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Abstract

Consumer choices are constrained in many markets due to either supply-side ra-
tioning or information frictions. Examples include matching markets for schools and
colleges; entry-level labor markets; limited brand awareness and inattention in con-
sumer markets; and selective admissions to healthcare services. We analyze a general
random utility model for consumer preferences that allows for endogenous characteris-
tics and a reduced-form choice-set formation rule that can be derived from models of
the examples described above. We show non-parametric identification of this model,
propose an estimator, and apply these methods to study admissions in the market for
kidney dialysis in California. Our identification results require two sets of instruments,
one that only affects consumer preferences and the other that only affects choice sets.
We show that both instruments are necessary for identification. These results also sug-
gest tests of choice-set constraints, which we apply to the dialysis market. We find
that dialysis facilities are less likely to admit new patients when they have a higher-
than-normal caseload and that patients are more likely to travel further when nearby
facilities have high caseloads. Finally, we estimate consumers’ preferences and facilities’
rationing rules using a Gibbs sampler.
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1 Introduction

In textbook discrete choice models, consumers pick their preferred option from an observed
choice set at posted prices. Moreover, prices are the sole instrument that clears the market.
In many instances, demand is rationed by information frictions or by supply-side policies
other than prices: schools and colleges select which students to admit, healthcare providers
may be capacity-constrained or selectively admit patients, and consumers may be unaware
of some products due to information frictions. The final allocation, in these cases, depends
on the constraints on the choice sets in addition to preferences and prices.

With the few exceptions that are discussed below, existing approaches for estimating pref-
erences with latent choice constraints assume specific models of choice set formation. In
two-sided matching models – school or college admissions (e.g. Agarwal and Somaini, 2018;
Fack et al., 2019), and certain labor markets (e.g. Agarwal, 2015) – choice sets are determined
by supply-side preferences, whereas search costs and incomplete information limit choice sets
in models of consumer search (Hortaçsu et al., 2017; Heiss et al., 2021) or consideration sets
(e.g. Manski, 1977; Swait and Ben-Akiva, 1987; Goeree, 2008; Abaluck and Adams-Prassl,
2021; Barseghyan et al., 2021a,b). Perhaps the only apparent similarity between these models
is that consumers cannot choose from the full set of options.

This paper unifies the analysis of a large class of empirical models of consumer choice with
latent choice-set constraints. Our model combines a general random utility model (Block
and Marshak, 1960; Matzkin, 1993) with a reduced-form model for choice set formation.
We show, by way of examples, that many commonly used models of latent choice sets are
consistent with this general reduced form. We derive conditions under which this general
model is non-parametrically identified using data on final allocations when preference and
choice-set shifters are available. We also propose a tractable estimation procedure. Finally,
we apply our methods to the market for kidney dialysis to test for supply-side rationing and
to describe the potential biases from ignoring choice set constraints.

The random utility model for consumer preferences allows for rich observed and unobserved
heterogeneity in consumer preferences and nests both product space and characteristic space
models. It also allows for product unobserved attributes to be correlated with observed
product characteristics (e.g. Berry, 1994; Berry et al., 1995). The reduced-form model of
latent choice sets is grounded on structural models of constrained choices, including models
of two-sided matching; dynamic models in which profit motives induce firms to be selective
in their admission policies; and certain models of consideration sets, consumer search, and
informational advertising.
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The empirical challenge is that the observed allocations depend both on the preferences of
agents and the choice set formation process, making it hard to disentangle the two. In
particular, standard methods based on inverting market shares to estimate key demand
parameters (e.g. Berry, 1994; Berry et al., 2013) are inapplicable in the presence of product-
specific unobservables that influence choice sets. Intuitively, the product chosen most often
need not be the one most preferred by the largest proportion of customers.1 We show
that our model is non-parametrically identified in the presence of two sources of variation.
The first is an observable that affects choice-set constraints but is excluded from consumer
preferences. The second is an observable that influences consumer choices but is excluded
from the choice-set constraints. We show how to use these shifters to trace out the joint
distribution of consumer preferences and latent choice sets. Moreover, we show that these
shifters are necessary–our model is not identified if either is not available.

At the cost of requiring shifters on both sides, our results place minimal functional form
and statistical restrictions on preferences and latent choice sets. The preference shifter may
enter non-linearly in utility; functional form restrictions on the choice-set shifters are simi-
larly weak; and unobservables that affect the choice sets can be arbitrarily correlated with
preferences. Specific models of choice set formation and other approaches typically require
stronger restrictions. The non-identification result in the absence of our shifters implies that
these restrictions are necessary, and substitute for exogenous variation in the data.

We also allow for unobserved product characteristics that are correlated with observable
characteristics to influence preferences or choice sets in our identification analysis, which
creates an endogeneity problem similar to the one in demand analysis (see Berry et al., 1995,
for example). We adapt methods from Berry and Haile (2014) to our model to show that
across-market variation in instruments can be used to solve this problem.

We apply our methods to the kidney dialysis market in California. Patients with low enough
kidney function need to undergo regular dialysis, typically thrice weekly for several hours at
a time. The procedure requires the use of expensive machines, nursing care, and physical
space to accommodate a patient. These resource constraints can limit the number of patients
a facility can serve. Most of the costs of dialysis are borne by the taxpayer since Medicare
provides near-universal coverage for costs related to kidney failure, irrespective of age. With

1A salient example is colleges – the largest colleges need not be the most desirable. Consider that Stanford
University has an undergraduate enrollment higher than that of MIT. Tuition at Stanford is also higher. One
of the authors of this study claims that MIT has a lower enrollment only because it has a lower capacity and
is therefore more selective. Even when confronted with Stanford’s lower overall acceptance rates, the author
rebuts by suggesting that acceptance rates are a biased measure of selectivity because the applicant pools
are endogenous and different.
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approximately 750,000 patients on dialysis currently in the US, these costs approach 1% of
the national healthcare expenditure (Chapter 10, U.S. Renal Data System, 2020).

Our choice-set shifter measures a facility’s occupancy when patient i begins dialysis using
the difference between the number of patients being treated at the facility when patient i
begins dialysis and an estimated target. We exclude short-term variation in this measure
from patient preferences while controlling for facility fixed effects. As hypothesized, our
measure of caseload predicts whether or not a new patient is admitted into a facility even
after controlling for facility-quarter fixed effects, suggesting that supply-side rationing due to
capacity constraints can constrain a consumer’s choice set. Gandhi (2021) relies on a similar
argument to estimate preferences in nursing homes.

The shifter of consumer preferences is the distance between a facility and a patient’s residence.
We exclude this variable from the choice set formation process but include it in consumer
preferences because dialysis involves several weekly visits. Consistent with the hypothesized
effects, we document that distance to the facility chosen by a patient is higher if nearby
facilities have higher than usual caseloads.

The main challenge in estimating our model is that the number of potential choice sets is
large, even in markets with a few facilities. This curse of dimensionality creates a compu-
tational burden for approaches that integrate over all possible choice sets when computing
the likelihood.2 We solve this problem by estimating a parametric version of our model
using a Gibbs sampler (see also He et al., 2024), which uses data augmentation to condi-
tion iteratively on either choice sets or utilities to address the curse of dimensionality. The
Bernstein-von Mises Theorem implies that the posterior mean of the sampling chain we gen-
erate is asymptotically equivalent to a maximum likelihood estimator (van der Vaart, 2000,
Theorem 10.1).

Our estimates indicate that selective admissions practices are important in the dialysis mar-
ket. The probability that a patient is accepted at their first-choice facility is only 59.1%, and
this probability varies by facility. Because selective admissions push patients to less desirable
facilities, models that do not account for choice set constraints yield biased estimates. Ab-
stracting away from selective admissions would estimate that the largest facilities are also the
most desirable. We compare our approach to alternatives that naively correct for capacity
constraints by including our measure of occupancy in the utility function, and show that
naive corrections yield biased estimates of diversion ratios.

2Prior approaches have either assumed additional restrictions to reduce dimension (e.g., Gandhi, 2021)
or have used non-likelihood-based methods that use a first-stage approximation to a market share function
(e.g. Abaluck et al., 2020).
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Related Literature

A large literature – dating back to Block and Marshak (1960) and Manski (1977) – presents
several specific models with latent constraints on choice sets. A much more recent literature
has analyzed identification in these models, including models of consideration sets (Abaluck
and Adams-Prassl, 2021; Barseghyan et al., 2021b,a); two-sided matching (Diamond and
Agarwal, 2017; He et al., 2024); and consumer search (Abaluck et al., 2020). Our approach
covers models in each of these three groups but is not nested. At the cost of requiring both
shifters of choice sets and of preferences, our results achieve point identification using fewer
functional-form restrictions on preferences (cf. Diamond and Agarwal, 2017; Abaluck and
Adams-Prassl, 2021; Barseghyan et al., 2021b,a; Abaluck et al., 2020; He et al., 2024; Aguiar
et al., 2022) or on the dependence between preferences and choice-sets (cf. Abaluck et al.,
2020; Abaluck and Adams-Prassl, 2021). It is worth reiterating that our non-identification
results show that either two sets of shifters or these additional restrictions are necessary to
achieve identification. Our results also hold under more general conditions than those in
He et al. (2024), which requires additional shifters and non-primitive rank restrictions. We
provide a more detailed comparison as we develop our results.

In addition, we also address endogeneity concerns with estimating demand models, by ex-
tending results in Berry and Haile (2014) to allow for constrained choice sets. This solution
can be useful for a number of applications, such as estimating school demand to study equi-
librium effects (e.g. Neilson, 2020), which has so far abstracted away from selective admission
due to capacity constraints. Similar issues are likely important in other settings where prices
are not the sole market-clearing mechanism.

A small recent literature studies the industrial organization of the dialysis industry. Many
of these studies are based on quasi-experimental research designs (e.g. Dafny et al., 2018;
Wollmann, 2022) or focus on supply-side issues such as investment or quality choice (Grieco
and McDevitt, 2017; Eliason, 2019; Eliason et al., 2020; Kepler et al., 2022). In contrast, our
focus is on estimating demand and the supply-side rationing policies in response to shorter-
term capacity constraints while keeping investment and quality decisions fixed. Previous
approaches to estimating demand in this setting have abstracted away from supply-side
rationing.

Our empirical model is closest to those of selective admission practices in nursing homes
(Ching et al., 2015; Gandhi, 2021), although these papers do not formally consider the iden-
tification. Our identification results also cover models of two-sided matching with fixed prices
(e.g. Agarwal, 2015; Azevedo and Leshno, 2016); models of consumer choice with incomplete
consideration sets (e.g. Manski, 1977; Swait and Ben-Akiva, 1987; Goeree, 2008); models
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with strict capacity constraints (de Palma et al., 2007); and models of consumer stock-outs
(Conlon and Mortimer, 2013; Hickman and Mortimer, 2016). Estimating a more primitive
model than our reduced form supply side requires additional application-specific assump-
tions on the structural model. We discuss the interpretation of our model in these specific
applications in further detail in Section 2.2.

Overview

The paper proceeds as follows. Section 2 presents our model with attention to various
models of supply-side rationing that yield the reduced form we consider. Section 3 presents
the identification results and the estimator. Section 4 describes the dialysis industry and
presents descriptive evidence on supply-side rationing. Section 5 presents the results from
our estimates. Section 6 concludes. All proofs not included in the main text are in the
appendix.

2 Model

We will consider markets, indexed by t, in which agents can be divided into two sets, It

and Jt. We will refer to It as consumers and Jt as products. Consumers, indexed by i ∈ It,
have unit demand. We will say that consumer i is matched with product j ∈ Jt if it is in
the consumer’s choice set and the consumer chooses it. A product can match with many
consumers. The outside option, denoted with 0, is always in the consumer’s choice set.3

Each consumer i participates in only one market t.

2.1 Preferences and Choices

We adopt a random utility model for consumer preferences. The indirect utility of consumer
i for matching with product j is given by

vij = ujt (di, ωi) − gjt (di, yij) , (1)

where di is a vector of observed consumer attributes; yij is a scalar observed attribute that
varies at the consumer-product level; and ωi is a random vector of arbitrary dimension that
introduces unobserved consumer-specific preference heterogeneity. We impose the following
normalizations, which are without loss of generality (Matzkin, 2007): we normalize the utility
of the outside option vi0 to zero for each i; for some known value y0 and a fixed j in each t, we

3This avoids empty choice sets. The loss of generality is limited because the outside option can be defined
as a composite of alternatives outside the market.
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set
∣∣∣∂gjt

∂y
(di, y0)

∣∣∣ = 1 for all di; and we set gjt (di, y0) = 0 for every j, t and di. The restrictions
on vi0t and the partial derivative of gjt (·) are familiar location and scale normalizations.
The restriction that gjt (di, y0) = 0 is without loss because a constant shift in gjt (·) can be
subsumed in ujt (·).
This model places minimal restrictions on the representation of preferences. The term ωi al-
lows for multi-dimensional unobserved heterogeneity, including idiosyncratic product-specific
preference shocks. The functions ujt (·) and gjt (·) are indexed by product and market, allow-
ing them to vary arbitrarily due to both observed and unobserved market-product-specific
attributes. The term di may include attributes that vary at the consumer-product level in
addition to those that only vary at the consumer level. The main distinction between yij

and observables included in di is that yij only affects the indirect utility of product j and is
separable from ωi.
Unlike standard consumer choice models, consumers in our model cannot simply choose their
most preferred product. In education markets, students must be accepted by the school; in
healthcare markets, patients need appointments; in labor markets, applicants need job offers;
in models of consumer search or consideration sets, choice sets are incomplete. For uniformity
in nomenclature, we personify products and say that they must accept the consumer. Let

σijt = σjt (di, ωi, zij) ∈ {0, 1} (2)

denote this latent acceptance decision, where σjt (di, ωi, zij) = 1 denotes that consumer i
was accepted by product j in market t. We refer to the function σjt (·) as the acceptance
policy function. It is indexed by product and market, allowing it to depend on market-
product-specific observables and unobservables. The product’s decision to accept the con-
sumer depends arbitrarily on ωi as well. Therefore, utilities and acceptance decisions may
be correlated due to unobservables.4

The term zij is a consumer-product-specific observable scalar that affects the decision of the
product to accept the consumer but is excluded from the consumer’s utility. As opposed
to di, the scalar characteristic zij can only affect acceptances by product j, not product
k. This implicitly rules out strategic interactions between products based on knowledge of
competitor’s zij, but allows for strategic interactions arising from aggregate market conditions
or from consumer i’s characteristics via the dependence of σjt(·) on t and on di.
We assume that each consumer is matched with their most preferred product that accepts

4This formulation and the results do not impose restrictions on the dependence between indirect utilities
and choice sets. One can write ωi = (ωu

i , ωσ
i ) each of arbitrary dimension, and ujt (·) and σjt (·) only depend

on ωu
i and ωσ

i . At the extremes, ωu
i and ωσ

i could be independent or perfectly correlated.
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them. Formally, consumer i’s (latent) choice set is given by

Oi = {j ∈ Jt : σijt = 1} ∪ {0}

and she picks a product with the highest indirect utility within this set. Let cij ∈ {0, 1} be
an indicator for consumer i matching with j ∈ Oi. We assume that ∑j∈Oi

cij = 1 and cij = 1
only if j ∈ arg maxk∈Oi

vik. If arg maxk∈Oi
vik is not a singleton, then the tie between the

products with the highest indirect utilities is broken independently of yi = (yij)j∈Jt
where t

is the market to which i belongs. Thus, the choice set formation process is the only source
of friction.

We will make the following assumption throughout the paper:

Assumption 1. In each market t, the unobserved term ωi is conditionally independent of
the vector (yi, zi) given di.

This assumption places two substantive restrictions. First, the conditional independence
of ωi from yi implies that each component yij shifts preferences for j without interacting
with consumer-specific unobservables that affect either preferences or choice sets. Second,
zi is similarly an instrument that shifts choice sets without affecting the distribution of
preferences. The assumption does not rule out correlation between yi and zi conditional on
di. The plausibility of these restrictions is specific to the empirical application. For now, we
defer the discussion of these issues for specific context.

We assume that the data are generated by sampling the random vector ωi independent and
identically across consumers. Therefore, for each market t, the choice set and preferences of
consumer i are independent from those of other consumers in market t conditional on the
observables (di, yi, zi), where yi = (yij)j∈Jt

and zi = (zij)j∈Jt
. However, consumer preferences

and choice sets may be correlated within a market via the functions ujt (·), gjt (·) and σjt (·).

These assumptions imply that the share of consumers with observables (di, yi, zi) that are
matched with product j in market t is given by

sjt (di, yi, zi) =
∑

O∈O
P (Oi = O, cij = 1| t, di, yi, zi) ,

where Ois the set of all possible choice sets. The data consists only of these market shares
for each value of (di, yi, zi) in its support. Assumption 1 implies that the shares sjt (·) can be
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re-written as

sjt (di, yi, zi) =
∑

O∈O
P (cij = 1|Oi = O, t, di, yi, zi)P (Oi = O| t, di, zi) . (3)

The first term in the summand is the probability that a consumer with attributes (di, yi, zi)
is matched with product j when faced with the choice set O, whereas the second term is the
probability of choice set O given (di, zi). Assumption 1 allows us to omit the conditioning
on yi when writing the second term. However, we cannot omit zi from the first term because
of dependence between preferences and choice sets due to ωi, which is often not allowed in
the prior literature. Since the distribution of ωi conditional on Oi = O depends on zi, the
distribution of cij conditional on Oi = O also depends on zi.
We assume that product j is more likely to be in consumer i’s choice set if the shifter zij is
lower:

Assumption 2. The function σjt (di, ωi, zij) is non-increasing in zij.

Define the cutoff quantity, πjt (di, ωi) = sup {z : σjt (di, ωi, z) = 1} where we adopt the con-
vention that πjt (di, ωi) = ∞ if σjt (di, ωi, z) = 0 for all z and πjt (di, ωi) = −∞ if σjt (di, ωi, z) =
1 for all z. Under assumption 2, the function πjt (·) determines product j’s acceptance pol-
icy for almost every z since z < πjt (di, ωi) implies σjt (di, ωi, z) = 1, and z > πjt (di, ωi)
implies σjt (di, ωi, z) = 0. However, the acceptance policy function can take any value when
z = πjt (di, ωi).
Our target primitive for each market t is the joint distribution of the random vector (uit, πit) =
(u1t (di, ωi) , . . . , uJtt (di, ωi) , π1t (di, ωi) , . . . , πJt,t (di, ωi)) conditional on di and t, and the
function gjt (·). To see why, consider the special case in which (uit, πit) admits a density.
Re-write equation (3) noting that ties in utility and acceptance cutoffs are zero-probability
events:

sjt (di, yi, zi) =
∑

O∈{O∈O:j∈O}

∫ ∫
1 {uijt − gjt (di, yij) ≥ uikt − gkt (di, yik) ∀k ∈ O}

×
[∏

k /∈O
1 {πikt < zik}

∏
k∈O

1{πikt > zik}
]
fU,Π|di,t (uit, πit) duitdπit. (4)

Hence, the vector of market shares in t is determined by FU,Π|di,t (uit, πit) and the functions
gjt (·). This joint distribution also determines the effects of changes in yij and zij on consumer
and producer surplus.
This equation also shows that market shares depend both on the preferences of the consumers
and the acceptance policies. Thus, unlike in standard models of consumer demand, the
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market share of product j is not equal to the fraction of consumers who prefer j to all other
products. Therefore, commonly used demand-inversion methods (cf. Berry, 1994; Berry et
al., 1995, 2013) are not applicable in our model.

2.2 Examples

We start by showing that our preference model accommodates commonly used random utility
models. Then, we work out several examples that yield constrained consumer choice sets that
are compatible with our acceptance policy function.

Example 1. (Preference Model) We encompass widely used discrete choice models with
random coefficients and product-specific unobservables ξjt (e.g. Berry et al., 1995):

vij = diΓxjt + xjtβi + yij + ξjt + εij,

where each individual i belongs to only one market t. We can nest this specification by
setting ujt (di, ωi) = diΓxjt + xjtβi + ξjt + εij, ωi = (βi, εi1, . . . , εiJt) and gjt (di, yij) = −yij.
The price of good j in market t can be included as an observed characteristic in xjt. Our
identification results will accommodate most commonly used distributional assumptions on
εij, including those for the logit or nested-logit models. We can also the pure characteristics
model of Berry and Pakes (2007).

Example 2. (Selective Admission in Healthcare) Our acceptance policy function accommo-
dates the supply-side model for skilled nursing facilities in Gandhi (2021). Facility j accepts
a new patient i if the patient’s profitability exceeds a threshold that depends on the facility’s
current caseload:

σijt (di, ωi, zij) = 1 {NPVjt (ωi, di) + Vj (zij + 1) − Vj (zij) > 0} ,

where NPVjt (ωi, di) denotes the present value of variable profits from patient i at facility j,
and Vj (zij + 1) − Vj (zij) is the change in the continuation value given current caseload zij.
The difference Vj (zij)−Vj (zij + 1) is the opportunity cost of accepting a new patient, which
Gandhi (2021) shows, is increasing in zij.

Example 3. (Two-Sided Matching) Our framework encompasses empirical models of two-
sided matching markets with non-transferable utility. Examples include the matching of
students to schools or colleges, and entry-level labor markets with fixed pay scales (e.g.
Agarwal, 2015). Let ejt(di, ωi, zij) be an unknown rule that school or college j employs in
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market t to evaluate candidates. For example, in the case of college acceptances, di may con-
tain demographic information and observable exam scores, ωi includes unobservable essay
quality or other hard-to-codify aspects of an application, and zij is an observed charac-
teristic that varies at the student-school level. Azevedo and Leshno (2016) showed that a
pairwise stable allocation in a many-to-one model can be described by school- and market-
specific cutoffs pjt such that each agent i is assigned to her most preferred facility in the set
Oi = {j ∈ Jt : ejt(di, ωi, zij) ≥ pjt}∪{0}. Thus, σijt = 1 {ejt(di, ωi, zij) − pjt > 0} .The identi-
fication of a similar many-to-one matching model was studied in He et al. (2024). Our results
require fewer exogenous shifters and place fewer restrictions on primitives, a comparison that
we further flesh out in section 3.

Example 4. (Consideration Sets) Several models in marketing and economics assume that
consumers choose among the subset of products in the market (see Manski, 1977; Swait and
Ben-Akiva, 1987; Goeree, 2008). In our framework, product j belongs to the latent consid-
eration set Oi if σjt (di, ωi, zij) = 1. Since di and ωi are arguments in ujt (·), consideration
sets can be correlated with utilities. The main requirement of our model is that there are
consumer-product-specific characteristics zij that affect the probability that product j be-
longs to i’s consideration set. This requirement is satisfied by a number of microfoundations.
We discuss a few below:
Brand Awareness: Butters (1977) models advertising as affecting the probability with which
a consumer is informed about a product. Goeree (2008) estimates an empirical model that
uses the interaction between a product’s advertising expenditure and a consumer’s exposure
to advertising to construct zij. Another example is Gaynor et al. (2016), which models a
physician who determines a patient’s consideration set. Consideration sets are likely to be
correlated with preferences in this setting, as is allowed in our framework.
Inattention and Defaults: Consumers in some models are inattentive and choose a default
unless sprung into action (e.g. Hortaçsu et al., 2017). These models often feature strong
defaults where only the characteristics or utility of the default option influences attention
(e.g. Abaluck and Adams-Prassl, 2021). In some of these models, attention is binary where a
consumer either pays attention to all products or none. Our framework allows some products
to be more likely to be considered than others, but requires product-specific consideration
with zij as a shifter.
Fixed Sample Search: Models of fixed sample search often feature choice over a latent subset
of heterogeneous products (see Honka, 2014; Honka et al., 2017, for example). Assume that
consumers know their preferences for each product except for the prices. The consumer pays
a search cost to obtain price quotes for a set of products determined based on ex-ante beliefs
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(Chade and Smith, 2006). Thus, the decision to search for a product is given by the search
policy function σjt (·).

In our framework, let yij be the price that is unobserved by the consumer prior to search. The
realized values of σijt can depend on the ex-ante price distribution, the other components
of indirect utility, and search costs. Thus, σijt can be correlated with vijt, but it is not
a deterministic function of vijt.5 We also require an observable zij that is excluded from
preferences but shifts the probability that consumer i searches for product j. Examples may
include informative advertising or distance to the product – the former through awareness
and the latter through search costs – while being independent of preferences.

Stock-outs: Consider a case in which a product may be stocked out when a consumer arrives.
Hickman and Mortimer (2016) distinguish two data environments depending on whether
stock-out events are observed or not. When stock-out events are observed, they are useful
for estimating demand cross-elasticities as in Conlon and Mortimer (2013). Alternatively, a
product may or may not be available for all consumers within a market in which case, the
aggregate market share of the product will be zero in that market (see Dube et al. (2021)).
In this case, choice sets are effectively observed.6 However, when the dataset does not
directly yield specific stock-out events, consumer choice sets are latent and cross-elasticities
are generally not identified. We model latent choice sets by letting σijt denote whether
product j was available at the time agent i arrived. The choice set shifter zij may be the
time lag between when product j was last restocked and when consumer i checked out. Our
results imply that variation in zij can restore identification of demand.

3 Identification

Subsection 3.1 shows identification of the joint distribution FU,Π|di,t and the function gjt (·).
Identifying the distribution of uit in a neighborhood and the derivative of the function gjt (·)
is sufficient for identifying changes in demand in response to changes in yi and for performing
welfare analysis if gj (di, yi) is an appropriate numeraire. Identifying πit allows us to obtain
σjt (·), which are product-specific acceptance policy functions. Subsection 3.2 shows that
choice-set shifters are necessary for the aforementioned identification results.

5Models of sequential search do not naturally fit our framework because the decision to continue searching
depends on the highest utility amongst the goods already searched (Weitzman, 1979). In this case, yij cannot
be excluded from σkt (·) .

6Dube et al. (2021) also require an observable that shifts choice sets that is excluded from demand, but
make progress using a shifter that is product-specific because choice sets are common to all consumers within
a market.



13

This analysis will condition on di and t, focusing on within-market variation in (yi, zi). The
conditioning on t fixes product-level observables and unobservables for all products in a
market. In subsection 3.3, we will micro-found the dependence of ujt (·), πjt (·) and gjt (·) on
observed and unobserved product attributes xjt and ξjt, allowing for endogeneity in xjt. We
will then show how instruments can be used to address this endogeneity, which allows us to
identify the effects of changing xjt while holding ξjt fixed on market shares.

3.1 Identification within a market

We will build the main result of this subsection (theorem 1) in two steps. First, lemma 1
shows identification given that the functions gj (·) are known (section 3.1.1). Second, lemma
2 shows that the functions gj (·) are identified under slightly stronger assumptions (section
3.1.2). These two results together will imply our main theorem (section 3.1.3). Throughout
this subsection, we omit the market subscript t because we condition on it.

3.1.1 Identification with known g (·)

Let ui = (uj (di, ωi))j∈J , πi = (πj (di, ωi))j∈J and σi = (σj (di, ωi, zij))j∈J . If g (·) = (gj (·))j∈J

is known, identification of the joint distribution of (ui, πi) given di, which implies identification
of the joint distribution of (vi, σi) given (di, yi, zi), can be achieved without any further
assumptions.

Lemma 1. Fix di. Suppose that assumptions 1 – 2 are satisfied, and g (·) is known. Let χ
be the interior of the support of (g, z) given di. The joint distribution of (ui, πi) conditional
on (ui, πi) ∈ χ and di is identified.

Proofs are in appendix A. The idea is best described with the aid of two figures. Assume
for this illustration that (u, π) admits a density, a requirement that is not necessary for
our formal results. Consider the probability that a consumer is not matched to any of the
products in the market. This probability, which is observed, is equal to the probability that
for every product j either uj < gj or πj < zj, where ties are zero probability events. The
cross-hashed region in figure 1(a) shows this set projected on the u1 − π1−hyperplane. That
is, the random variables u2, . . . , uJ and π2, . . . , πJ are marginalized conditional on uj < gj or
πj < zj for j > 1. The point (ḡ1, z̄1) collects the first components of any vector (ḡ, z̄) ∈ χ,
which we fix in the remainder of the argument. Now, consider a small ∆ > 0 such that all
points that are at most ∆ away from each component of (ḡ, z̄) belong to the interior of the
support of g (·) and z. Perturb z̄1 by ∆ to obtain the region between z̄1 and z̄1 + ∆ that lies
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above ḡ1. The probability that (u1, π1) falls within this region is equal to the increase in the
probability from a consumer remaining unmatched at (ḡ, z̄) to remaining unmatched when z̄1

is increased by ∆. This is because the change from z̄1 to z̄1 + ∆ only affects consumers who
would like to match with product 1 but the product drops out of the choice set due to this
change. Since this increase in probability is observed, we can determine the probability that
(u1, π1) belongs to the set [ḡ1,∞) × [z̄1, z̄1 + ∆]. Using a similar argument and subtracting
observed probabilities, we can determine the probability that (u1, π1) belongs to the yellow
square, with u2, . . . , uJ and π2, . . . , πJ marginalized as before. We can determine the density
at the point (ḡ1, z̄1), marginalized over the other components, by considering an arbitrary
small ∆.

In the special case when J = 1 so that there is only one inside option, the perturbations
above have intuitive interpretations. Specifically, variation in ḡ1 only affects the match of
consumers on the margin between choosing the sole inside option and the outside option, and
variation in z̄1 affects the match of consumers that are on the margin of being acceptable for
product 1. Together, these two perturbations yield the density at the point (ḡ1, z̄1).

The argument outlined above only provides us with the marginal density of (u1, π1). This is
because the shaded yellow box in figure 1(a) is a projection on the u1−π1−hyperplane. When
projected on the u2 − π2 hyperplane, the set still has the L-shape implied by the conditions
u2 < ḡ2 or π2 < z̄2. The yellow region in figure 1(b) illustrates this set projected on the
u1 − u2 − π2 hyperplane for a particular value of (ḡ, z̄). Observe that this region conditions
on the event that u2 < ḡ2 or π2 < z̄2 in order to focus on the set of consumers that would
not be matched with product 2 if ḡ1 or z̄1 were perturbed.

Our approach uses mathematical induction to extend this argument to higher dimensions,
ultimately recovering the joint distribution of (u, π). The inductive step is also illustrated
in figure 1(b). We can perturb z̄2 to z̄2 + ∆ and repeat the steps of perturbing z̄1 and ḡ1

at the value z̄2 + ∆ to obtain the probability that u2 < ḡ2 or π2 < z̄2 + ∆, while focusing
on consumers such that (u1, π1) ∈ [ḡ1, ḡ1 + ∆] × [z̄1, z̄1 + ∆]. Similarly, we can perturb ḡ2 to
ḡ2 + ∆ to obtain the analogous quantity at ḡ2 + ∆. Subtracting these two quantities yields
the probability that (u2, π2) ∈ [ḡ2, ḡ2 + ∆] × [z̄2, z̄2 + ∆], (u1, π1) ∈ [ḡ1, ḡ1 + ∆] × [z̄1, z̄1 + ∆]
and for j > 3, uj < ḡj or πj < z̄j. This set is the cross-hashed cube in Figure 1(b).

Although an illustration in higher dimensions is challenging, this process can be used to
determine the probability that (u, π) belongs to ∏J

j=1 [ḡj, ḡj + ∆] × [z̄j, z̄j + ∆]. This proba-
bility, for arbitrarily small ∆, yields the density of (u, π) if it exists. The proof formalizes this
intuition without requiring that (u, π) admits a density by identifying the mass accumulated
in sets that generate the Borel sigma algebra.
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ḡ2 + ∆ḡ2 + ∆

((b)) Three Dimensions

Figure 1: Identification
The message of the result is intuitive. Two sets of instruments, one that shifts choice sets and
one that shifts preferences, can be used together to identify the distribution of utilities and
acceptance decisions. The argument uses the variation in match probabilities with respect
to the shifters g and z for preferences and acceptance decisions, respectively. Assumption 1
implies that each shift leaves the joint distribution of (u, π) unchanged. And, since π implies
the vector of acceptance decisions σ for a given z, the result implies the identification of
acceptance decisions jointly with the distribution of indirect utilities, u.

This argument is closely related to prior work in He et al. (2024), which shows identification
in models of two-sided matching markets while relaxing previous restrictions on preference
heterogeneity (e.g. Diamond and Agarwal, 2017). Although He et al. (2024) (henceforth HSS)
show a result similar to lemma 1, there are three ways in which the results in HSS require
stronger assumptions. First, HSS requires exogenous continuous variation in di, yi and zi

(see Condition 3.3 and Proposition 3.4 in HSS), while we dispense with any requirement of
variation (continuous or not) in di. Second, HSS identifies the functions uj (di), gj (yij) and
πj (di) in a first step using a non-primitive rank condition.7 While we take g (·) to be given

7In our notation HSS assume vijt = ujt (di) − gjt (yij) + ωijt, σijt = 1 {πjt (di) − hjt (zij) + ηijt > 0} .
Their results assume a rank condition on the matrix of derivatives of market shares with respect to each
of the observable characteristics (Condition 3.3, HSS). One interpretation of lemma 1 is that it provides a
primitive condition for their results in a more general model. In appendix B, HSS also show identification of
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for now, our assumptions in section 3.1.2 for identifying this function can be verified from
model primitives. Third, HSS require that the unobservable ωi is separable from both di and
yij so that vij = uj (di)+ωu

ij −gj (yij) and πij = πj (di)+ωπ
ij. This restriction rules out models

with non-separable unobserved heterogeneity, which include characteristic space models (e.g.
Berry and Pakes, 2007) and certain other random coefficient models.8 Our approach allows di

and ωi to be non-separable. Finally, section 3.3 considers a model with endogenous product
characteristics.

3.1.2 Identification of g (·)

The results above assume that the functions gjt (·) are known. We will now show that gj (·)
is also non-parametrically identified under weak assumptions.

Definition 1. Goods j and k are strict substitutes in y at (di, yi, zi) if ∂
∂yik

sj (di, yi, zi) and
∂

∂yij
sk (di, yi, zi) exist and are non-zero.

This notion is a mild strengthening of requirements imposed in equation (1) and assumption
1, which together imply that the market share of each good k is weakly increasing (decreasing)
in yij if gj (di, yij) is weakly increasing (decreasing) in yij. It further requires the existence of
cross-partials and assumes that they are non-zero.

Define Σj,k (di, yij, yik) = 1 if there is ȳi and zi in their respective supports such that goods
j and k are strict substitutes in y at (di, ȳi, zi), ȳij = yij, and ȳik = yik. For two goods j
and k, we say that there is a path connecting two values yj and yk, respectively, if there is
a sequence of goods ml and values of yl, (j, yj) = (m1, y1) , (m2, y2) , ...., (mn, yn) = (k, yk),
such that for all l = 2, ..., n, Σml−1,ml

(di, yl−1, yl) = 1.

Assumption 3. For every di, every good k, and almost all values of yik in its support, there
exists a path connecting good k and value yik, (k, yik), to the reference good j and the reference
value y0, (j, y0), for which we have normalized

∣∣∣∂gj(di,y0)
∂y

∣∣∣ = 1 .

This substitutes assumption is weaker than requiring strict substitution between every pair of
goods at all values of yi and zi. Moreover, the condition is testable. In our model, there are at
least two important reasons why a given pair of goods j and k may not be substitutes. First,

certain derivatives of indirect utility functions with non-separable unobserved heterogeneity. However, these
results are not sufficient for identification of the distribution of preferences.

8In appendix A, He et al. (2024) also show identification of certain derivatives of indirect utility functions
with a particular form of non-separable unobserved heterogeneity that is not nested in our model. The results
in that appendix are not sufficient for identification of the distribution of preferences.
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preferences for goods may restrict substitution patterns between goods that are considered.
Salient examples include models with vertical preferences where consumers only substitute
to goods that are adjacent in quality ranking or the pure characteristics model of Berry and
Pakes (2007). Nonetheless, these models often admit a path connecting any pair of goods,
thereby satisfying assumption 3 (see Berry et al., 2013, for related ideas). Second, choice
sets may restrict substitution in demand. For example, if latent choice sets are of the form
that goods j and k never appear in the choice set together, then the relevant cross-partials of
the shares of these goods would be zero. However, there will still be a path connecting two
values of their shifters yj and yk, if there is a third good, l and a shifter value yl, such that
the pairs {j, l} and {l, k} are strict substitutes. Furthermore, the values of yi and zi at which
{j, l} are strict substitutes can be different than those at which {l, k} are strict substitutes.

Proposition 2 in the appendix shows weak primitive conditions under which goods j and k

are strict substitutes. It shows that goods j and k are strict substitutes in yi at (di, yi, zi) if
the pair of goods {j, k} belong to the choice set Oi with non-zero probability, the derivatives
of gj (di, ·) and gk (di, ·) are non-zero, and the joint distribution of indirect utilities implies
substitution between the goods in demand. This requirement is satisfied for well-behaved
pure characteristics models, including versions with vertical preferences. Hence, a researcher
may justify assumption 3 by either evaluating the assumption directly in the data or arguing
for the sufficient conditions based on proposition 2 or corollary 3.

While assumptions 1 and 2 have allowed for atoms in the joint distribution of (ui, πi), as-
sumption 3 requires that some regions admit a density between pairs of components of ui. If
the distribution of ui (conditional on di) has an atom at g (di, yi), then s (di, yi, zi) may not
be differentiable with respect to yi at that value even if the function g (di, yi) is differentiable.
We view this restriction as mild.

Finally, we require support and regularity conditions to identify g (·):

Assumption 4. (i) The support of the random vector yi, denoted Y , is rectangular with a
non-empty interior.

(ii) For each di and j, the function gj (di, yj) is continuously differentiable in yj.

Part (i) places a weak requirement on the support of Y that is used mostly for tractability
and allows us to write Y = ∏

j Yj where Yj is a non-empty closed interval. Part (ii) implies
that the functions gj (di, yj) are smooth with respect to the second argument.

Lemma 2. Suppose that assumptions 1, 3 and 4 hold and |J | > 1. Then, for every j ∈ J ,
the function gj (di, ·) is identified for all yj ∈ Yj.
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The argument first identifies the ratio of g′
k (di, yik) and g′

j (di, yij) for goods j and k that are
strict substitutes in y at (di, yi, zi). Consider the inclusive value of a consumer conditional
on (di, zi, yi). Dropping the conditioning on di and zi, this inclusive value is given by

V ∗ (g (yi)) =
∑

O∈O
E
(

max
j∈O

uj (ωi) − gj (yij)
∣∣∣∣O, g (yi)

)
P (O) ,

where g (yi) =
(
g1 (yi1) , . . . , gJ

(
yi|J |

))
and assumption 1 implies that the probability that

P (O) does not depend on yi. The envelope theorem implies that ∂V ∗(g(yi))
∂gj

= −sj (yi) . This
result is a version of Roy’s identity for stochastic choice models (see McFadden, 1981), but for
models with latent choice set constraints.9 Assume that V ∗ (g) is twice-continuously differ-
entiable, a requirement that our proof dispenses with but is useful for exposition. Then, the
partial derivative of this equation with respect to yik yields that ∂sj(yi)

∂yik
= −∂2V ∗(g(yi))

∂gj∂gk
g′

k (yik) .
Taking the ratio of the partial derivatives of sj (·) with respect to yik and of sk (·) with respect
to yij, we identify the following ratio by applying Young’s theorem:

g′
k (yik)
g′

j (yij)
= ∂sj (yi)

∂yik

/
∂sk (yi)
∂yij

. (5)

If all pairs of goods are strict substitutes at all values of (yi, zi) (for each di), we could directly
use the normalizations that gj (y0) = 0,

∣∣∣∂gj(y0)
∂y

∣∣∣ = 1 and assumption 4 to solve for gk (·) and
gj (·). Although not all pairs of good are strict substitutes, assumption 3 guarantees that
there is a path connecting good k for almost all values of yik to the reference good j at the
reference value y0. Thus, the ratio of derivatives g′

k(yik)
g′

j(yij) = ∏n
l=1

g′
jl
(yijl)

g′
jl−1(yijl−1) is identified. The

normalizations that gj (y0) = 0,
∣∣∣g′

j (y)
∣∣∣ = 1 and assumption 4 can again be used to solve for

gk (·) and gj (·).

As argued above, each function gjt (di, ·) can be identified when J > 1 under the assumptions
outlined earlier. If |J | = 1, we can assume without loss that gj (di, ·) is known as long as it
is monotonic since the outside option is normalized to zero.10

This result, which shows the identification of g (·), allows us to achieve identification without
relying on quasi-linear special regressors. It differentiates our approach from that of Abaluck
and Adams-Prassl (2021), which identifies three specific models of consideration set formation
using departures from Slutsky symmetry of choice probabilities with respect to y. Instead,
our model allows for asymmetries to arise from the non-linearity of indirect utilities in yij.
The cost of this generality is the need for choice-set shifters.

9This proof technique is related to but not derivative of the methods used in Allen and Rehbeck (2019)
to consider latent utility models with additive heterogeneity but without latent choice sets.

10To prove this claim, assume that g1 (·) is increasing and note that the market share of good 1 conditional
on (y, z) is s (y, z) =

∫
1 {u1 (ω) > g1 (y1) , π (ω) > z1} dFω =

∫
1
{

g−1
1 (u1 (ω)) > y1, π (ω) > z1

}
dFω where

the equality follows because g1 (·) is monotonically increasing. Thus, the model is observationally equivalent
to one in which u1 (·) is replaced with g−1

1 (u1 (·)), and y1 enters linearly.
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3.1.3 Main Result

Lemmas 1 and 2 above yield the main identification result of the paper:

Theorem 1. If assumptions 1 – 4 hold and |J | > 1, then for every di, (i) the function gj (di, ·)
is identified for every j ∈ J and yj ∈ Yj, and (ii) the joint distribution of ui and πi conditional
on di is identified for every value (u, π) in the interior of g (di, Y ) ×Z = ∏J

j=1 gj (di, Yj) ×Z,
where gj (di, Yj) is the image of the set Yj under gj (di, ·) and Z is the support of the random
vector zi.

Proof. The result follows immediately from Lemmas 2 and 1. The techniques used in this
section rely only on local variation in the shifters yi and zi. The benefit of this approach
is that it does not lean on “identification at infinity” arguments (see He et al., 2024, for
example). For example, an alternative method for identifying the distribution of indirect
utilities would be to focus on extreme values of zi under which consumers can choose any
product in the market and then rely on previous results. Such an argument would extrapolate
the preferences of all consumers from a subset.

Of course, we can learn about the distributions of ui and πi in only the regions that correspond
to the support of the observables. When the observables have full support, we can identify
the joint distribution of (πi, ui) conditional on di everywhere:

Corollary 1. Suppose the hypotheses of theorem 1 hold. If the support of (ui, πi) is a subset
of int (g (di, Y ) × Z), the joint distribution of ui and πi conditional on di is identified.

This joint distribution of ui and πi contains information about a host of economic phenomena
based on unobservable factors. For example, the correlation between uij and uij′ implies that
products j and j′ are close substitutes., i.e. consumers who like one tend to also like the other
one. Correlation between πji and πj′i suggests that products j and j′ tend to prefer the same
set of consumers. Moreover, the correlation between uij and πji suggests that consumers
tend to prefer products that are likely to admit them.

Although local variation in (yi, zi) is useful, the effects on the probability that j is chosen
from the set O ⊇ {j} or on the probability that O is the choice set requires full or large
support assumptions on (g (d, Y ) , Z). An alternative approach to these support assumptions
is to further restrict the model (see, for example, Aguiar et al., 2022). The trade-off between
these strategies is context-specific.
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3.2 Necessity of Choice Set Shifters for Identification

One might conjecture that choice set shifters are not necessary because a model with full
choice sets is testable as long as an additively separable shifter of preferences is available.
One rationale goes as follows: suppose that assumption 1 is satisfied, the joint distribution
of (πi, ui) admits a continuous density function, and P (O = J) = 1. The density of indirect
utilities at a point g ∈ RJ can be recovered either by using only local variation in g in the
market share of the outside good or the market share in any good j.11 Since the densities
recovered in these two alternative ways must be equal to each other, the model is over-
identified. Thus, it may be possible for the restrictions implicit in the model to discriminate
between preferences and latent choice sets.
Our next result shows that this conjecture is false. That is, without further restrictions, it is
not possible to identify both the distribution of latent choice sets and indirect utilities unless
both sets of shifters are available.

Proposition 1. Suppose assumption 1 is satisfied, and the joint distribution of ui admits
a density function. Further, assume that the support of zi is a singleton {z̄} and g (di, yi)
is observed and has full support on R|J |. If there exists an open set B ⊂ R|J | and a choice
set O ⊊ J such that for all u ∈ B, fU (u) > 0 and P (O|u) > κ > 0, then fU (u) is not
identified.

The result shows that if variation from a shifter of choice sets is not available, then we cannot
recover the distribution of utilities if we allow for incomplete latent choice sets. Therefore,
the conclusions of lemma 1 and theorem 1 do not hold. Our proof explicitly constructs an
alternative distribution of indirect utilities and latent choice set probabilities that result in
an identical market share function. Intuitively, we can explain the probability that a product
is chosen either using preferences conditional on a choice set or using the probability that a
product is in the choice set.
The non-identification argument assumes that the preference shifter has full support. The
under-identification issue would be more severe if the support of g (di, yi) is more limited
or if g (·) were unknown. The main assumption is that choice sets cannot be complete for
all values of u. As discussed above, if latent choice sets are complete, the distribution of
preferences is over-identified under the remaining assumptions.
The result indicates that the conditions in theorem 1 are sharp. Any alternative to using
shifters of choice sets would require further restrictions on the model. There are two such

11Observe that s0 (g) =
∫

1 {u ≤ g} fU (u) du and sj (g) =
∫

1 {uj − gj > 0}
∏

k ̸=j 1 {uk ≤ uj + g̃k} fU (u) du

where g̃k = gk − gj . Thus, ∂|J|s0
∂g1...∂g|J|

(g) = ∂|J|s0
∂g̃1...∂g̃j−1∂gj∂g̃k...∂g̃|J|

(g) = fU (g) .
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approaches that we are aware of. The first, proposed in Abaluck and Adams-Prassl (2021),
uses specific models of choice set formation. The second approach, proposed in Barseghyan
et al. (2021a) and Aguiar et al. (2022), uses a characteristic space model for the distribution
of preferences (e.g. Berry and Pakes, 2007). In this approach the distribution of indirect
utilities lies in a lower-dimensional manifold of R|J |, which cannot allow for idiosyncratic
product-specific preferences. Our approach does not require these a priori restrictions.

3.3 Introducing Endogeneity

A challenge in estimating discrete choice demand systems is that unobserved characteristics
lead to bias (Berry, 1994; Berry et al., 1995). Following this literature, assume that indirect
utilities and the selectivity threshold can be written, with a slight abuse of notation, as:

uijt = ũ
(
xjt, ξ

u
jt, ωi

)
πijt = π̃

(
xjt, ξ

π
jt, ωi

)
,

where ξu
jt and ξπ

jt are scalar unobservables, xjt denotes a vector of observable product charac-
teristics that are potentially correlated with the unobservables ξjt =

(
ξu

jt, ξ
π
jt

)
, and u (·) and

π (·) are unknown functions. We have dropped di from the notation because our arguments
condition on it. Thus, the unobservable ξjt is implicitly di−specific. The combination of the
assumptions that (i) the unobservables are scalars and (ii) the unknown functions are not
indexed by j and t, makes this specification more restrictive than the ones analyzed in the
prior subsections.
12

We assume that the data-generating process starts by sampling markets with characteris-
tics of all the products in market t, namely (xt, ξt) = {xjt, ξjt}j, drawn i.i.d. from a joint
distribution that is common across markets. Then, ωi and (yi, zi) are drawn i.i.d. across
consumers in a market, with ωi ⊥ (yi, zi) as before. Unlike prior subsections, the results in
this subsection will exploit both cross-product and cross-market variation. We will therefore
include the market index t for clarity.

Our goal is to identify the joint distribution uit, πit|xt, ξt. Our previous results could not
separate the effects of observables and unobservables because they conditioned on t. Now we
aim to identify how the distribution of (uit, πit) varies with xt and ξt. Knowledge of these
distributions is necessary for identifying counterfactual choices or choice sets with exogenous

12We can also allow for observables in gjt (·) that may be correlated with unobservables ξg
jt. Theorem 1

and corollary 1 imply that gjt (yij) is identified on the support of yij in each market t. When gjt (yij) takes
the form g

(
xjt, ξg

jt, yij

)
and xjt is potentially correlated with ξg

jt, then identification of the function g (·, ·, ȳ)
for a fixed value of ȳ follows from existent results for non-linear IV models (e.g. Chernozhukov and Hansen,
2005).
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changes in xt.

We make the following restriction on u (·) and π (·) :

Assumption 5. Index restrictions. xjt can be partitioned into
(
x∗

jt,
(
xδ

jt, x
γ
jt

))
such that

indirect utility and acceptance thresholds take the form uijt = u
(
x∗

jt, δjt, ωi

)
and πijt =

π
(
x∗

jt, γjt, ωi

)
, where δjt = xδ

jt + ξu
jt and γjt = xγ

jt + ξπ
jt.

The index restrictions above are similar to those imposed in Berry and Haile (2014) to
identify demand without choice-set constraints. Although the observable components xδ

jt

and xγ
jt are one-dimensional, this restriction is inessential in a linear model as long as one

of the components is known to have a non-zero coefficient because the model can be re-
normalized. In other words, the observables xδ

jt and xγ
jt set the units for ξjt. 13 Finally, the

observables xδ
jt and xγ

jt may be the same although this is not required as long as x∗
jt does not

contain
(
xδ

jt, x
γ
jt

)
.

We now turn to the key assumption that forms the basis of our solution:

Assumption 6. Invertibility. There exists a function ψ (·, ·;x∗) such that for any two mar-
kets t and t′ with x∗

t = x∗
t′ = x∗ , ψ (δt, γt;x∗

t ) = ψ (δt′ , γt′ ;x∗
t′) implies (δt, γt) = (δt′ , γt′).

Moreover, for each market t, ϕt = ψ (δt, γt;x∗
t ) is known.

We need that (δt, γt) is invertible in the observable quantity ϕt. It is worth emphasizing that
the analyst need not know the function ψ (·), only the realized value of ϕt for any market.
This assumption parallels the literature on the identification of demand. Specifically, Berry
and Haile (2014) assume that the index of demand – δt in our case – is invertible in the vector
of market shares – ϕt in our notation – and the unknown function maps δt to market shares
– ψ (·) in our notation. Primitive conditions for invertibility in the case of demand (without
constraints) are studied in Berry et al. (2013).

Our approach is similar. Recall that theorem 1 and corollary 1 show that the joint distribution
of (uit, πit) is identified on the support of (g (Y ) , Z). To solve the endogeneity problem, we
will require the analyst to place sufficient primitive restrictions on the model to guarantee
that these features identify ϕt.

We present two examples that satisfy assumption 6 below:
13Linearity can also be relaxed. The case when δjt = δ̃ (xjt) + ξu

jt and likewise for γjt follows from
an extension based on results in Matzkin (2007). The non-separable case follows from Chernozhukov and
Hansen (2005), which requires strengthening the mean-independence restriction in assumption 1(i) below.
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Example 5. Suppose that (δjt, γjt) and x∗
jt are additively separable in both utility and

acceptance,
u
(
x∗

jt, δjt, ωi

)
= u0 (δjt, ωi) + u1

(
x∗

jt, ωi

)
π
(
x∗

jt, γjt, ωi

)
= π0 (γjt, ωi) + π1

(
x∗

jt, ωi

)
,

and that E [u0 (δjt, ωi)| δjt] and E [π0 (γjt, ωi)| γjt] are strictly monotonic in δjt and γjt, re-
spectively. The linear random coefficients preference model (example 2.2) satisfies these as-
sumptions. Taking expectations conditional on market observed characteristics and indices,
we get that

E [uijt| δt, x
∗
t ] = E [u0 (δjt, ωi)| δjt] + E

[
u1
(
x∗

jt, ωi

)∣∣∣x∗
jt

]
E [πijt| γt, x

∗
t ] = E [π0 (γjt, ωi)| γjt] + E

[
π1
(
x∗

jt, ωi

)∣∣∣x∗
jt

]
,

where the equality follows because ωi is independent of (δ, γ, x∗). This model satisfies as-
sumption 6 with ψ (δt, γt;x∗

t ) = {E [uijt| δt, x
∗
t ] , E [πijt| γt, x

∗
t ]}. Large support of (Y, Z) is

sufficient to identify these expectations (see corollary 1).

Example 6. Assumption 6 also holds under weaker requirements on support but stronger
functional form assumptions. Consider the following vertical model:

u
(
x∗

jt, δjt, ωi

)
= αiu0

(
δjt, x

∗
jt

)
π
(
x∗

jt, γjt, ωi

)
= βiπ0

(
γjt, x

∗
jt

)
,

for positive valued functions u0 and π0 that are strictly monotone in their first argument. As-
sume that ωi = (αi, βi) has support on R2

+. If the joint distribution of (αi, βi) is unimodal and
the support of (Y, Z) in market each t identifies the mode of

(
u
(
x∗

jt, δjt, ωi

)
, π
(
x∗

jt, γjt, ωi

))
(via corollary 1), then assumption 6 follows with ψ (δt, γt;x∗

t ) equal to the 2J vector with the
mode of the joint distribution of uijt and πijt in the j and j + J positions. Note that this
support condition on (Y, Z) is weaker than those needed to identify expectations. Moreover,
the assumption that ωi is unimodal is testable.

Finally, we require the availability of instruments for xt, which may be endogenous:

Assumption 7. (i) Availability of instruments. E [ξt| rt] = 0 for all rt.14

(ii) Completeness. For any function B (ϕt, x
∗
t ) with finite expectation, E [B (ϕt, x

∗
t )| rt] = 0

a.e. in rt implies that B (ϕt, x
∗
t )=0 a.e. in (ϕt, x

∗
t ).

This assumption is standard in the analysis of non-parametric instrumental variable models
(see Newey and Powell, 2003) and is also required by Berry and Haile (2014). The com-
pleteness condition in part (ii) is the non-parametric analog to a rank condition in linear

14We sample rt jointly with (xt, ξt).
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instrumental variable models. It implicitly requires that the dimension of rt is at least equal
to the dimension of (ϕt, x

∗
t ).15

We are now ready to prove our main result for the section:

Theorem 2. If assumptions 5-7 are satisfied, then the pair of vectors (δt, γt) and ξt = (ξu
t , ξ

π
t )

are identified. In particular, the conditional distribution of uit, πit|xt, ξt is identified on the
interior of the support of (g (Yt) , Zt).

Assumption 6, the key hypothesis of Theorem 2, represents the main difference relative to
those used for identifying and estimating models of demand without choice set constraints
(e.g. Berry and Haile, 2014; Berry et al., 1995). In these analyses, identification arguments
are based on a J−dimensional vector of indices containing product-level unobservables to be
invertible in the J−dimensional vector of market shares. However, the existence of such an
inverse – proved in Berry et al. (2013) for the case of demand – is not available in our case
because we need to invert a 2J−dimensional vector, (δt, γt), whereas market shares only have
dimension J .

Our use of an inversion based on the 2J-dimensional vector ϕt is motivated by our iden-
tification results that use within-market variation in preference and choice-set shifters, Y
and Z. Corollary 1 shows that this variation allows us to identify the distribution of the
2J-dimensional random variable (uit, πit) on the relevant support (corollary 1 ). To apply
results in this subsection, the researcher needs to place sufficient restrictions on the model
so that ϕt is a known function of this joint distribution and is identified for each market.

These results, which allow for endogenous characteristics in the presence of constrained
choices, can be relevant for a number of applications. For example, a growing literature
uses estimates of school demand to study the effects of competition between schools(e.g.
Neilson, 2020). While this work incorporates unobserved factors that affect school demand,
it abstracts away from the possibility that schools select students by assuming that each stu-
dent is matched with their most preferred school in equilibrium, an assumption that may not
be reasonable in markets with selective school admissions. Our framework, to our knowledge,
is the first to accommodate both these features.

15The observables
(
xδ

t , xγ
t

)
and x∗

t may serve as instruments if they are mean-independent of ξt.
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4 Data and Descriptive Analysis

4.1 Background

Dialysis, which removes toxins typically filtered by a kidney, is the predominant form of
treatment for patients with End Stage Renal Disease (ESRD). Even with dialysis, the median
survival for ESRD patients is about five years (Figure 5.7, U.S. Renal Data System, 2020).

The most commonly used method in the US is hemodialysis, accounting for about 90% of
dialysis patients (Figure 1.2, U.S. Renal Data System, 2020). This method circulates the pa-
tient’s blood through an extracorporeal artificial kidney. Hemodialysis is usually performed
in an outpatient facility that focuses exclusively on dialysis treatments. It lasts between three
to four hours and is performed two to three times a week, depending on the patient’s resid-
ual kidney function. The second method, peritoneal dialysis, requires a surgically inserted
catheter which can be used to administer a cleansing fluid and to collect waste. A patient’s
choice between the two modalities depends on numerous medical and lifestyle factors. We
focus on facility-based hemodialysis patients, considering the choice of alternative treatment
modalities as part of the outside option.

Facilities performing hemodialysis are highly regulated (Department of Health and Human
Services: Centers for Medicare and Medicaid Services, 2008). The most binding constraint in
the medium-term is the number of kidney dialysis stations in the facility. Dialysis machines
are large and dedicated to a single patient at a time. Short-term inputs influencing capacity
include nursing staff and technicians. Staffing, capital and space requirements make capacity
adjustments to demand fluctuations a slow response (Eliason, 2019; Grieco and McDevitt,
2017).

Medicare provides insurance for costs related to ESRD for all US patients, irrespective of
age. This coverage is secondary for patients with a private or employer health insurance plan
during first 30 months after diagnosis of ESRD, called the coordination period. Each patient-
year on hemodialysis costs approximately $90,000 at Medicare rates, and higher at private
rates (Chapter 10, U.S. Renal Data System, 2020). With approximately 750,000 patients
suffering from ESRD in the US, Medicare costs of patients with kidney failure totaled to
$49.2 billion in 2018 (Chapter 1 and 10, U.S. Renal Data System, 2020). This figure is more
than 7% of all Medicare claims and more than 1% of national healthcare spending (Chapter
10, U.S. Renal Data System, 2020).
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4.2 Data

The data for this study are taken from the US Renal Data System (U.S. Renal Data System,
2020). These data are assembled from various sources, including Medicare claims, facility
reports and data on patient outcomes. There are two important features of the data. First,
we observe the residential zip-code, demographics, employment status and comorbidities of
each patient, as well as the facility where each patient is being treated. These data also
include patients who are initially covered by a private or employer health insurance plan
because the start of dialysis determines eligibility for Medicare coverage. Second, the role
of Medicare as the near-universal insurer allows us to track the number of patients being
treated in each facility on any given day.

Our analysis sample focuses on patients whose first treatment commenced at a facility in
California between 2015 and 2018. There are two main restrictions imposed by this choice.
First, the restriction to a single state is for tractability. The vast majority of Californians
do not live close to a neighboring state. Given the role of Medicare in this part of the
healthcare sector, idiosyncrasies regarding California’s healthcare sector are less relevant to
our study. Our sample selection procedure is further described in appendix B. Second, we
focus on the first facility where a patient begins dialysis to abstract away from considerations
that are unique to switching facilities, which include interference with continuity of care and
administrative or financial barriers.16 In our sample, 74.2% of patients are treated at only
one facility, and the average patient only visits 1.30 facilities. Our approach is consistent
with facility moves being unexpected at the time when the patient begins dialysis.

4.3 Description of Sample and Choices

Table 1 describes the hemodialysis facilities in our sample. There are 552 facilities, most
of them owned by one of the two large chains, Fresenius and DaVita. These and the vast
majority of other facilities are for-profit and freestanding (not associated with a hospital).
The average facility cares for just under 100 patients at a time, with chains and freestanding
facilities caring for more patients per facility. The ratio of the number of stations to the
number of patients is approximately five. This ratio is consistent with an average of two
four-hour treatments per station per day since most patients require three treatments per
week. Indeed, figure 2 shows that the number of patients per station is almost constant at
five patients per station over the size distribution of facilities.

16We drop the certain quarters in which a facility enters, exits, moves or rapidly expands or contracts.
See appendix B for further details. Patients matched to one of these facilities during this time-period are
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Table 1: Facility Sample

paper
1
11

Facility 1

N 553 377 114 78 1

Facility-year 2093 1418 385 290 1

Number of patients 1

Mean 108.6 113.0 100.2 98.2 1

Std. dev 46.8 46.3 38.9 54.9 1

Number of stations 1

Mean 22.3 22.3 22.0 22.5 1

Std. dev 7.6 7.2 7.2 9.6 1

16

12

All facilities
Ownership

Fresenius and 

Davita
Other chains Independent

Notes: Sample of all facility-year observations, as described in table B.1. The number of patients at a facility
is the daily average of enrolled patients undergoing hemodialysis.
Table 2 describes the patient sample, which contains 41,913 new patients. Most of these pa-
tients choose hemodialysis at a facility in our facility sample. The patients are predominantly
white, and the incidence of hypertension and diabetes is high. The majority of patients are on
Medicare, an HMO, or in the waiting period. The HMO group primarily consists of patients
over the age of 65 who are covered by a Medicare Advantage plan. Going forward, we pool
all patients who are Medicare eligible. The table also shows that the majority of patients
begin dialysis in a freestanding facility.

Table 3 describes the facilities near the patients in our sample and the chosen facility. The
average patient has 6.5 facilities within 5 miles of their home zip- code and 17 facilities within
10 miles. The typical patient receives dialysis at a facility with an average distance of 6.8
miles, but the median is lower, at 4.4 miles.

4.4 Evidence on Supply-Side Rationing

We now argue that capacity constraints affect the choice sets of patients. First, we show
that facilities that have an unusually high caseload at a given point in time relative to their
baseline are less likely to accept new patients for a while. Second, we show that the distance
to the chosen facility is higher if nearby facilities are more constrained. Moreover, the effects
of constraints at facilities of different qualities are different. This latter finding suggests that
patients also have preferences over our measures of quality.

Effects on flow of new patients: We hypothesize that the current caseload at a facility

considered to be matched to the outside option.
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Figure 2: Patients per Dialysis Station
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Notes: Binscatter with all facility-year observations as described in table B.1. The number of patients at a
facility is the daily average of enrolled patients undergoing hemodialysis. The number of stations is taken
from the CMS Annual Facility Survey for the corresponding year.
influences the facility’s decision to accept a new patient. Let zij be a measure of the excess
occupancy (relative to a target) in facility j when patient i enters the dialysis market. If
excess occupancy is excludable from the patients’ utility, then the inflow of new patients
into facility j should be conditionally independent of the facility’s caseload, given controls
for preferences. To see this, consider a model without capacity constraints in which σij = 1
for all i and j. Assuming that the patient arrival is exogenous, the probability that a new
patient arrives at facility j is given by the probability that uij > uij′ for all j′, which is
independent of zij. However, if facilities are less likely to accept a patient when zij is high,
then the inflow of new patients will be negatively correlated with caseload. Gandhi (2021)
presents one micro-foundation for this relationship.
We will test this hypothesis using regressions of two sets of dependent variables measuring
patient inflow on occupancy and excess occupancy. In the first set, the dependent variable
is whether a facility j accepts a new patient on day t. We use all days a facility is operating
during our sample period for this set. The dependent variable in the second set is the number
of the days until the next patient begins treatment at facility j. We use the subset of days in
which a new patient began treatment for this set. The regressions control for either facility-
year or facility-month level fixed effects, and cluster standard errors at the facility level. In a
subset of regressions, we also control for the average occupancy in other facilities within five
miles of facility j.
Facility occupancy is measured as the number of patients being treated on date t at facility
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Table 2: Patient Sample

Paper

Patient Count 50002 43423 28647 7853 6923 1

Age (Mean) 63.1 63.7 63.6 64.9 63.1 1

Age (Std. Dev.) 15.0 14.8 14.8 14.9 15.1 1

Employed (%) 11.5 8.9 9.1 9.2 7.7 1
White (%) 71.3 72.1 73.0 67.4 73.4 1

Black (%) 10.7 10.8 11.1 11.2 9.2 1

BMI (Mean) 28.4 28.4 28.4 28.4 28.4 1

BMI (Std. Dev.) 7.3 7.4 7.4 7.6 7.5 1

Diabetes (%) 39.6 40.4 40.4 40.0 40.8 1

Hypertension (%) 86.5 86.4 85.8 86.9 88.2 1

Medicare (%) 32.9 32.8 32.4 37.0 29.6 1

24.5 24.6 24.7 24.0 24.5 1

Medicare waiting period (%) 12.5 13.1 12.7 12.8 15.2 1

Other (%) 30.1 29.6 30.2 26.3 30.8 1

Fresenius and 

Davita
Other chains Independent

Panel B: Insurance type at admission

Medicare Advantage (%) 

Panel A: Patient characteristics

All patients

Treated at an 

in-sample 

facility

Ownership

Notes: Sample of patients, as described in patient Table B.2. BMI is Body Mass Index (kg/m2). Medicare
Waiting Period is the 90-day period before Medicare covers hemodialysis. Other represents patients not
covered by Medicare when they begin dialysis.
j and the excess occupancy is the difference between occupancy and a measure of target
occupancy. The target occupancy is motivated by an examination of the time series of the
number of patients at a facility, which reveals that several facilities undergo periods of ex-
pansion or contraction. These periods may correspond to investment in capital, increases
in staffing or restructuring of the facility’s operations. One way to estimate target occu-
pancy would be to use high-frequency data on facility inputs and investments in order to
estimate facility capacity. Unfortunately, labor inputs and capital investment are recorded
only annually, and their timing is unknown. Instead, we estimate target occupancy using a
regime-switching autoregressive model with a linear trend on the occupancy time series for
each facility. The model detects breaks in each facility’s occupancy trend to identify points
at which the facility’s occupancy process changes. We construct the target occupancy on a
given date as the expected value on a given day.17 We do not detect any breaks in trends

17Specifically, let njτ be the number of patients being treated at facility j on day τ . Assume that njτ follows
the following time series model with m ≥ 1 regimes njτ = αjk(τ) +βjk(τ)τ +γjk(τ)njτ−1 +ejτ ,where k (τ) is a
weakly increasing function that maps days τ = 1, ..., T to regimes k = 1, ..., m. The disturbance ejτ has mean
zero, constant variance, and follows an ergodic process. This model is consistent with a birth-death process
in which departure rates are proportional to njt and arrival rates are a function of njτ − n∗

jτ . The target
occupancy on date τ is defined as n∗

jτ = αjk(τ)+βjk(τ)τ

1−γjk(τ)
. The regime changes for each facility are estimated

using a modified Schwartz criterion proposed in Liu et al. (1997). We winsorize njτ − n∗
jτ by censoring the

top and bottom 5% for each facility j in order to limit the influence of outliers.
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Table 3: Patient Choices

Payer

1
11

Number of facilities 1

Mean --- 6.6 18.0 59.4 1

 Std. dev --- 5.2 17.5 55.2 1

 Median --- 5.0 11.0 32.0 1

Distance to facility 1

Mean 6.7 3.2 6.0 14.1 1

Std. dev 7.3 0.7 1.3 3.1 1

 Median 4.3 3.2 6.1 14.3 1

95th percentile 21.5 4.4 8.3 18.7 1

Number of patients at facility 1

Mean 124.1 120.9 118.0 114.9 1

 Std. dev 47.9 27.4 24.5 18.5 1

 Median 120.0 121.7 120.1 120.9 1

Total stations 1

Mean 24.1 23.4 23.1 22.8 1

 Std. dev 7.8 4.2 3.3 2.3 1

 Median 24.0 23.2 23.3 23.4 1

Chain (%) 1

Overall mean 87.1 89.7 89.2 88.2 1

Fresenius 20.4 23.3 22.7 22.2

Davita 48.3 48.6 48.1 48.7

1

1

1

1

1

1

1

1

1

1

1

Notes: Sample of Patient-Facility pairs where the patient is in our patient sample and the facility is in our facility 

sample. Distance is measured in miles from the facility to the centroid of a patient's reported zipcode. The number of 

patients is the sum of all patients enrolled at a facility that are undergoing hemodialysis. Survival Better means 

facility is categorized as "survival better than expected" by dialysis_facility_compare. Survival not worse means 

facility is categorized as "survival not worse than expected" by dialysis_facility_compare. URR is the  Urea Reduction 

Ratio. X year survival is the yearly average number of patients that survive X years. 

Facilities

Chosen Within 5 miles Within 10 miles Within 25 miles

Notes: Sample of patient-facility pairs. Distance is measured in miles from the facility to the centroid of
a patient’s zip-code. The number of patients counts all patients enrolled at a facility that are undergoing
hemodialysis.
for 500 of 553 facilities. Conditional on finding a break in the trend, the average number of
breaks is 2.02. Therefore, while not rare, the breaks in trend are not relevant for the vast
majority of facilities. Table B.3 in the appendix shows that our estimate of target occupancy
is positively correlated with the (low-frequency) measures of facility inputs available in our
dataset, even conditional on facility fixed effects. The daily within-facility standard deviation
of excess occupancy is 4.22.

There are three notable findings from the regressions of patient inflows on occupancy (see
table 4). First, controlling for facility-year fixed effects, higher occupancy is negatively cor-
related with the probability of a new patient beginning dialysis at the facility and positively
correlated with the expected waiting time until the next patient (columns 3 and 4). Al-
though not reported, the relationships are robust to the inclusion of occupancy at other
nearby facilities or of finer controls, such as facility-quarter or facility-month fixed effects.

Second, including facility-time controls appears to be important. The results in columns
(1) and (2) are analogous to those in columns (3) and (4), but use only facility-specific
fixed effects instead of facility-year fixed effects. The estimated relationship between the
probability of new patient beginning dialysis and the facility’s occupancy is now positive.
Thus, fluctuations in a facility’s target occupancy may be important.

Third, our measure of excess occupancy purges some of the confounding variation in the raw
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Table 4: Evidence of Capacity Constraints
Paper

1
Any new 

patient
Log(days to 
next patient) 1

(1) (2) (3) (4) (5) (6) (7) (8) 11
Occupancy 0.0002** 0.004*** -0.0012*** 0.019*** 1

(0.0001) (0.001) (0.0001) (0.002) 1

Excess occupancy -0.0004*** -0.0006*** 0.016*** 0.016***
(0.0001) (0.0001) (0.002) (0.002)

1
Occupancy within 5 miles 0.0007*** 0.002* 1

(0.0001) (0.001) 11
Facility FE X X X X X X 1
Facily-Year FE X X 1
Observations 724,946 35,332 724,946 35,332 724,946 706,690 35,332 35,332 1
R-squared 0.0128 0.112 0.0264 0.158 0.0128 0.0119 0.116 0.116 1

Any new patient Log(days to next patient)

Notes: * p<0.1, ** p<0.05,  *** p<0.01.  Standard errors are clustered at the facility level. The sample is of facilities as described in the facility sample 
table . An observation is a (day,facility) pair, where the facility is open over the entire sample. The patients included are those described in the patient 
sample table.

Any new 
patient

Log(days to 
next patient)

Notes: Sample of facilities as described in table 1. An observation is a day-facility pair, where the facility
is open over the entire sample. Regressions with Log(days to next patient) consider the subset of days on
which a facility admitted a new patient. ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Standard errors are clustered
at the facility and county level.
measure of occupancy that resulted in a positive coefficient in column (1). This variation was
absorbed in specifications that employed fixed effects at the facility-year or finer levels. Since
including a richer set of fixed effects will not be feasible in the non-linear model that we will
ultimately estimate, our empirical specifications will use this measure of excess occupancy in
the acceptance policy function.
Fourth, these regressions also speak to the effect of capacity constraints at other facilities
close to facility j. There are two opposing forces. Constraints at other facilities close to j can
increase the demand for facility j. But, this force can also push facility j to be more selective
and turn away less profitable patients because it expects a higher flow of patients, allowing
the facility to cream-skim. Our results show that the number of patients being treated at
other facilities close to facility j increases the probability that new patients start treatment at
facility j (see columns 6 and 8 in table 4). This evidence suggests that increased demand at
the facility dominates greater selectivity induced by constraints at nearby facilities. Because
our results are consistent with facilities not responding to short-term constraints faced by
competitors, we will ignore strategic interactions of this nature in our model as done also in
Gandhi (2021) for the case of nursing homes.
Effects on where patients are treated: Having shown that capacity constraints affect
the inflow of patients, we now investigate the effects of capacity constraints on where patients
receive treatment. Figure 3 presents a binscatter indicating that the distance to the chosen
facility is increasing in the average excess occupancy of facilities within five miles of the
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Figure 3: Distance to Chosen Facility
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Notes: Binscatter of incoming patients, residualized against patient zip-code and quarter-year fixed effects.
patient’s zip-code centroid. This exhibit residualizes fixed effects at the zip-code-quarter
level in order to control for confounding trends in the facilities’ target occupancy.
Discussion: We argue that the evidence above suggests that supply-side rationing due to
capacity constraints is important. The main potential threat is that crowded facilities are
undesirable. However, this concern is limited if patient preferences depend on longer-term
crowding than the finer variation that we leverage in these estimates. The annual within-
facility autocorrelation in excess occupancy is 0.06, suggesting that utilization on a specific
day is not strongly correlated with long-term occupancy.
An alternative interpretation is that capacity constraints result in waiting times rather than
accept/reject decisions. Dialysis, however, is a time-sensitive treatment and delaying treat-
ment even by a few days can pose substantial health costs. We therefore favor our interpre-
tation over rationing by waiting time.

5 Estimates

5.1 Parametric Specification and Estimation

Although the arguments showing Theorem 1 are non-parametric and constructive, there are
important challenges in using a non-parametric estimator. Our proof suggests estimating the
market shares in equation (3) and then recovering g (·) and the joint distribution of (u, π) in
a second step. This approach is challenging because of dimensionality – the share equation
has a J−dimensional range and at least a 2J−dimensional domain. Even in models without
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choice constraints, the curse of dimensionality limits the ability to scale the method for
analyzing markets with many products (see also Compiani, 2021, for example). The typical
solution directly estimates a parametric distribution of preferences and, in our case, also a
parametric distribution of choice sets. Estimating such a model with latent choice sets using
likelihood methods is exceedingly difficult because the number of potential choice sets is large
even for relatively small J .
18 Thus, enumerating all possible latent choice sets in order to compute the likelihood is
computationally infeasible.

Instead, following much of the literature on discrete choice demand models, we parametrize
the distribution of (u, π). First, we will address the curse of dimensionality due to the
large number of potential choice sets using a Gibbs sampler (see also He et al., 2024). It
modifies the sampler from McCulloch and Rossi (1994) with a data augmentation step to
accommodate the case with latent choice sets. This will motivate distributional assumptions
that admit closed-form solutions of certain conditional distributions. Second, we allow for
correlations between preferences and choice sets via unobservables (ωi in our notation). Third,
we include random coefficients on the agent’s preferences for facility characteristics, which
allows for more flexible substitution patterns.

Based on these considerations, we make the following parametric assumptions:

vij = δj + βddi − g (di, yij) + βixj + εi0 + εij (6)

σij = 1 {γj + αdi − zij + νij > 0} , (7)
where xj are observed product characteristics, δj and γj are product fixed effects, and βi, εi0,
εij and νij are idiosyncratic shocks. We adopt the normalizations that g′ (di, yij) = 1 at
yij = 1 and g (di, yij) = 0 at yij = 0 for all di, and that the admission index is expressed in
units of zij. As before, di is a vector of agent i’s characteristics. We parametrize g (·) as a
quadratic function given di, with parameters βg, and collect β = (βw, βg).

We allow for unobserved match-specific correlations by allowing εij and νij to be jointly
normally distributed with mean zero and an estimated covariance matrix Σ. The term εi0

captures individual heterogeneity in preferences for the outside option. A restriction relative
to the non-parametric identification result is that we do not allow νij and νij′ to be correlated

18The number of terms in the sum in equation (3) is equal to the number of possible choice sets, which is
equal to 2|J|. With only fourteen facilities, which is approximately the average number of facilities within
ten miles for a patient, the number of choice sets is 16,384.
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with each other nor do we allow random coefficients on the acceptance functions.19

We will use the measure of excess occupancy presented in section 4 as the choice-set shifter,
zij. Although Gandhi (2021) provides a micro-foundation, the model can accommodate other
unspecified reasons why a facility may not be in a patient’s choice-set via error terms in the
specification of πij. Decomposing specific reasons for a facility not belonging to patient i’s
choice set requires additional structure and is, therefore, beyond the scope of this paper.

The parametric assumptions on the error terms allow us to use a Gibbs sampler for estimation
because, under conjugate prior distributions, the conditional distributions of any of the latent
error terms and random coefficients given the other terms can be obtained in closed form.
Moreover, the conditional distributions of each of the parameters (α, β,Σ, δ, γ) given the
errors, random coefficients, and the other parameters can be obtained in closed form. The
procedure iterates through each of these parameters, obtaining draws from their conditional
posteriors to obtain a Markov Chain of draws of (α, β,Σ, δ, γ). The draws of the chain
converge to the posterior distribution, which is asymptotically equivalent to the maximum
likelihood estimator (see van der Vaart, 2000, Theorem 10.1 (Bernstein-von-Mises)). Thus,
the mean of the chains’ draws yields our point estimate and the covariance of the draws
consistently estimates the asymptotic covariance. We check for convergence by ensuring that
the number of effective draws is large, the potential scale reduction factor is close to 1, and
by visually inspecting the chains.

The key modification from McCulloch and Rossi (1994) involves a data augmentation step
in order to avoid calculating the likelihood of choices for each possible latent choice set.
Given our model, the likelihood of consumer (henceforth patient) i matching with product
(henceforth facility) j is equal to the probability of the event that πij ≥ zij, vij ≥ 0 and
that for all j′ ∈ Jt, either πij < zij or vij ≥ vij′ . That is, facility j admits patient i, patient
i finds facility j acceptable, and every other facility in the market satisfies at least one of
two conditions: either it does not admit i or i prefers j to it. To the best of our knowledge,
closed-form solutions for this probability are not known. However, the problem is standard
and tractable once we condition on either the vector πi = (πi1, . . . , πiJ) or ui = (ui1, . . . , uiJ).
This is because πi determines the latent choice set, making the remaining problem a standard
discrete choice problem. And, conditional on ui, i matches with j if and only if πij > 0 and
πij′ < 0 for all j′ with uij′ > uij′ . This set of πi is a standard orthant. Thus, our sampler will
iterate between data augmentation steps for πi and ui. Further details on the Gibbs sampler
are provided in appendix C.

19We found specifications that included such correlations to be difficult to estimate and unstable in our
empirical application. This problem did not exist in Monte Carlo simulations.
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Our approach differs from most methods for estimating models with latent choice sets, which
typically simulate latent choice sets and choice probabilities (Honka, 2014; Gandhi, 2021).
Simulation bias can create particularly large computational challenges in these models be-
cause of dimensionality. For similar reasons, Barseghyan et al. (2021a) also utilize an estima-
tion procedure that avoids simulating all the latent choice sets by integrating instead over the
distribution of preference parameters and evaluating the probabilities of latent choice sets.

Our estimation procedure yields estimates of the pair of product-specific fixed effects δj and
γj. The empirical questions we consider do not require decomposing these fixed effects in
terms of product observables xj and unobservables ξj, e.g. δj = xjβX + ξj. A researcher
concerned about potential endogeneity of xj can consistently estimate βX in a second step if
instruments that are mean independent of ξj are available. This two-step approach has been
used in a number of prior papers estimating demand (e.g. Goolsbee and Petrin, 2004).

We conducted Monte Carlo exercises to assess the performance of our estimator, and also to
study the consequences of estimating a mis-specified model. Specifically, we consider varia-
tions that omit random coefficients, incorrectly assume that choice sets are unconstrained, or
include zij in the utility function as a naive correction for constrained choices. As expected,
the resulting bias on the remaining parameter estimates is substantial. Perhaps more impor-
tantly, these mis-specifications bias economic quantities of interest such as the diversion ratios
that we consider in further detail in Section 5.2.4 below. The results from these exercises are
discussed in Appendix D.

5.2 Estimates

We start by describing various specifications before discussing potential biases in section 5.2.3
and implications on diversion ratios in section 5.2.4.

5.2.1 Empirical Specifications

In all the specifications we consider, the unconstrained choice set for each patient is the set of
facilities within a 50-mile radius of their home zip-code centroid. The patient’s utility for the
inside versus the outside option depends on whether the patient has part-time or full-time
employment, and whether she is Medicare-eligible. The term g (·) is a quadratic function of
distance yij between the patient’s zip code and the facility, with a slope that is allowed to
depend on employment status and on the population density of the county where the patient
lives. The variable zij is the excess occupancy of facility j when patient i begins dialysis.
Fixed effects are included for each facility.
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We compare estimates from three specifications. The first specification – our preferred spec-
ification – models both preferences and acceptance policies (equations 6 and 7). Patient
characteristics that affect acceptance policies include Medicare eligibility when she begins
dialysis, bins of body mass index, age, diabetic status and hypertension. We also include
patient-specific random coefficients for chain and non-chain facilities in the preferences equa-
tion. The second specification, which we call the unconstrained demand model, omits capac-
ity constraints and sets σij = 1 for all i and j in equation (7). Finally, the third specification,
which we refer to as the naive model, modifies the second specification by adding a term
βzzij in equation (6), where βz is to be estimated. There are two interpretations of this spec-
ification. The first is that patients do not face choice constraints, but dislike facilities with
high values of zij (if βz is negative). Since this interpretation does away with capacity con-
straints, access to desirable facilities is not influenced by supply-side rationing. The second
interpretation is that the specification represents a reduced-form approach that corrects for
latent choice set constraints. An undesirable implication of this specification is that changes
in zij affect the welfare of patients matched to facility j, whereas zij should only influence
selective admissions.

5.2.2 Parameter Estimates

Table 5 presents the estimates from the three specifications. As expected, the marginal
disutility of distance is decreasing with distance. This and several other estimates are robust
across specifications. Consistent with the descriptive evidence in section 4.4, the coefficient
on excess occupancy in the naive specification is negative.
There are some notable differences between our preferred specification and the rest. First,
the mean utility of chain and non-chain facilities is higher in our preferred specification than
in the others. This gap reflects bias if some patients are forced to an outside option because
of capacity constraints. Second, the standard deviations of the facility mean utilities, the
outside option utility εi0, and preference shocks εij are lower in the preferred specification.
This result is consistent with the unconstrained demand model attributing latent choice
constraints to unobserved preference heterogeneity.
Turning to the acceptance policy function, we find that measures of patient health conditions
and insurance status are correlated with acceptance. The propensity of facilities to accept
patients increases with the patient’s BMI and whether the patient is insured by Medicare
Advantage or a private insurer, and therefore, is in the waiting period. Figure 4 shows the
estimated distribution of acceptance probabilities for each facility, averaged over all patients
within a 50-mile radius. The probability of acceptance is calculated based on the excess
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Table 5: Parameter Estimates

Gibbs Sampler
Unconstrained Naïve Model

(2) (3)
Acceptance Utility Utility Utility

Chain 6.637 5.345 2.391 2.405
(5.054) (0.780) (0.829) (0.822)

No Chain 2.207 5.379 2.028 2.048
(6.076) (0.840) (0.879) (0.872)

Diabetes 0.570 0.724 0.809 0.821
(2.121) (0.148) (0.138) (0.141)

Hypertension -5.873 -0.244 -0.501 -0.502
(2.708) (0.201) (0.191) (0.194)

BMI<20 -4.232 -0.038 -0.232 -0.230
(1.880) (0.254) (0.265) (0.268)

25<=BMI<30 1.038 -0.367 -0.360 -0.357
(1.239) (0.161) (0.170) (0.173)

30<=BMI 5.996 0.024 0.266 0.268
(1.398) (0.161) (0.169) (0.172)

Age 0.470 0.001 0.001 0.001
(0.198) (0.000) (0.000) (0.000)

Age squared -0.001 -1.275 -1.399 -1.409
(0.002) (0.188) (0.192) (0.198)

Medicare -2.411 0.008 0.034 0.035
(1.656) (0.026) (0.027) (0.027)

Medicare Advantage 26.929 -2.652 -1.923 -1.937
(3.169) (0.213) (0.218) (0.226)

Medicare waiting period 8.618 2.183 2.772 2.797
(1.690) (0.225) (0.242) (0.244)

Employed -5.304 -5.764 -5.802
(0.230) (0.262) (0.269)

Employed x distance 0.004 0.006 0.006
(0.007) (0.006) (0.006)

Population density x distance 0.000 0.001 0.001
(0.000) (0.001) (0.001)

Distance squared 0.013 0.013 0.013
(0.000) (0.000) (0.000)

Excess Occupancy -0.042
(0.003)

Standard deviation of δj 2.574 2.414 2.402
(0.100) (0.094) (0.095)

Standard deviation of εi0 8.715 9.550 9.663
(0.264) (0.327) (0.360)

Standard deviation of εij 4.274 4.799 4.796
(0.042) (0.028) (0.028)

Standard deviation of 𝛾j 38.799
(3.950)

Standard deviation of random coef on Chain 1.827 2.350 2.358
(0.264) (0.219) (0.217)

Standard deviation of random coef on No Chain 0.688 0.704 0.697
(0.223) (0.247) (0.240)

Standard deviation of νij 37.398
(3.314)

Correlation between  εij and νij -0.118
(0.036)

Preferred Specification
(1)

Notes: All specifications include distance with a coefficient normalized to -1 in the utility equation. Spec-
ification (1) includes “excess occupancy" in the acceptance equation. Specific intercepts for Chain and No
Chain facilities obviate the need of a constant term. Standard errors in parentheses.
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occupancy at the facility on the date when the patient begins dialysis. Our results indicate
that while the acceptance probabilities are close to 1 for a significant portion of facilities,
there are a large number of facilities where the average acceptance probability is much lower
than 1. Thus, constraints on choices due to supply-side rationing are non-trivial.

Figure 4: Acceptance Probabilities
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Notes: Histogram of facility acceptance probability. The facility acceptance probability is calculated based
on the excess occupancy on the date when each incoming patient living within 50 miles started dialysis.

5.2.3 Biases in demand estimates

The capacity constraints estimated above imply a bias in estimated demand using standard
approaches. In particular, estimates of demand based on observed market share have the
property that, within a market, the product with the highest market share provides the
highest indirect utility to the average consumer. Figure 5 shows the estimated relationship
between (the log of) market shares and the estimated mean utility (in miles) for our preferred
and unconstrained specifications. The relationship between these two quantities is positive
in both specifications, but steeper in the unconstrained specification. This difference occurs
because constraints at desirable facilities can force patients to choose less desirable ones.

The biased relationship between market shares and utility reflects into a bias in the estimated
demand for a facility. For instance, the number of patients for which the facility is the
patients’ first choice will be misestimated. Figure E.3(a) in the appendix shows that the
latent demand for some facilities is higher for some and lower for others. The former bias
is clear – a desirable facility may have to turn away some patients for whom the facility
is their first choice. The latter bias occurs because these patients then start treatment at
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Figure 5: Willingness to Travel and Market Shares
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Notes: Regression line and binscatter with twenty bins of the mean utility estimated by our preferred and
unconstrained specifications and the observed market share for the year 2015.
a facility that is not their first choice. The results from the naive correction are similar,
suggesting that the correction does little to reduce this bias. This bias is also reflected in
the estimated willingness to travel for various dialysis facilities relative to the outside option
(Figure E.3(b)).

5.2.4 Implications of choice constraints on diversion ratios

We close this section by noting that there can also be economic grounds on which naive
corrections for latent choice constraints are unappealing. We illustrate this point by showing
that the naive specification (of the form in specification 3) restricts the comparison between
diversion ratios arising from demand-side factors and acceptance decisions.

The diversion ratio of j with respect to k, in principle, depends on whether j loses a cus-
tomer because of changes in choice constraints, equivalently z, or changes in preferences,
equivalently y. Dropping the market subscript t, the two diversion ratios are

∂sk

∂zij

/
∂sj

∂zij

and ∂sk

∂yij

/
∂sj

∂yij

.

In our empirical specification, the latter diversion ratio is equal to the diversion ratio obtained
based on changes in mean utility δj.

Notice that there are no a priori reasons why these two diversion ratios are the same. Fol-
lowing a marginal change in yij, product j loses customers that are indifferent between j

and another good. The consumers that switch between k and j following a change in yij are



40

Figure 6: Diversion Ratios
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Notes: Scatterplot of diversion ratios induced by changes in demand and by supply. Each circle (cross)
represents diversion ratios for independent facilities with respect to DaVita (Fresenius) facilities.
consumers that (i) are indifferent between j and k, (ii) have both j and k in their choice
sets, and (iii) do not have any other more preferable options in their choice set. Contrast
this with consumers that switch between these two products following a change in zij. These
consumers (i) strictly prefer j to k, (ii) are on the margin of being accepted by j, and (iii)
do not have any other more preferable options in their choice set. Notice that the changes
select consumers on different dimensions – on the preference margin following changes in yij

and on the acceptance margin following changes in zij. Thus, the diversion ratios on these
two margins may be different.

Figure 6 compares the two types of diversion ratios. Each point represents an independent
facility j, where we sum the diversion ratios over all facilities k that are either run by DaVita
or Fresenius, the two largest dialysis chains in the US. We find that the two diversion ratios
above are substantially different. The diversion with respect to demand factors is usually
higher than diversion with respect to factors affecting supply constraints, with larger diver-
sion with respect to demand for DaVita than for Fresenius. These differences reflect into
competitive incentives when strategically choosing capacity or quality. A merger between
two firms with high diversion ratios driven by demand factors is likely to reduce competitive
pressure on quality. In contrast, a merger between firms with high diversion ratios on sup-
ply constraints could incentivize them to implement stricter admission policies because the
merged entity can sort patients according to facility-specific profitability.

Prior prospective merger analyses in the dialysis industry abstract away from potential effects
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on selective admissions. For example, Wollmann (2022) focuses on the effects of mergers on
the quality of care. Our analysis points to changes in capacity constraints and selective ad-
mission practices as another important effect of a merger.20 We leave a thorough investigation
to future work.

6 Conclusion

Consumers often face restricted choice sets for reasons such as information or search frictions,
preferences of the other side in two-sided matching markets, and selective admission practices.
These constraints are typically unobserved. We developed a unified model for analyzing
discrete choice demand in the presence of latent choice constraints such as the ones above.

We show how to point identify the joint distribution of preferences and latent choice sets
in the presence of two sets of observable shifters, one that influences preferences and the
other that influences choice sets. Each set of shifters must be excluded from the other side of
the model. Relative to the prior literature, our approach achieves point identification while
placing minimal restrictions on functional forms, on the statistical dependence between choice
sets and preferences, and allows for the endogeneity of product characteristics. The cost is
that our results require the shifters mentioned above. However, we show that these shifters
are necessary for identification without further restrictions on the model.

As an illustrative example, we estimate the demand for hemodialysis facilities. The data
shows clear evidence of supply-side rationing – facilities with a higher than usual occupancy
are less likely to admit new patients, and patients that begin dialysis when nearby centers
are constraints are observed to travel further. Next, we use data on patient enrollment to
estimate a joint model of preferences and supply-side rationing using a Gibbs sampler. Our
results show that ignoring supply-side constraints can lead to significant bias in estimates
and yield misleading answers to important economic quantities.

Our approach stops at specifying a reduced form for the supply-side acceptance decision. This
reduced form immediately yields a structural object in certain models, such as in empirical
models of two-sided matching (Agarwal, 2015; He et al., 2024). It also yields a first-stage
estimate in models with more complex supply-side behavior. For example, Gandhi (2021)
interprets acceptance probabilities as conditional choice probabilities (Hotz and Miller, 1993)
to estimate a dynamic model of selective admissions. Micro-foundations for our reduced form
are application-specific, but are important for evaluating counterfactuals that involve changes

20As shown earlier, failing to account for selective admissions may bias demand estimates and therefore
the measured incentives for the merging facilities to change quality.
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in equilibrium supply-side behavior.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Because ties are allowed, it must be that
sjt (di, yi, zi) ≤

∑
O∈O

P
(
Oi = O, j ∈ arg max

k∈O
vikt

∣∣∣∣ t, di, yi, zi

)
The inequality follows because cij = 1 only if j ∈ arg maxk∈Oi

vikt. Conditioning on di and
dropping it from the notation, we rewrite preferences as

vij = uj (ωi) − gij

and we treat gij as observable. Consumer i remains unmatched if for every facility j ∈ Oi

uj (ωi) < gij and only if for every facility j ∈ Oi uj (ωi) ≤ gij. Similarly, facility j ∈ Oi

if πj (ωi) < zj and only if πj (ωi) ≤ zj. Let s0 (g, z) be the share of consumers that are
unmatched conditional on g and z, define s̄0 (ḡ, z̄) as lim(g,z)↓(ḡ,z̄)s0 (g, z), where (g, z) ↓ (ḡ, z̄)
if there exists a sequence gn > ḡ and zn > z̄ with gn → ḡ and zn → z̄. If s0 (g, z) is continuous
at (ḡ, z̄), s̄0 (g, z) = s0 (g, z); otherwise, s̄0 (g, z) > s0 (g, z). By assumption (1) and by set
inclusion,

lim
(g,z)↓(ḡ,z̄)

s0 (g, z) ≥ lim
(g,z)↓(ḡ,z̄)

P (∩j {uj (ωi) < gj ∨ πj (ωi) < zj})

≥ P (∩j {uj (ωi) ≤ ḡj ∨ πj (ωi) ≤ z̄j}) .
Moreover,

lim
(g,z)↓(ḡ,z̄)

s0 (g, z) ≤ lim
(g,z)↓(ḡ,z̄)

P (∩j {uj (ωi) ≤ gj ∨ πj (ωi) ≤ zj})

= P (∩j {uj (ωi) ≤ ḡj ∨ πj (ωi) ≤ z̄j}) ,
where the inequality follows from set inclusion and the equality follows because the probability
of a sequence of nested events converges to the probability of the limiting event. Thus,

s̄0 (ḡ, z̄) = lim
(g,z)↓(ḡ,z̄)

s0 (g, z) = P (∩j {uj (ωi) ≤ ḡj ∨ πj (ωi) ≤ z̄j}) .

Let Bχ be the collection of sets that are a Cartesian product of half-open intervals of the
form B = {(u, π) : u < u ≤ ū, π < π ≤ π̄} with B ⊆ χ. Consider some B ∈ Bχ and let g = u,
g = u,z = π and z = π. Define gj such that gj

k = ḡk for j = k and gj
k = g

k
for j ̸= k.

Likewise, define z̄j such that zj
k = 1 {j = k} z̄k + 1 {j ̸= k} zk. Define:

Λ1 (g, z) ≡
[
s̄0
(
g1, z

)
− s̄0 (g, z)

]
−
[
s̄0
(
g1, z1

)
− s̄0

(
g, z1

)]
,

and for j > 1,
Λj (g, z) ≡

[
Λj−1

(
gj, z

)
− Λj−1 (g, z)

]
−
[
Λj−1

(
gj, zj

)
− Λj−1

(
g, zj

)]
.
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Observe that each Λj

(
g, z

)
is identified. We will now calculate ΛJ(g, z). To do this, observe

that s̄0 (g1, z) − s̄0
(
g, z

)
is equal to

P
({
g1 < u1 (ωi) ≤ ḡ1 ∧ π1 (ωi) > z1

}
∩k>1

{
uk (ωi) ≤ g

k
∨ πk (ωi) ≤ zk

})
.

Similarly, s̄0 (g1, z1) − s̄0
(
g, z1

)
equals

P
({
g1 < u1 (ωi) ≤ ḡ1 ∧ π1 (ωi) > z1

}
∩k>1

{
uk (ωi) ≤ g

k
∨ πk (ωi) ≤ zk

})
.

By set inclusion, the probability
P
({
g1 < uj (ωi) ≤ ḡ1 ∧ z1 < π (ωi) ≤ z̄1

}
∩k>1

{
uk (ωi) ≤ g

k
∨ πk (ωi) ≤ zk

})
is equal to Λ1

(
g, z

)
. By an identical argument and induction, for any j > 1, we have that

Λj

(
g, z

)
equals

P
(
∩k≤j

{
g

j
< uj (ωi) ≤ ḡj ∧ zj < π (ωi) ≤ z̄j

}
∩k>j

{
uj (ωi) ≤ g

k
∨ π (ωi) ≤ zk

})
.

In particular,
ΛJ

(
g, z

)
= P

(
∩j

{
g

j
< uj (ωi) ≤ ḡj ∧ zj < π (ωi) ≤ z̄j

})
= P ((u (ωi) , π (ωi)) ∈ B) .

Thus, we can identify the probability that (u (ωi) , π (ωi)) belongs to any set B ∈ Bχ, i.e.,
sets that are a Cartesian product of half-open intervals and are subsets of the interior of the
support of (g, z).

We will show that conditional cumulative distribution function of (ui, πi) given (ui, πi) ∈ χ,
P (ui ≤ ū, πi ≤ π̄| (ui, πi) ∈ χ), is identified. There are two cases. The first case is when
P ((ui, πi)∈ χ) > 0. Then, we have that

P (ui ≤ ū, πi ≤ π̄| (ui, πi) ∈ χ) = P
(
(ui, πi) ∈ B̄ ∩ χ

)
/P ((ui, πi)∈ χ)

where B̄ = {(u, π) : u ≤ ū, π ≤ π̄}. It would suffice to show that we can identify P
(
(ui, πi) ∈ B̄ ∩ χ

)
and P ((ui, πi)∈ χ). In the second case, P ((ui, πi)∈ χ) = 0. In this case, we will still be able
to identify P ((ui, πi)∈ χ), but notice that the statement is vacuous and thus completes the
proof.

To identify P ((ui, πi)∈ χ), we will show that χ = ⋃∞
k=1 B

′
k for a countable collection of

B′
k ∈ Bχ and B′

k ∩ B′
k′ = ∅. This would imply that P ((ui, πi)∈ χ) = ∑∞

k=1 P ((ui, πi) ∈ B′
k)

is identified since each term in the summand is identified. Towards this, we first show
that there exists a countable collection of half-open cartesian products of intervals Bk =
{(u, π) : uk < u ≤ ūk, πk < π ≤ π̄k} ∈ Bχ such that χ = ⋃∞

k=1 Bk. To do this, let x ∈ χ and
note that there exist vectors of rational numbers uk, ūk, πk and π̄k such that

x ∈ Bk = {(u, π) : uk < u ≤ ūk, πk < π ≤ π̄k}
and Bk ⊆ χ. Since the set of rational numbers is countable, we have that there exists a
countable collection of Bk with χ = ⋃∞

k=1 Bk and Bk ⊆ χ. Now, notice that for any two
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elements of this collection Bk and Bk′ , Bk ∩ Bk′ ∈ Bχ. And, Bk\Bk′ is a union of at most
22J − 1 sets in Bχ. Therefore, there exists an at most a countable number of disjoint sets
B′

k ∈ Bχ such that ⋃k B
′
k = ⋃

k Bk = χ. Hence, P ((ui, πi) ∈ χ) is identified.

Next, we show that P
(
(ui, πi) ∈ B̄ ∩ χ

)
is identified. Notice that B̄∩χ = ⋃

k

(
B̄ ∩B′

k

)
. Since

B̄ ∩ B′
k ∈ Bχ, the quantity P

(
(ui, πi) ∈ B̄ ∩B′

k

)
is identified. Since B′

k ∩ B′
k′ = ∅, we have

that P
(
(ui, πi) ∈ B̄ ∩ χ

)
= ∑

k P
(
(ui, πi) ∈ B̄ ∩B′

k

)
is identified. Hence, the conditional

cumulative distribution function of (ui, πi) conditional on (ui, πi) ∈ χ is identified.

A.2 Primitive Conditions for Assumption 3

Condition on di and drop it from the notation for simplicity. Fix {j, k}. For each yi, define
the set

Ujk (yi, Oi) =
{
u (ωi) : min

l∈{j,k}
{ul (ω) − gl (yil)} ≥ max

l∈Oi\{j,k}
{ul (ω) − gl (yil)}

}
.

Definition 2. The pair of goods {j, k} is relevant at characteristics (yi, zi) and choice set O
if

P (O, u (ωi) ∈ Ujk (yi, O)| zi) > 0.

Proposition 2. Suppose assumption 1 is satisfied. If (i) the pair of goods {j, k} is relevant
at characteristics (yi, zi) and choice set Oi for some Oi ∈ O, (ii) the distribution of

uj (ω) − uk (ω)
conditional on u (ω) ∈ Ujk (yi, Oi) and Oi admits a density fjk, (iii) fjk (gj (yij) − gk (yik)) >
0, and (iv) for each O and all y in a neighborhood of yi, P ( |arg maxj∈O {uj (ω) − gj (yij)}| > 1|O, y) =
0 then (i) gj (yij) is differentiable if and only if sk (yi, zi) is differentiable with respect to yij,
(ii) the sign of ∂sk (yi, zi)

∂yij
coincides with the sign of ∂gj(yij)

∂yij
provided that these derivatives exist,

and (iii) a symmetric relation exists between gk (yik) and sj (yi, zi). Consequently, j and k are
strict substitutes if and only if gj (yij) and gk (yik) are differentiable with non-zero derivatives.

Proof. Fix specific values of yi and zi. Observe that
sj (yi, zi) =

∑
O∈O

P (cij = 1|O, yi, zi)P (O| yi, zi)

=
∑

O∈O
P
(
j ∈ arg max

l∈O
ul (ω) − gl (yil)

∣∣∣∣O, zi

)
P (O| zi)

since requirement (iv) implies that arg maxl∈O {ul (ω) − gl (yil)} has at most one element with
probability 1 and assumption 1 allow us to drop the conditioning on yi. Equation 3 implies
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that
∂sj (yi, zi)

∂yik

=
∑

O∈O

∂P (j ∈ arg maxl∈O ul (ω) − gl (yil)|O, zi)
∂yik

P (O| zi)

=
∑

O∈O

∂P (uj (ωi) − ḡij ≥ uk (ωi) − ḡik|O, u (ωi) ∈ Ujk (yi, O) , zi)
∂gik

∣∣∣∣∣
ḡik=gk(yik)

∂gk (yik)
∂yik

P (O, u (ωi) ∈ Ujk (yi, O)| zi)

=∂gk (yik)
∂yik

∑
O∈O

∂
∫∞

gij−gik
fjk (v) dv

∂gik

P (O, u (ωi) ∈ Ujk (yi, O)| zi)

=∂gk (yik)
∂yik

∑
O∈O

fjk (gij − gik)P (O, u (ωi) ∈ Ujk (yi, O)| zi)

where the derivatives in the summands exist since fjk is a density. The hypotheses ensure
the existence of Oi ∈ O such that its corresponding summand is strictly positive. Thus, if
gk (yik) is differentiable,∂sj (yi, zi)

∂yik
exists and it has the same sign as ∂gk(yik)

∂yik
. Conversely, if

gk (yik) is not differentiable, the limit gk(yik)−gk(yik+∆)
∆ as ∆ → 0 does not exist; thus, ∂sj (yi, zi)

∂yik

does not exist. This completes the proof of parts (i) and (ii). Part (iii) follow immediately
from a symmetric argument.

Corollary 2. Suppose assumption 1 is satisfied. If there exists z∗
i ∈ Z such that (i)

∪O:{j,k}⊆OP (O| z∗
i ) > 0, and (ii) for each each O with {j, k} ⊆ O and P (O|z∗

i ) > 0, the
joint distribution of (uij)j∈O conditional O on has full support on an open neighborhood
B ⊆ R|O| of (gj (yij))j∈O and is absolutely continuous with respect to Lebesgue measure on B,
then the functions sj (yi, z

∗
i ) and sk (yi, z

∗
i ) are differentiable at yik and yij respectively with

non-zero derivatives if and only if gj (yij) and gk (yik) are differentiable at yij and yik with
non-zero derivatives.

As another corollary, we state stronger but simpler to interpret conditions.

Corollary 3. Suppose assumption 1 is satisfied. If the joint distribution of ui conditional
on each O admits a density conditional on each O and there exists O with {j, k} ⊆ O and
P (O|z∗

i ) > 0 for some z∗
i , then the functions sj (yi, z

∗
i ) and sk (yi, z

∗
i ) are strictly increasing

and differentiable at yik and yij respectively if and only if gj (yij) and gk (yik) are strictly
increasing and differentiable at yij and yik.

A.3 Proof of Lemma 2

The proof of lemma 2 requires the following intermediate result.
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Lemma 3. Suppose that assumption 1 holds and |J | > 1. If j and k are strict substitutes
in y at some (di, yi, z

∗
i ) in the support of the data and g′

j (di, yi) ̸= 0, then (i) g′
k (di, yi) ̸= 0,

(ii) the sign of g′
k (di, yi) coincides with the sign of ∂sk(di,yi,z

∗
i )

∂yij
, and (iii)

g′
k (di, yi)
g′

j (di, yi)
= ∂sj (di, yi, z

∗
i )

∂yik

/
∂sk (di, yi, z

∗
i )

∂yij

,

which implies that g′
k(di,yi)

g′
j(di,yi) is identified and bounded.

Proof. Because j and k are strict substitutes in y at (di, yi, z
∗
i ) ∂sj

(
yi, di, z∗

i

)
∂yik

and ∂sk

(
yi, di, z∗

i

)
∂yij

exist and are non-zero. For notational simplicity, we omit z∗
i , di, yl and gl for l /∈ {j, k} from

the notation as they are fixed throughout the proof.

Since P (cij = 1|Oi, t, di, yi = y, zi) = P (cij = 1|Oi, t, di, yi = y′, zi) if g (y) = g (y′), equation
(3) and Assumption 1 implies that there exists a function ŝ (·) : R2 → R2 such that

sk (yik, yij) = ŝk (gk (yik) , gj (yij)) .
Moreover, the function ŝk (gk, gj) is weakly increasing in gj and weakly decreasing in gk.

The proof consists of four steps. The first step shows that the function ŝk (gk, gj) is differen-
tiable with respect to gj at gk = gk (yik) and gj = gj (yij). Therefore, we can use the chain
rule to calculate the cross partials of sk (yik, yij) and sj (yik, yij). The second step proves
part (i): the derivative of gk (·) at yik is not zero. The third step shows symmetry of the
cross-partial derivatives ∂ŝj (gk, gj)

∂gk
= ∂ŝk (gk, gj)

∂gj
without requiring continuity of ∂ŝj (gk, gj)

∂gj
and

∂ŝk (gk, gj)
∂gk

, a key requirement for Young’s Theorem. The fourth and final step applies the
chain rule and employs the symmetry of cross-partial derivatives to derive parts (ii) and (iii).

First step: For any ∆ ̸= 0,
ŝk (gk, gj (yij + ∆)) − ŝk (gk, gj (yij))

gj (yij + ∆) − gj (yij)
= sk (yik, yij + ∆) − sk (yik, yij)

∆ /
gj (yij + ∆) − gj (yij)

∆ .

The limit of the right-hand side as ∆ → 0 exists because ∂sk (yik, yij)
∂yij

and ∂gj(yij)
∂yij

exist, and the
latter is non-zero. Thus, the limit on the left hand side as ∆ → 0 also exists and it is finite.
Moreover, ∂sk (yik, yij)

∂yij
̸= 0, and weak monotonicity of ŝk (gk, gj) with respect to gj implies that
∂ŝk (gk, gj (yij))

∂gj

= ∂sk (yik, yij)
∂yij

/
∂gj (yij)
∂yij

> 0, (8)

where the strict inequality follows because each term in the RHS is non-zero. By a symmetric
argument, ∂gk(yik)

∂yik
̸= 0 implies that ∂ŝj (gk, gj)

∂gk
exists at gk = gk (yik) and gj = gj (yij). We will

show in the second step below that ∂gk(yik)
∂yik

̸= 0 without assuming that ∂ŝj (gk, gj)
∂gk

exists.

Second step: Consider ∆ > 0. The difference ŝj (gk + ∆, gj) − ŝj (gk, gj) is equal to the mass
of consumers whose match switches from k to j due to an increase in gk. Since the distribution
of choice sets O is independent of y, and therefore g (y), the switchers have both k and j
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in their choice sets at both (gk + ∆, gj) and (gk, gj). These consumers would switch to j if,
instead of gk increasing by ∆, gj decreased by the same amount. Thus, by set inclusion,

0 ≤ ŝj (gk + ∆, gj) − ŝj (gk, gj) ≤ ŝk (gk, gj) − ŝk (gk, gj − ∆) . (9)

By definition of ∂sj (yij , yik)
∂yik

,
∂sj (yij, yik)

∂yik

= lim
∆↓0

(
ŝj (gk (yik + ∆) , gj) − ŝj (gk (yik) , gj)

gk (yik + ∆) − gk (yik) × gk (yik + ∆) − gk (yik)
∆

)
̸= 0.

(10)
The limit on the right-hand side exists because ∂sj (yij , yik)

∂yik
is well-defined. Taking the absolute

value of the terms in parenthesis and using the inequalities in (9) yields

lim
∆↓0

∣∣∣∣∣ ŝj (gk (yik + ∆) , gj) − ŝj (gk (yik) , gj)
gk (yik + ∆) − gk (yik) × gk (yik + ∆) − gk (yik)

∆

∣∣∣∣∣
≤ lim

∆↓0

ŝk (gk (yik) , gj) − ŝk

(
gk (yik) , gj − ∆̃

)
∆̃

×
∣∣∣∣∣gk (yik + ∆) − gk (yik)

∆

∣∣∣∣∣
where ∆̃ = gk (yik + ∆) − gk (yik). Both terms converge as ∆ ↓ 0: the first one converges to
∂ŝk (gk, gj)

∂gj
and the second one to the absolute value of ∂gk(yik)

∂yik
. Therefore, ∂gk(yik)

∂yik
̸= 0 because

otherwise, ∂sj (yij , yik)
∂yik

= 0 contradicting equation (10). This proves part (i).

Third step: The arguments above imply that ∂ŝj (gk, gj)
∂gk

exists at gk = gk (yik) and gj = gj (yij).
By a symmetric argument to the one that yields equation (9), for any ∆ > 0

0 ≤ ŝk (gk, gj + ∆) − ŝk (gk, gj) ≤ ŝj (gk, gj) − ŝj (gk − ∆, gj) . (11)
Dividing (9) and (11) by ∆ and taking the limit ∆ ↓ 0, yields:

0 < ∂ŝj (gk, gj)
∂gk

= ∂ŝk (gk, gj)
∂gj

. (12)

Fourth step: We have shown that ŝk (gk, gj) is differentiable with respect to gj and that
ŝj (gk, gj) is differentiable with respect to gk. Applying the chain rule yields:

∂sj (yij, yik)
∂yik

= ∂ŝj (gk (yik) , gj)
∂gk

× ∂gk (yik)
∂yik

(13)

and
∂sk (yij, yik)

∂yij

= ∂ŝk (gk, gj (yij))
∂gj

× ∂gj (yij)
∂yij

. (14)

Parts (ii) and (iii) follow immediately from equations (12), (13), and (14).

We are now ready to prove lemma 2. Fix di and omit it from notation. Let j be the reference
good and recall the normalization that

∣∣∣g′
j (y0)

∣∣∣ = 1 and gj (y0) = 0 for some y0. Take
any pair (k, yk) such that there is a path connecting it with (j, y0) where j is the reference
good and y0 is the value for which we have normalized

∣∣∣∂gj(di,y0)
∂y

∣∣∣ = 1. Let this path be
(j, y0) = (m0, y1) , (m2, y2) , ...., (mn, yn) = (k, yk) where for all l = 2, ..., n, ml and ml−1
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are strict substitutes in y at some (di, yi, z
∗
i ) in the support of the data with yiml

= yl and
yiml−1 = yl−1. Lemma 3 implies that g′

ml
(yl)

g′
ml−1 (yl−1) is identified for each l ∈ {2, ...n} . Moreover,

g′
ml

(yl) and g′
ml−1

(yl−1) are bounded and non-zero. Thus, g′
k (yk) = g′

k(yk)
g′

j(y0) = ∏n
l=2

g′
ml

(yl)
g′

ml−1 (yl−1) is
identified. Since gk (y0) = 0 and gk (·) is continuously differentiable, gk (yk) =

∫ yk
y0
g′

k (τ) dτ is
identified as the argument above and assumption 3 imply that g′

k (τ) is identified for almost
all τ in the support of yik. 21

A.4 Proof of Proposition 1

To simplify notation, we drop the conditioning on di. Since the function g (·) is known, in a
minor abuse of notation we write g = g (y) and s (g) = {sj (g)}j∈J . We also drop zi from the
notation because its support is a singleton. With this simplification, the function sj (g) can
be re-written as follows:

sj (g) =
∑

O∈O
P
(
O, j ∈ arg max

k∈O
uk − gk

∣∣∣∣ g)

=
∑

O∈O

∫
1
{
j ∈ arg max

k∈O
uk − gk

}
P (O|u, g) fU (u) du

=
∑

O∈O

∫
1
{
j ∈ arg max

k∈O
uk − gk

}
P (O|u) fU (u) du

=
∑

O∈O

∫
1
{
j ∈ arg max

k∈O
uk − gk

}(∫
Oc
P (O|u) fU (u) duOc

)
duO

=
∑

O∈O

∫ ∞

gj

(∫ uj−gj+gk

−∞
...
∫ uj−gj+gk′

−∞
hO (uO) duO−{j}

)
duj,

where Oc = J\O, uO = (uj)j∈O, uOc = (uj)j∈J\O and hO (uO) =
∫
P (O|u) fU (u) duOc . The

third equality follows from assumption 1 whereas the others simply re-write the problem.
Since s (g) is the only observable when the support of z is a singleton, under assumption 1,
identification of the model is equivalent to identification of P (O|u) and fU (u).

We use a standard definition of identification (Matzkin, 2007). Define a model as a collection
of admissible structures {P ( ·| ·) , fU (·)}. A pair of structures is observationally equivalent
if they yield the same observable market share functions s (·). In particular, since the func-
tions {hO (·)}O∈O determine the functions sj (g) , two structures that yield the same func-
tions hO (·) are also observationally equivalent. Thus, the function fU (·) is identified if and
only if for any pair of observationally equivalent admissible structures {P ( ·| ·) , fU (·)} and{
P̃ (O| ·) , f̃U (·)

}
, fU (·) = f̃U (·).

21Footnote 15 of HSS refers to a previous version of our paper that employed a more restrictive version of
assumption 3.
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To complete the proof of the proposition, define admissible structures as pairs {P ( ·| ·) , fU (·)}
such that (i) fU (u) is a density, (ii) 0 < P̃ (O|u) < 1 for all O ∈ O and all u ∈ R|J |, and (iii)
the choice set probabilities add to one for each u: ∑O∈O P̃ (O|u) = 1. The first conditions
follow from the assumptions in the proposition. The second and third conditions ensure that
P (O|u) is a proper probability for any pair (O, u). The distribution of indirect utilities is
not identified if there are two observationally equivalent admissible structures {P ( ·| ·) , fU (·)}
and

{
P̃ (O| ·) , f̃U (·)

}
with fU (·) ̸= f̃U (·). The following lemma shows that this is the case

under the hypothesis of the proposition.

Lemma 4. If for the admissible structure {P ( ·| ·) , fU (·)} there exists an open set B ⊂ R|J |

and a choice set O ⊊ J such that for all u ∈ B, fU (u) > 0 and P (O|u) > κ > 0, then there
exist an alternative admissible structure

{
P̃ ( ·| ·) , f̃U (·)

}
with fU (·) ̸= f̃U (·) and for all uO,

hO (uO) =
∫
P (O|u) fU (u) duOc =

∫
P̃ (O|u) f̃U (u) duOc .

Proof. Fix an open set U ⊂ R|J |, a choice set O ⊊ J such that for all u ∈ U , fU (u) > 0
and P (O| u) > κ > 0. These quantities exist by assumption. Let R = ∏

j∈J

[
uj, ūj

]
⊂

U be a closed cartesian product of |J | intervals, one for each good. Define an arbitrary
absolutely continuous function c (uOc) such that (i) c (uOc) ̸= 0, (ii) ∥c (uOc)∥∞ < κ

2 , (iii)
c (uOc) = 0 for uOc /∈ ROc , where ROc = ∏

j∈Oc

[
uj, ūj

]
denotes the product of the intervals

in R corresponding to the products in Oc.

Define a family of functions {aO′ (u)}O′∈O as follows. Let aO′ (u) = 0 for O′ ̸= O and

aO (u) = 1 {u ∈ R}
[
c (uOc) −

∫
ROc c (uOc) fU (u) duOc∫

ROc fU (u) duOc

]
.

Note that each ∥aO (u)∥ < κ, and that∫
aO (u) f (u) duOc =

∫
ROc

[
c (uOc) −

∫
ROc c (uOc) fU (u) duOc∫

ROc fU (u) duOc

]
f (u) duOc = 0.

Moreover, for every O′ ⊂ O∫
aO (u) f (u) duO′c =

∫ ∫
aO (u) f (u) duOcduO\O′ = 0.

Define the alternative structure as
f̃ (u) = (1 − aO (u)) f (u)

P̃ (O′|u) = P (O′|u) − aO′ (u)
1 − aO (u)

for every O′ ∈ O. Now we verify that
{
P̃ ( ·| ·) , f̃ (·)

}
is an admissible structure. First, f̃ (u)

is a density because (1 − aO (u)) f (u) ≥ 0 and∫
(1 − aO (u)) f (u) du = 1 −

∫
O

∫
Oc
aO (u) f (u) duOcduO = 1.

Second, the choice set probabilities satisfy 0 < P̃ (O′|u) < 1 for all O′ ∈ O.Third, the choice
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set probabilities add to one for each u:∑
O′∈O

P̃ (O′|u) =
∑

O′∈O P (O′|u) − aO (u)
1 − aO (u) = 1.

Now we verify that the alternative structure is observationally equivalent to the original one.
Note that

∫
O′c P̃ (O′|u) f̃ (u) duO′c =

∫
O′c P (O′|u) f (u) duO′c = hO′ (uO′) for all O′ ̸= O.

And, finally∫
Oc
P̃ (O|u) f̃ (u) duOc =

∫
Oc

(P (O|u) − aO (u)) f (u) duOc

=
∫

Oc
P (O|u) f (u) duOc −

∫
Oc
aO (u) f (u) duOc

= hO (uO) .

A.5 Proof of Theorem 2

Assumptions 5 and 6 imply that there exists a function ψ−1 (·;x∗) such that (δt, γt) =
ψ−1 (ϕt;x∗

t ) . Assumption 7(i) implies that E
[
ψ−1 (ϕt;x∗

t ) −
(
xδ

t , x
γ
t

)∣∣∣ rt

]
= E [ξt| rt] = 0.

Let ψ̃−1 (·;x∗) be an alternative function such thatE
[
ψ−1 (ϕt;x∗

t ) − ψ̃−1 (ϕt;x∗
t )
∣∣∣ rt

]
= 0 al-

most everywhere. Assumption 7(ii) implies that ψ−1 (ϕt;x∗) = ψ̃−1 (ϕt;x∗) almost every-
where. Therefore, ψ−1 (·;x∗) is identified. Since ϕt is known, (δt, γt) = ψ−1 (ϕt;x∗

t ) and
ξt = (δt, γt) −

(
xδ

t , x
γ
t

)
are identified.

A.6 Additional Results on Identification across Markets

We show results analogous to those in Proposition 2 for non-separable models. These results
follow Theorem 2 in Berry and Haile (2010). Let

δjt = ũj (xjt, ξjt) ≡ med (uijt|xjt, ξjt) ,
and let fδj

( ·|xjt, rjt) be the conditional density of δj, where rjt are a set of instruments.
Fix ετ > 0 and εf > 0, small. For τ ∈ (0, 1), let Lj (τ) be the convex hull of functions mj (·, τ)
such that for all rjt, P (δjt ≤ mj (xjt, τ)| rjt) ∈ [τ − ετ , τ + ετ ], and for all xjt, mj (xjt, τ) ∈
sj (xjt) ≡

{
δ : fδj

(δ|xjt, r) ≥ εf , ∀r with fX (xjt| r) > 0
}
.

Assumption 8. ξjt ⊥ rjt

Assumption 9. For all j and τ ∈ (0, 1), (i) for any bounded function Bj (x, τ) = mj (x, τ)−
ũj (x, τ) with mj (·, τ) ∈ Lj (τ) and εjt ≡ δjt − ũj (xjt, τ), E [Bj (xjt, τ)ψj (xjt, rjt, τ)| rjt] = 0
a.s. only if Bj (xjt, τ) = 0 a.s. for ψj (x, r, τ) =

∫ 1
0 fεj

(σBj (x, τ)|x, r) dσ > 0. (ii) the
density fεj

(e|x,w) of εjt is continuous and bounded for all e ∈ R, and (iii) ũj(xjt, τ) ⊂
sj(xjt) for all xjt.
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Proposition 3. (Berry and Haile, 2014; Chernozhukov and Hansen, 2005). If δjt is identified
and assumptions 8 and 9 are satisfied, then the functions ũ(·) and ξjt are identified for each
j and t.

Proof. Follows from theorem 4 in Chernozhukov and Hansen (2005) since δjt is identified.

An analogous results holds for identification of g̃j since
gjt = g̃j (xjt, ζjt)

is known. Here, we switch gjt for δjt and g̃j (·) for ũj (·).

B Data Appendix

The data reported here have been supplied by the United States Renal Data System (USRDS)
and the Centers for Medicare & Medicaid Services (CMS). These sources provide us with
data on all dialysis facilities and the near universe of kidney patients in the US. Patient
characteristics include the residence zip-code, co-morbidities and the facility that they attend.
For each facility, we observe their address, ownership status and the number of stations.
Patients and facilities are uniquely identified by a USRDS generated identifier that can be
used to link records across separate datasets. We geocode patient zip-codes and facility
addresses to calculate the straight line distance between a given facility and a patient’s zip-
code centroid.

We will retain copies of the data until permitted by our Data Use Agreement with the
United States Renal Data System (USRDS). Researchers interested in using our dataset
should directly contact USRDS to obtain permission.

B.1 Data Description

Our data on patient profiles and treatment history come from the USRDS Researcher Stan-
dard Analysis File (SAF) which combines information from ESRD claims filed to CMS and
data from the Consolidated Renal Operations in a Web-Enabled Network System (CROWN),
a mandatory data system used by dialysis facilities to collect information on all patients, re-
gardless of payer type. The main SAF datasets used in this analysis are Medical Evidence
(medevid), which includes patient health information like co-morbidities and the whether a
nephrologist was already caring for a patient when dialysis commenced, Treatment History
(rxhist), where we obtain the sequence of facilities in which a patient was treated, Payer
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History (payhist) for insurance information, Residence History for the residence zip code and
the Facility dataset from the USRDS.

Though the patient information is sourced from claims, facility data come from the CMS
Annual Facility Survey and the CMS Facility Compare dataset maintained separately by
CMS. These includes identifiers for the facility, years of operation, profit status, chain status,
and setting status. The facility and patient identifiers allow us to link the patient informa-
tion from claims and the facility information from Facility Compare, providing a complete
overview of the patient-facility interaction.

We also geocoded facility addresses and obtained the geocodes for the centroid of each pa-
tient’s zip code. These coordinates are used to estimate the distance from the facility to
the patient, calculated as the distance from the patients’ reported zip code centriod to the
facility. Geo-coordinates are obtained via queries sent to the Google Maps API; these queries
have as an input the facility addresses included in the Facility Compare dataset provided by
CMS and return as an output the associated longitude and latitude for each facility. Zip-code
centroids are also obtained using Google Maps.

We use the Treatment History files to construct the number of patients receiving care at
each facility at a given point in time. This file contains the start date and the end date of
each patient’s treatment at each facility where they receive care. We use this information to
compute the number of patients undergoing in-patient hemodialysis at each facility on each
day during our sample period. These calculations will include all patients, irrespective of
whether they are in the sample of patients that we use to estimate our model (see section
B.2.2 below).

B.2 Sample Selection

We consider first-time admissions in California facilities between Jan 1, 2015 and December
31, 2018. As mentioned in the main text, moving costs and other considerations can be
important in subsequent stays, which complicates the analysis. Nonetheless, the first facility
a patient chooses is consequential as the median and average patient is treated at 1 and 1.30
facilities respectively.

California is essentially an isolated market, with few outgoing or incoming patient-facility
connections across its state borders. Figure B.1 shows the linkages between all facilities in
the US and zip-code centroids in California. The thickness of each edge connecting a facility
with a zip-code centroid indicates the number of patients residing in a zip-code that started
dialysis at a given facility. We omit edges with fewer than three patients. Only in rare
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instances does a patient living in California attend a facility outside the state. When they
do, our approach will treat the patient as choosing the outside option.

Figure B.1: California Connections

B.2.1 Facility Sample Selection

Table B.1 describes the facility sample. All facilities in California during our sample period
were successfully geocoded. From this universe of facilities, we restrict attention to facilities
that focus on in-center care and are non-pediatrics. Both variables are calculated using the
admissions data for facilities during our sample period; a facility is said to focus on in-facility
care if more than 50% of its admitted patients enroll in facility-based hemodialysis. We
classify a facility as pediatrics if the average age of the patients they admit is less than or
equal to 18. Patients living in California who receive dialysis but do not attend one of these
facilities are considered as being treated at a composite outside option.

We restricted to facilities that focus on non-pediatric and in-center care for two reasons.
First, we want to focus on the interactions for individuals that are going to facilities to receive
treatment, as opposed to receiving home dialysis in which case the distance to the facility is
not as salient in the patient’s choice of facility. Only a small minority of patients receive home
dialysis and are likely selected on health condition and income. Second, we restrict to non-
pediatric facilities because the baseline differences in co-morbidities and clinical indications
for pediatric and adult dialysis can be substantial, creating significantly different needs and
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operational setups for pediatric facilities.

We only include the quarters for which the facility operation was relatively stable, excluding
periods around entry, exit, capacity changes, or moves as these events could substantially
affect a facility’s demand and acceptance policies. In particular, we include in the inside
option facility-quarters in years with no changes in the number of stations or address. We
remove the quarter of and the quarter after a facility entered. Similarly, we remove the
quarter before and the quarter of a facility exit.

Table B.1: Facility Sample

Restrictions Facilities filter

Restricted to 2015 - 2018 and California 721 1

Restricted to facilities with geocoordinates 721 1

Restricted to facilities specializing in facility-based hemodialysis and are non-pediatric 640 1

Facilities with at least one stable quarter 553 1

Sample Selection: Facilities

B.2.2 Patient Sample Selection

Table B.2 describes the patient sample. We make three major restrictions on the patient
sample, starting from the universe of patients with a residential zip-code in California that
started dialysis in the years 2015 - 2018. First, and analogously to the focus on non-pediatric
facilities, we keep only adults in our sample, defined as at least 18 years of age when they first
started dialysis. Second, we drop patients for whom we weren’t able to compute a distance to
the facility attended; practically, this means that we drop a handful of patients for whom we
did not observe a valid zip-code. These two restrictions together result in a couple hundred
patients being dropped from our sample. The biggest cut in the sample comes from dropping
patients that chose facilities greater than 50 miles from their reported zip-code centroid.
Based on an inspection of these observations, we suspect that the residential zip-code is
incorrectly recorded for these patients. One indication is that the 95th percentile of distance,
conditional on the chosen facility being is less than 50 miles away, is less than 20 miles.

Table B.2: Patient Sample

Restriction Patients

Restricted to 2015 - 2018 and California 53,074

Restricted to adults (>=18 years old) 52,768

Restricted to admissions with distance between patient and facility 52,751

Restricted to those that chose a facility within 50 miles 50,002

Sample Selection: Patients
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B.2.3 Target Capacity

Table B.3 presents estimates of a regression of the estimated target capacity on facility inputs
measured annually, controlling for facility fixed effects. The result shows that univariate
regressions of facility inputs are positively correlated with target capacity. This includes
both capital and labor inputs. The relationship holds even though (i) target capacity varies
at a higher frequency level than the recorded inputs and (ii) the inputs are measured only
annually.

Table B.3: Correlation Between Target Capacity and Facility Inputs

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Total Number of Dialysis Stations -0.006*** -0.019***

(0.002) (0.004)

Late Shift -0.016 -0.063

(0.029) (0.044)

Registered Nurses on staff full-time 0.014 0.001

(0.009) (0.021)

Licensed Practical/Visiting Nurses FTime 0.060 0.058

(0.048) (0.051)

Patient Care Technicians on staff FTime 0.006 0.005

(0.006) (0.017)

Advanced Practice Nurses on staff FTme 0.107 0.096

(0.131) (0.135)

Dieticians on staff full-time 0.087 -0.144

(0.074) (0.158)

Social Workers on staff full-time 0.215*** 0.381***

(0.062) (0.140)

Constant 0.093*** -0.049*** -0.135** -0.081*** -0.110 -0.056*** -0.136* -0.265*** 0.043

(0.030) (0.013) (0.056) (0.029) (0.070) (0.014) (0.075) (0.066) (0.042)

Observations 2,061 2,038 2,061 2,061 2,061 2,061 2,061 2,061 2,038

R-squared 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.002 0.005

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

C Estimation Appendix: Gibbs Sampler

Our sampler starts with an initial guess for the parameters (α, β,Σ, δ, γ), variances
(
σ2

γ, σ
2
δ , σ

2
β, σ

2
ε0

)
and the latent variables (βi, εi0, vi, πi) for every i. We denote this guess by θ(0). For each
draw k, we perform the following steps:
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1. Data augmentation:

(a) Draw the latent acceptance index πij|θ(k−1) for every i and j in the sample. The
posterior distribution of πij conditional on all the parameters θ(k−1) is normal.
If i was allocated to facility j, then we draw πij from the conditional posterior
truncated by πij ≥ zij. If i was allocated to facility j∗ ̸= j and v

(k−1)
ij > v

(k−1)
ij∗ ,

then we draw πij from the conditional posterior truncated by πij < zij. Otherwise,
we draw it from the conditional posterior without any truncation. Let π(k) denote
the vector of draws and let O(k)

i be {j ∈ J : πij ≥ zij}.

(b) Draw the latent utility vij| θ(k−1), π(k) for every i and j. The posterior distribution
of vij conditional on all the parameters θ(k−1) and on π(k) is normal. Let j∗ be
the facility chosen by i. Draw vij∗ from the conditional posterior truncated at
vij∗ ≥ max

j∈O
(k)
i /{j∗} vij. Denote it by v(k)

ij∗ . Then, draw vijt for j ∈ O
(k)
i \ {j∗} from

the conditional posterior truncated at vij ≤ v
(k)
ij∗ . Lastly, draw vij for j /∈ O

(k)
i from

its unconditional posterior without any truncation. Let v(k) denote the vector of
draws.

2. Seemingly unrelated Bayesian regression: with the draws of v(k)and π(k) and for fixed
value of δ(k−1)

j , γ
(k−1)
j , β

(k−1)
i and ε(k−1)

i0 ; the equations above form a system of seemingly
unrelated regressions. The posterior distributions of the parameters α, β are normal
and the posterior distribution of Σ is inverse Wishart. We draw these parameters and
obtain the resulting residuals ε̂(k)

ij and ν̂
(k)
ij .

3. Update random effects:

(a) Draw βi|ε̂(k)
ij , ν̂

(k)
ij ,Σ(k), σ

2,(k−1)
β . The posterior distribution of βi conditional on the

residuals ε̂(k)
ij and ν̂(k)

ij and the previous variance draws Σ(k) and σ2,(k−1)
β is normal.

We draw βi from this conditional posterior. Let β(k)
i denote these draws and obtain

the updated residuals ε̄(k)
ij = ε̂

(k)
ij + β

(k)
i xj − β

(k−1)
i xj.

(b) Draw εi0|ε̂(k)
ij , ν̂

(k)
ij ,Σ(k), σ

2,(k−1)
ε0 . The posterior distribution of εi0 conditional on

the residuals ε̄(k)
ij and ν̂

(k)
ij and the previous variance draws Σ(k) and σ

2,(k−1)
ε0 is

normal. We draw εi0 from this conditional posterior. Let ε(k)
i0 denote these draws

and obtain the updated residuals ε̃(k)
ij = ε̄

(k)
ij + ε̂

(k−1)
i0 − ε̂

(k)
i0 .

(c) Draw γj|ε̃(k)
ij , ν̂

(k)
ij ,Σ(k), σ2,(k−1)

γ . The posterior distribution of γj conditional on the
residuals ε̃(k)

ij and ν̂(k)
ij and the previous variance draws Σ(k) and σ2,(k−1)

γ is normal.
We draw γj from this conditional posterior. Let γ(k)

j denote these draws and obtain
the updated residuals ν̃(k)

ij = ν̂
(k)
ij + γ

(k−1)
j − γ

(k)
j .
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(d) Draw δj|ε̃(k)
ij , ν̃

(k)
ij ,Σ(k), σ

2,(k−1)
δ . The posterior distribution of δj conditional on the

residuals ε̃(k)
ij and ν̃(k)

ij and the previous variance draws Σ(k) and σ2,(k−1)
δ is normal.

We draw δj from this conditional posterior. Let δ(k)
j denote these draws.

4. Update the variance of the random effects:

(a) Draw σ2
ε0|ε

(k)
i0 . The posterior distribution of σ2

ε0 conditional on ε
(k)
i0 is inverse-

gamma. Similarly, draw σ2
β|β(k)

i , σ2
γ|γ(k)

j and σ2
δ |δ(k)

j . Let σ2,(k)
ε0 , σ2,(k)

β , σ2,(k)
γ and

σ2,(k)
γ denote these draws.

5. Finally, collect all parameter draws in step k and denote them by θ(k).

We specify a set of diffuse conjugate priors to each set of parameters, following recommen-
dations in McCulloch and Rossi (1994). The priors for α, β, δ, γ are normal with zero mean
and covariance equal to the identity matrix times a large constant: 1000. The prior of Σ is
an inverse Wishart with a 2 × 2 identity matrix as its scale matrix and 3 degrees of freedom.
Similarly, the priors of σ2

ε0, σ2
β, σ2

γ and σ2
δ are four independent inverse-gamma distributions

with scale and shape parameters equal to 1/2. These priors are uninformative relative to
the size of our dataset and thus, the estimation results are unlikely to change substantially
should we make them even less precise.

We start a chain from random starting points and run the Gibbs sampler for 4 million draws,
discarding the first million draws. We summarize the draws for each parameter and verify
that the Potential Scale Reduction Factor for each parameter is close to one, which indicates
that letting the chain run for longer is not likely to change the results (Gelman et al., 2014).

D Monte Carlo Exercises

This section presents Monte Carlo evidence to assess the properties of the Gibbs sampler
described in the main text, and to assess bias arising from model mis-specification. Our
experiments focus on a single market with J = 5 products and vary the number of consumers
in the market, N ∈ {5000, 20000}.

To simulate a dataset, we begin by simulating observed characteristics. Consumer and prod-
uct locations are drawn uniformly at random from a unit square to generate distances xij;
an observable preference shifter yij is drawn from a standard normal; a choice-set shifter
zij is drawn from the Poisson distribution with parameter 10; a consumer-specific binary
observable di is drawn from the Bernoulli distribution with parameter 0.5.
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Next, we then simulate indirect utilities and choice sets by drawing
vij = δj + βixij − yij + εi0 + εij,

σij = 1 {γj + αidi + νi0 + νij > zij}
where εi0, νi0 and (ϵij, νij) are mutually independent (multivariate) normal distributions with
mean zero and variance σ2

ε0, σ2
ν0, and Σ respectively; the random coefficients βi and αi are

normally distributed, mutually independent of each other and other random variables in the
model with means and variances

(
β̄, σ2

β

)
and (ᾱ, σ2

α) respectively; and the facility fixed-effects
γj and δj are generated from independent mean-zero normal distributions with variances σ2

γ

and σ2
δ respectively. These latent variables provides an a product that each consumer is

matched with.

We repeat this simulation procedure to produce 100 datasets that are then used to estimate
the model using a Gibbs’ sampler. Our sampler uses 1 million iterations, a burn-in of 25%
of the chain, and one-in-ten thinning. For each dataset, we estimate four different models:

1. The correct specification

2. The “No Random Coefficients” model, which sets βi = β̄ and αi = ᾱ for all i

3. The model with “Choice Set Shifter in Utility,” which sets σij = 1 and vij = δj +βixij +
βzzij − yij + εi0 + εij,

4. The “Unconstrained Demand” model, which sets σij = 1.

The second model assess the importance of random coefficients whereas the third and fourth
assess whether mis-specification by omitting choice-set constraints are important, whether
with or without the “naive” correction in the third model.

The estimated parameters and the coverage of the 95% confidence sets are presented in Tables
D.4 and D.5 respectively for the case with 5000 and 20000 patients. As expected, the correct
specification exhibits appropriate coverage of the true parameters. The omission of random
coefficients not only creates a substantial bias in the coverage of β̄ and ᾱ, but also in other
parameters such as σν0. Models that omit choice-set constraints are particularly problematic
with extremely low coverage ratios.
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Table D.6: Monte Carlo Diversion Ratio

Average True 

Value

Correct 

Specification

(1)

No Random 

Coefficient

(2)

Choice Set Shifter 

in Utility

(3)

Unconstrained 

Demand

(4)

0.221

Mean Bias 0.000 0.027 0.016 0.011

RMSE 0.003 0.035 0.095 0.093

0.625

Mean Bias 0.024 -0.001 -0.388 ---

RMSE 0.473 0.551 1.480 ---

  Demand Side

  Supply Side

Notes: Demand side diversion ratio is defined as ∂sk

∂yij
/

∂sj

∂yij
. Supply side diversion ratio is defined as ∂sk

∂zij
/

∂sj

∂zij
.

Perhaps an economically more important estimand on which to compare the specifications
are the estimated diversion ratios. The “demand-side” diversion ratios are computed using
marginal changes in yij and the “supply-side” diversion ratios are computed using marginal
changes in zij. The mean bias and the root mean squared errors are reported in Table D.6.
As expected, the mean bias and the RMSE are the lowest for the correct specification. The
omission of random coefficients does increase the size of the biases and the RMSE, but less
so than misspecified models that omit choice-set constraints altogether.

E Appendix of Exhibits
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Figure E.2: Mean Utility vs Acceptance Probability
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Figure E.3: Bias in Demand
Notes: (a) Scatterplot of latent demand by facility-year estimated using the preferred and unconstrained
specifications. (b) Scatterplot of mean utility by facility-year estimated using the preferred and unconstrained
specifications.


	Introduction
	Model
	Preferences and Choices
	Examples

	Identification
	Identification within a market
	Identification with known g()
	Identification of g()
	Main Result

	Necessity of Choice Set Shifters for Identification
	Introducing Endogeneity

	Data and Descriptive Analysis
	Background
	Data
	Description of Sample and Choices
	Evidence on Supply-Side Rationing

	Estimates
	Parametric Specification and Estimation
	Estimates
	Empirical Specifications
	Parameter Estimates
	Biases in demand estimates
	Implications of choice constraints on diversion ratios


	Conclusion
	Proofs
	Proof of Lemma 1
	Primitive Conditions for Assumption 3
	Proof of Lemma 2
	Proof of Proposition 1
	Proof of Theorem 2
	Additional Results on Identification across Markets

	Data Appendix
	Data Description
	Sample Selection
	Facility Sample Selection
	Patient Sample Selection
	Target Capacity


	Estimation Appendix: Gibbs Sampler
	Monte Carlo Exercises
	Appendix of Exhibits

