dates from the waitlist record and periodically from the social security master file. In
a small minority of cases, death dates are inconsistent across multiple waitlist records
for a patient; for these, we assume that earlier death dates take precedence over later
ones. Transplant dates and death dates are truncated on February 29, 2020, because death
records after this date are inconsistently populated. For patients who received a transplant
or died after February 29, 2020, we treat them as untransplanted or alive, respectively, as
of February 29, 2020.

Among 175,640 patients in the sample, we observe death dates before February 29,
2020, for 101,481 of them. Of these, 63,911 are untransplanted patients and 37,570 are
transplanted. Patients for whom we do not observe death are censored. The censoring
rules differ for transplanted and untransplanted patients. For transplanted patients, we
censor on the date of the second transplant if a second transplant took place before
February 29, 2020; on the day after transplant if there is no follow-up information for
the patient corresponding to the transplant; on the date when the patient is lost to follow-
up if the patient is lost to follow-up prior to February 29, 2020; and on February 29, 2020,
if the patient is known to be alive as of February 29, 2020. For untransplanted patients, we
censor on February 29, 2020, if the patient is known to be alive as of February 29, 2020;
and on the date when the patient exits the waitlist if no death date is available and the exit
day is prior to February 29, 2020.

Table A.IV presents a breakdown of censor reasons and their corresponding censor
dates for the patient sample. Nearly one half of the patient sample is uncensored, and
among censored patients, the vast majority (64.1%) are censored on February 29, 2020.
Since February 29, 2020, is an exogenously determined date, patients censored on that
date should be similar to uncensored patients in terms of potential outcomes.
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TABLE A.IV

CENSOR REASON.

Censor Reason Censor Date # Patients

Transplanted Patients
Retransplant before Feb. 29, 2020 Retransplant date 5649
No follow-up information One day after transplant 463
Lost to follow-up before Feb. 29, 2020 Date lost to follow up 6827
Known to be alive as of Feb. 29, 2020 February 29, 2020 44�748

Untransplanted Patients
Known to be alive as of Feb. 29, 2020 February 29, 2020 2786
No death date and depart the waitlist before Feb. 29, 2020 Date departing waitlist 13�686

APPENDIX B: ESTIMATION APPENDIX

B.1. Gibbs Sampler

Recall that our model is given by

yi0 = B(Yi0;ρ0) = xiβx + νi�0�
yij = B(Yij;ρ1) = χ(xi� qj)αx�q + αηηj + νi�1 + εij�1�
Dij = 1

{
yij�D = χ(xi� qj)γx�q + ziγz +ηj + νi�D + εij�D > 0

}
�

where we allow for νi = (νi�0� νi�1� νi�D) ∼N (0��ν) and εij = (εij�1� εij�D) ∼N (0��ε).
There are several challenges in estimating this model. First, we often observe censored

values of yi0 and yij . We perform a data augmentation step given the parameters and the
censoring point to solve this issue. For yij , the data augmentation step is necessary only in
cases for which Tij = 1.

Second, Dij is a binary variable. As is standard in discrete choice models, we perform a
data augmentation step to draw yij�D given the observed decisions. This step is necessary
for the observed values of Dij .

Third, the model incorporates rich correlations between the different observations via
ηj , νi, and εij . In particular, due to these terms, the covariance matrix between {yi0}i, {yij}ij ,
and {yij�D}ij conditional on the observables and the parameters does not have a simple
block-diagonal structure that would allow us to compute simple posterior distributions.
To solve this problem, we rewrite these variables using a factor structure such that the
posterior distribution of the parameters of each equation is conditionally independent of
the others given the factors. Specifically, we rewrite νi as

νi�D = fi�1�
νi�1 = αν1fi�1 + fi�2�
νi�0 = βν1fi�1 +βν2fi�2 + ε̃i0�

where fi�1, fi�2, and εi0 are each independently distributed mean-zero normal random vari-
ables with variances σ2

1 , σ2
2 , and σ2

ε̃�0. This structure places no restrictions on the covari-
ance matrix �ν . Similarly, we write εij as

εij�1 = αεfij�3 + ε̃ij�1�
εij�D = fij�3 + ε̃ij�D�
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434 N. AGARWAL, C. HODGSON, AND P. SOMAINI

where fij�3, ε̃ij�1, and ε̃ij�D are independently distributed mean-zero normal random vari-
ables with variances σ2

3 , σ2
ε̃�1, and σ2

ε̃�D. We normalize the variances σ2
3 and σ2

ε̃�D to 1.
Finally, set

ηj = fj�4
with variance σ2

4 . The main difference between f· and ε̃· is that it is sufficient to condition
on the former in order to render the models above as conditionally independent.

Therefore, the parameters we are interested in estimating are the coefficients in each
equation, β = (βx�βν1�βν2), α = (αx�q�αη�αν1�αε), γ = (γx�q� γz), and the variances
σ2
ε̃�0 = V [ε̃i0], σ2

ε̃�1 = V [ε̃ij�1], and σ2
l = V [fl], where l ∈{1�2�4} is the lth factor.

For simplicity of notation, we will collect the coefficients in the vector θ and the stan-
dard deviations in the vector σ , with σε̃ and σf denoting the sub-vectors for ε̃ and f ,
respectively. And, with some abuse of notation, we collect yi0, yij , and yij�D for all i and j
in y .

Following standard practice, we assume diffuse conjugate and independent priors for
each of these parameters. Specifically, we model the priors α, β, and γ using a mean-zero
independent normal distribution with variances equal to 1000 and the prior for the vari-
ances σ2

ε̃�0, σ2
ε̃�1, and σ2

l using independent inverse-Wishart distributions with parameters
(3�3). These priors are diffuse; thus, they have a negligible impact on our estimates.

The Gibbs sampler starts with an initial draw y0, θ0, σ0, and f 0 and generates a chain
of length K by iterating through the following steps for each k ∈{0� � � � �K − 1}:

1. Data Augmentation: Sample yk+1
i0 , yk+1

ij for censored observations and yk+1
ij�D for ob-

served decisions given θk, σk, and f k from truncated normal distributions.
2. Sample Coefficients: Sample θk+1 given yk+1, f k, the standard deviations σk, and the

prior distribution from a multivariate normal distribution.
3. Sample Variances: Sample σ2�k+1

ε̃�0 and σ2�k+1
ε̃�1 given yk+1, f k, the parameters θk+1, and

the prior distribution from an inverse-Wishart distribution.
4. Sample Factors: For each l ∈{1�2�3�4}, sample f k+1

·�l given yk+1, the parameters θk+1,
σk+1
ε̃ , σkf , and the remaining factors f k+1

·�1 � � � � � f k+1
l−1 and f k·�l+1� � � � � f

k
4 .

5. Sample Factor Variances: Sample σ2�k+1
l for l ∈ {1�2�4} given f k+1 and the prior

distribution from an inverse-Wishart distribution.
We draw a chain of length K = 200�000 and burn 50,000 draws to allow the chain to
convergence. We only keep one every 10 draws to save some computation time and reduce
the autocorrelation in the resulting chain. To diagnose the potential for non-convergence,
we visually inspect the chains and, as recommended in Gelman et al. (2014), we also
ensure that the potential scale reduction factor is below 1.1 for each of the parameters.
The distributions in each step can be solved for in closed form as detailed below:

1. Conditional distributions for yi0, yij , and yij�D given θ, f , and σ :
(a) For each i, j pair with Dij observed, the distribution of yij�D conditional on γ, f ,

and Dij is a truncated normal with mean E[gij�D|γ� fij] and unit standard devia-
tion. The distribution is truncated below at 0 ifDij = 1 and above at 0 otherwise.

(b) For each i such that yi0 is censored, the distribution of yi0 conditional on β and
f is a one-sided truncated normal with mean E[yi0|β�fi1� fi2] and standard devi-
ation σε̃�0. The distribution of yi0 is truncated below at the censoring duration.

(c) For each observed transplant with yij censored, the distribution of yij conditional
on αk, f k is a one-sided truncated normal with mean E[yij|α�f ] and standard
deviation σε̃�1. The distribution of yij is truncated below at the censoring dura-
tion.
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CHOICES AND OUTCOMES IN ASSIGNMENT MECHANISMS 435

2. Posterior distributions of the coefficients α, β, and γ given y , f , σ , and the priors.
Since yi0, yij , and yij�D are mutually independent conditional on f , the parameters α,
β, and γ are each coefficients in a linear regression model with normally distributed
errors. Therefore, the posterior distributions of each of these terms are given by
a multivariate normal distribution with closed-form means and variances (Gelman
et al. (2014, Chapter 14.2)).

3. Posterior distributions of σ2
ε̃�0 and σ2

ε̃�1 given y , f , σ , and the priors. As above, yi0,
yij are mutually independent conditional on f . Therefore, the distributions of σ2

ε̃�0

and σ2
ε̃�1 are inverse-Wishart with parameters given in Chapter 14.2 of Gelman et al.

(2014).
4. Posterior distributions of f given y , θ, and σ :

(a) The distribution of fi�1 conditions on the residual

fi�1 + 1
βν1

ε̃i0 = 1
βν1

(
yi0 − (xiβx +βν2fi�2)

)

and σ1 throughout; on the residual

fi�1 + ε̃ij�D = yij�D − (
χ(xi� qj)γx�q + ziγz +ηj + fij�3

)
for all j such that Dij is observed; and on the residual

fi�1 + 1
αν1
ε̃ij�1 = 1

αν1

(
yij −

(
χ(xi� qj)αx�q + αηηj + fi�2 + αεfij�3

))

(b) if Tij = 1. These residuals have prior mean zero and variances σ2
1 + σ2

ε̃�0

β2
ν1

, σ2
1 +σ2

ε̃�1,

and σ2
1 + σ2

ε̃�1

α2
ν1

, respectively. The posterior mean of fi�1 is the precision-weighted
average of the residuals corresponding to i, and the posterior variance is the
inverse of the sum of σ−2

1 and the precisions of each residual.
(c) The distribution of fi�2 is analogous, where we condition on σ2 and the residual

1
βν2

(
yi0 − (xiβx +βν1fi�1)

)

throughout, and on the residual yij − (χ(xi� qj)αx�q + αηηj + αν1fi�1) if Tij = 1.
(d) The distribution of fij�3 is analogous, where we condition on αε throughout; on

yij�D − (χ(xi� qj)γx�q + ziγz +ηj + fi�1) for all j such that Dij is observed; and on
1
αε

(yij − (χ(xi� qj)αx�q + αηηj + fi�2)) if Tij = 1. Note that σ3 is normalized to 1.
(e) The distribution of fj�4 is analogous, where we condition on σ4 throughout; on

yij�D − (χ(xi� qj)γx�q + ziγz + fi�1 + fij�3) for all i such that Dij is observed; and on
1
αη

(yij −χ(xi� qj)αx�q + fi�2 + αεfij�3) if Tij = 1.
5. The variances σ2

l for l ∈{1�2�4} follow inverse-Wishart distributions given the prior
and respectively, {fi�1}, {fi�2}, and {fj�4}.
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