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Abstract
Centralized (re)assignment of workers to jobs is increasingly common in public and private
sectors. However, these markets often suffer from distributional problems. We propose
a new strategy-proof mechanism that efficiently improves individual and distributional
welfare over the status quo. We justify our constructive and practical approach by micro-
founding it through the theory of inequality measures in welfare economics. To evaluate
the performance of our mechanism, we focus on teacher (re)assignment, where the unequal
distribution of experienced teachers across schools is a well-documented concern. Using
French data, we demonstrate that our mechanism reduces the teacher experience gap
across regions more effectively than benchmarks, including the current mechanism, while
providing higher average welfare for teachers.
JEL codes: C78, D50, D61, D67, I21
Keywords: Matching Theory, Market Design, Priority Design, Teacher Reassignment,
Status-quo Improvement, Efficiency, Inequality Measures, Distributional Welfare

1 Introduction
The centralized (re)assignment of workers, which involves the initial assignment of

new employees and the reassignment of existing ones to jobs, tasks, or managers, is in-
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creasingly common in both the public and private sectors. In many countries, doctors are
centrally (re)assigned to hospitals (Kamada and Kojima, 2015), police officers to precincts
(Sidibe et al., 2021), teachers to public schools (Dur and Kesten, 2019, Combe et al., 2022,
Bobba et al., 2021, Bates et al., 2021), and civil servants to regional jobs (Thakur, 2020).
Centralized (re)assignment also exists within large corporations, where rotation proce-
dures are commonly used to (re)assign workers to jobs (Cheraskin and Campion, 1996).

From a market design perspective, these labor markets differ from other matching
markets studied in the literature. First, they are characterized by the presence of both
new workers, who require an initial job assignment, and existing workers, who vacate their
current positions during the (re)assignment process. As a result, there are both already-
occupied and vacant positions to consider. Second, for existing workers, participation is
usually voluntary. If they do participate, reassignment occurs only when a better position
than their current one becomes available. This built-in property right can conflict with
employers’ objectives, such as achieving a balanced distribution of workers across jobs.
Market designers must carefully address these novel aspects.

The centralized (re)assignment of workers is also significant from a policy and design
perspective because many of these markets suffer from distributional challenges.1 Some
countries and cities attempt to address these disparities by offering higher salaries or bet-
ter working conditions in less desirable jobs or locations (Bobba et al., 2021, Biasi, 2021,
Falch, 2010). However, these strategies face two key constraints: public-sector salaries
for civil servants, such as teachers, doctors, and police officers, are often tied to rigid pay
schedules, limiting their effectiveness as incentives. Additionally, in professions driven
by intrinsic motivation, low wage elasticity causes these policies to be either ineffective
or prohibitively costly (Bobba et al., 2021, Bates et al., 2021). In such contexts, centralized
(re)assignment offers an opportunity to leverage novel mechanism design to mitigate dis-
tributional challenges.

This paper is motivated by the following research question: In the complex environ-
ments described, how can we design (re)assignment mechanisms that achieve specific
distributional objectives? To address this question, we introduce a new model and an
assignment mechanism rooted in the theory of inequality measures from welfare eco-
nomics. This mechanism is designed to achieve a more desirable worker distribution
as determined by policymakers. We then empirically assess the extent to which the new
mechanism improves worker distribution.

As our empirical application, we study the (re)assignment of public school teach-

1For example, rural hospitals struggle to recruit doctors (Kamada and Kojima, 2015). Police officers tend
to avoid urban city centers prone to violence (Sidibe et al., 2021). Public administrators in India prefer
and are often assigned jobs near their home states, which poses obstacles to national integration objectives
(Thakur, 2020). Moreover, high-quality teachers are rarely distributed equitably among schools (Hanushek
et al., 2004, Jackson, 2009).
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ers in France, a market that suffers from significant and persistent distributional prob-
lems. Globally, good teachers tend to work in schools serving more affluent students
and schools with a higher share of native and high-achieving students (Bobba et al., 2021,
Bates et al., 2021, Biasi, 2021, Hanushek et al., 2004, Jackson, 2009, Bonesrønning et al.,
2005, Allen et al., 2018). Despite a growing body of research examining the effectiveness
of wage policies in attracting high-quality teachers to disadvantaged schools in decentral-
ized hiring systems, our understanding of the role played by mechanisms in centralized
(re)assignment systems remains limited.2 This paper aims to address this gap. While we
present the theory with a focus on teachers, all theoretical results apply more broadly to
other applications.3

Model and design desiderata. We introduce a model in which new teachers seek their
first assignments, and tenured teachers seek reassignments. Tenured teachers already
have initial jobs, represented by a status-quo matching. Each teacher has strict preferences
over schools.4 A policymaker manages the schools and determines the matching of teach-
ers to schools.

We focus on two main matching properties. First, matchings should weakly status-
quo improve the teacher distribution at each school. To achieve this, each teacher has a
type capturing observable characteristics, such as experience, education, or past perfor-
mance. The policymaker assigns a type ranking to each school. For example, type rankings
might prioritize low-experience teachers in schools with many high-experience teachers
and vice versa. We allow arbitrary type rankings to accommodate diverse objectives. A
status-quo improvement is assessed through Lorenz domination, analogous to first-order
stochastic dominance, comparing a given matching with the status-quo matching based
on type rankings. In other words, a matching is status-quo improving for schools if, for
each school and each type, the cumulative number of teachers with types that are weakly
higher ranked is always larger under the new matching than under the status-quo match-
ing.

Second, teachers’ assignments should be individually rational, meaning they must be at
least as good as their initial assignments. Together, these two properties—individual ratio-

2Countries that use a centralized process to assign teachers to schools include Germany, Czechia
(Cechlárová et al., 2015), Italy (Barbieri et al., 2011), Türkiye (Dur and Kesten, 2019), Mexico (Pereyra, 2013),
Peru (Bobba et al., 2021), Uruguay (Vegas et al., 2006), and Portugal.

3We discuss some of these applications in more detail in Appendix C.
4 In our setting, teachers’ preferences are primarily determined by exogenous factors, such as school

location, rather than peers (see Appendix G). Furthermore, because the number of individuals seeking
(re)assignment is small, our market is mostly immune to peer effects. For instance, in France in 2013, about
4.3% of secondary school teachers requested to change regions and about 2% additional were new teachers
seeking first assignment (DEPP, 2014a). Thus, preferences over schools remain largely unaffected by peers,
as most peers at schools remain unchanged. However, in other applications, preferences over peers may be
critical, such as in police officer assignments (Sidibe et al., 2021). See Pycia (2012) for a theoretical treatment
and Cox et al. (2021) for an empirical analysis in large markets.
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nality and status-quo improvement for schools—ensure that enhancing teachers’ welfare does
not worsen the distribution of teachers, as measured by the policymaker’s type rankings.
As we will demonstrate, improving teacher distribution for a carefully constructed type
ranking profile is closely linked to reducing inequality, provided a reasonable assumption
about market size is satisfied.

In addition to individual rationality and status-quo improvement for schools, we aim
to identify matchings that are Pareto undominated among those satisfying these two prop-
erties. We refer to such matchings as SI-constrained efficient. Since teacher preferences are
private information, we further require SI-constrained efficient mechanisms to be strategy-
proof. To achieve these goals, we introduce the status-quo improving cycles and chains (or
SI-CC) mechanism, which satisfies these properties.

The SI-CC mechanism. The SI-CC mechanism is inspired by top-trading cycles (TTC)
mechanisms, particularly those proposed by Shapley and Scarf (1974), Abdulkadiroğlu
and Sönmez (1999), and Roth et al. (2004), but with a key distinction: unlike TTC-variant
mechanisms, which ensure that only teachers are weakly better off compared to the status
quo, the SI-CC mechanism guarantees that both teachers are weakly better off and the
schools’ teacher distribution weakly improves under the given type-ranking profile.5

The SI-CC outcome is determined through an iterative algorithm that operates on di-
rected graphs. When a cycle or an appropriately defined chain in the directed graph is
identified, each teacher within it is assigned to the school to which she points.

Compared to TTC algorithms, the SI-CC mechanism introduces two key innovations
through the endogenous definition of pointing rules to construct the directed graphs.
First, we define the school pointing rule, which determines the order in which a school
allows its status-quo employees to be reassigned. By pointing, a school effectively grants
permission for one of its status-quo employees to be assigned to a different school. The
pointing order is constructed such that a school first points to its employee with the low-
est type (who leaves first) and subsequently to employees with higher types.6 Second, we
define the teacher pointing rule, which specifies the schools to which a teacher may point
and, consequently, be assigned. A teacher may point to a school if replacing her with the
teacher pointed to by that school status-quo improves the school, or if there is a vacant
position at the school that can be filled in a manner that status-quo improves the school.
In the directed graph, a teacher points to the best school available to her under these con-
ditions.

We carefully design the pointing rules and the order in which cycles and chains are re-
solved. Allowing substantial changes to these orderings could compromise SI-constrained

5This two-sided improvement feature of the SI-CC mechanism also relates it to the efficient and stable
matching algorithm (Erdil and Ergin, 2017), which achieves Pareto-efficient stable matchings in two-sided
markets with preference indifferences. See the literature review in Section 6 for further details.

6This order is practically the reverse of the type rankings that prioritize teachers.
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efficiency under a type-ranking profile or strategy-proofness. However, our precise for-
mulation ensures that the SI-CC mechanism satisfies both properties (Theorem 1).

Inequality reduction and the design of type rankings. An important property of
the SI-CC mechanism is its simplicity and transparency, as it treats each school indepen-
dently from the others and can be deployed in practice to replace similarly functioning
mechanisms while improving teacher distribution. However, to understand how the pol-
icymaker’s goal of reducing inequality in terms of teacher experience distribution across
schools can be achieved through the SI-CC mechanism, we must address a critical ques-
tion: under what type-ranking profiles (if any) does status-quo improvement lead to in-
equality reduction?

Even if such type-ranking profiles exist and lead to inequality reduction, the objective
of inequality reduction is inherently interconnected with the eventual employee distribu-
tion across schools. A mechanism that violates status-quo improvement for schools might
still achieve inequality reduction by making some schools worse off. However, we show
that the status-quo improvement axiom for schools is not only sufficient but also necessary
to achieve inequality reduction in large markets under certain smoothness and genericity
assumptions. To formalize this, we microfound the policymaker’s design of type rankings
using the theory of inequality measures.

Consider a standard inequality index, such as the Gini (1912) index, the Atkinson
(1970) index, or the ratio of the average experience of the top 20% of schools to that of
the bottom 20% (referred to as the T20/B20 ratio index7), weighted by the population of
teachers in each school. The arguments of the index are statistics such as the mean or me-
dian teacher experience in each school or the fractions of teachers exceeding a threshold
level of experience.

We demonstrate that if the proportion of teachers who do not apply for annual re-
assignment is large relative to those who participate in each school, then there exists a
natural type-ranking profile such that status-quo improvement under this profile implies a
reduction in the value of the inequality index (henceforth referred to as inequality reduc-
tion) for the overall economy. This reduction accounts for both teachers who participate
in the (re)assignment process and those who do not (Proposition 1).

The natural type-ranking profile is straightforward to construct. First, we partition
schools into two sets, L and H. Set L comprises schools where marginally assigning high-
experience teachers reduces inequality, while set H includes schools where marginally
assigning high-experience teachers increases inequality. For schools in H, the type ranking
prioritizes low-experience teachers over high-experience teachers, whereas for schools in

7This index, also known as the quintile share ratio, is one of the primary income inequality measures
used by EUROSTAT (European Commission, 2003). Similar ratio indexes are commonly used to capture
inequality at the tails of income distributions, as seen in Chancel and Piketty (2021) and Bozio et al. (2024).
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L, the ranking is reversed.
Conversely, we show that there exist large economies where status-quo improvement

under the natural type-ranking profile is necessary for inequality reduction (Proposi-
tion 2). Thus, the SI-CC mechanism, when paired with the natural type-ranking pro-
file, always (weakly) reduces inequality in such markets. Our empirical application—
the (re)assignment of teachers to schools in France—can be regarded as a large market,
as approximately 6.3% of all teachers participated in (re)assignment in our dataset. (see
Footnote 4).

Finally, we demonstrate why the SI-CC mechanism utilizing the natural type ranking
profile is desirable among all inequality-reducing mechanisms. SI-CC utilizing the natural
type ranking profile is a second-best mechanism in the following sense: Any individually
rational mechanism that reduces inequality more than SI-CC whenever possible is manip-
ulable by teachers (Proposition 3). Therefore, minimizing inequality is not a goal that can
be reached under individually rational and strategy-proof mechanisms (Corollary 2).

Empirical application: Improving unequal teacher distribution in France. In the sec-
ond part of the paper, we quantify the gains that our mechanism can bring by using data
on the annual centralized (re)assignment of teachers to the regions of France.8 This labor
market is particularly appropriate to study our question because it suffers from severe
imbalance in the distribution of experienced teachers (see the map in Figure A.1).

About 50% of the tenured teachers who ask to change region come from two regions
(out of 25) in the suburbs of Paris—called Créteil and Versailles—that are particularly dis-
advantaged and unattractive for many teachers. To compensate for the large exit flows,
most new teachers are assigned to these two regions. This structural imbalance is a serious
concern for policymakers. It is frequently raised as a reason for the lack of attractiveness
of the teaching profession in France, and it is seen as one of the structural determinants of
the large achievement inequalities that France suffers from.9 Reducing the unequal distri-
bution of teachers across regions has become one of the priorities of French policymakers,
as illustrated by this quote from the Ministry that evaluated the teacher transfer process
in 2015 (IGAEN, 2015):

“Inequalities among regions is not considered [by the current (re)assignment process]. When

data on mobility is provided, the statistics mostly focus on whether teachers’ transfer requests

are satisfied, with particular attention being paid to spousal reunion and teachers with a

8We consider the (re)assignment of teachers to regions instead of individual schools for reasons that will
be clear in the empirical section.

9The PISA results show that, in OECD countries, a more socio-economically advantaged student scores
39 points higher in Math than a less-advantaged student, which is equivalent to one year of schooling.
There is a large variation between countries in how much a student’s social background predicts her school
achievement, and France is one of the worst countries in this inequality indicator, ranking fourth from the
bottom (OECD, 2012, 2023).
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disability. These statistics are necessary, but they do not allow to account for inequalities

among regions.”

This observation led them to the following recommendation:

“Focus the discussion on mobility around a reduction of inequalities among regions.”

Counterfactuals. We first empirically estimate preferences separately for tenured and
new teachers under a stability assumption used by Fack et al. (2019). We then use the es-
timated teacher preferences, along with data on region priorities and vacant positions, to
evaluate the performance of SI-CC. We define a teacher’s type as a monotonic function of
her experience. To generate the natural type ranking of each region, we start by comput-
ing the T20/B20 ratio index using teacher mean experience in each region as the statistic,
including the teachers who do not participate in the (re)assignment process. We calculate
the ratio of the average teacher experience in the 20% oldest regions over the average ex-
perience in the 20% youngest regions.10 Following our theory, we then identify the sets
of H (older) and L (younger) type regions. The former needs less experienced teachers to
reduce inequality. Their natural type ranking orders teachers by decreasing level of ex-
perience. The younger regions need more experienced teachers to reduce inequality. They
rank teachers by increasing level of experience.

As suggested by our theoretical results, the motivation for designing type rankings
as above is to ensure that the distribution of teachers becomes more even under SI-CC
thanks to the status-quo improvement property. The first empirical outcomes we consider
are, therefore, the changes in the inequality index and teacher experience across regions.
However, imposing status-quo improvement for regions under the natural type rankings
may have a cost in terms of teacher welfare, which motivates us to consider, as additional
outcomes, the mobility of tenured teachers and the ranks of the regions that teachers ob-
tain. To quantify the effect of imposing status-quo improvement on the distribution of
teachers and on teacher welfare, we compare the allocation under SI-CC to a benchmark
mechanism, which is related to SI-CC (and satisfies individual rationality for teachers),
but does not satisfy status-quo improvement for regions for a given type ranking profile.
This benchmark is a variant of the TTC mechanism of Abdulkadiroğlu and Sönmez (1999).
We refer to it as TTC*.

Empirical performance of SI-CC. Imposing regional status-quo improvement reduces
the value of the inequality index compared to the status quo and it reduces the experience
gap between younger and older regions. For example, SI-CC assigns only 1,527 teachers

10One of the most widely used measures, the Gini index, has the same sensitivity for inequality between
the youngest and oldest regions as between other regions. The Gini index is not a measure of inequality
that reflects the Ministry’s goals to serve the least advantaged regions. Indeed, the Ministry uses the ratio
of high-experience to low-experience teachers in its publications; for example, see our Figure A.1 in the
Appendix. Therefore, we use indexes that are more sensitive to inequality in extreme regions, the T20/B20
ratio index in the main analysis, and the maximin index for robustness checks.
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with zero or one years of experience to the B20 regions, compared to 2,039 teachers un-
der the benchmark mechanism, TTC*. Consistent with these findings, SI-CC reduces the
T20/B20 ratio to 1.3487 from 1.3588 at the status quo, whereas TTC* increases the ratio to
1.3691, thereby exacerbating inequality.

We then examine whether the more equitable distribution of experience achieved by
SI-CC comes at the cost of lower teacher welfare. Surprisingly, we find that it does not, at
least in terms of the average rank of the regions assigned to teachers. The average rank
is lower under SI-CC (9.5th ranked region) than under TTC* (9.7th ranked region). How-
ever, there are notable differences across teachers. Specifically, while the rank distribution
of regions assigned to new teachers under SI-CC Lorenz dominates the distribution un-
der TTC*, the opposite is true for tenured teachers. Thus, this suggests that opting for a
more equitable distribution also involves a trade-off between the welfare of new teach-
ers and tenured teachers. However, it also underscores an important advantage of SI-CC
as the preference satisfaction of new teachers plays a crucial role in making the teaching
profession more attractive (Cour des Comptes, 2013, 2017).

Overall, our results show that SI-CC significantly enhances the distribution of teach-
ers, boosting the welfare of new teachers while reducing that of tenured teachers. This
provides empirical support for our new approach, where school priorities and the assign-
ment mechanism serve as tools to reduce inequality in teacher distribution, in contexts
where SI-CC is the implemented mechanism.

Increasing teacher mobility under SI-CC. Our empirical analysis identifies an im-
portant trade-off between tenured teacher mobility (in particular from disadvantaged re-
gions) and inequality reduction. However, we show next that, if the policymaker wants to
keep tenured teacher mobility high, this can be achieved at the expense of a slightly lower
inequality reduction. To do so, we develop a modified version of SI-CC, called SI-CC*,
in which new teachers have to rank the youngest regions at the top of their preferences
(and otherwise preserving their submitted ranking within young and old regions). As we
discuss later, the current mechanism used in France implicitly causes new teachers to go
down their preference lists until they apply to the youngest regions. By requiring them to
rank these regions first, SI-CC* aligns with the current policy approach toward new teach-
ers. In Proposition A.5 (see Appendix F), we show that this mechanism is strategy-proof
as it keeps the reported relative ranking within each group intact, and the definition of
the youngest regions is exogenously fixed. We also show it is status-quo improving for
regions, and, hence, inequality reducing under the natural type rankings in large markets.
And last, it is individually rational when new teachers are assumed to find all regions
acceptable.11

11The French Ministry of Education completes new teachers’ lists to ensure all regions are ranked and va-
cancies filled. Given negligible dropout rates even though these teachers are assigned to the least attractive
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In the final counterfactual analysis, we compare SI-CC* with SI-CC and the Current
French mechanism. The latter is based on the teacher-proposing deferred acceptance
algorithm of Gale and Shapley (1962), in which the region priorities use the Ministry’s
point scheme (primarily increasing based on teacher experience level, see Appendix F.2.1).
Moreover, it modifies these priorities to ensure the mechanism’s individual rationality for
tenured teachers.

Our results show that, while the inter-region mobility of tenured teachers under SI-
CC* is closer to the mobility under the Current French mechanism (1,307 vs 1,711, respec-
tively, whereas only 986 tenured teachers move under SI-CC), SI-CC* achieves inequality
reduction at levels comparable to SI-CC (2.75% vs 2.79% decreases of the initial 35.88%
difference in the experience ratio, respectively). In contrast, the Current French mecha-
nism increases inequality relative to the status quo, corresponding to a 6.72% increase in
the initial 35.88% difference in the T20/B20 experience ratio.

2 Model
Let T be a finite set of teachers and S be a finite set of schools. Each teacher is seeking

employment or re-employment at one of the schools, which are managed by a policy-
maker. Each teacher t has a type which captures her observable characteristics, such as
experience, education, past performance, etc., or only a subset of these. Let Θ be the finite
type space and τ : T → Θ be the type function such that τ(t) is the type of teacher t. For
any T̂ ⊆ T, we define T̂θ := {t ∈ T̂ : τ(t) = θ}.

In addition to Θ, we define the vacant seat type, denoted by θ∅, as a special type which
will be used for vacant seats of a school. Each school s has a capacity of qs. Let q = (qs)s∈S.
Each teacher t has a strict preference relation, which is a linear order and denoted by Pt,
over the schools and outside option denoted by ∅. Let P = (Pt)t∈T. We denote the at
least as good as relation related to Pt by Rt for every teacher t: s Rt s′ if and only if s = s′

or s Pt s′.
A matching µ : T → S ∪ {∅} is a function such that |µ−1(s)| ≤ qs. We will occa-

sionally use a set-based definition of functions to denote matchings: µ :=
{(

t, µ(t)
)

: t ∈
T s.t. µ(t) ̸= ∅

}
. Let M be the set of matchings. With a slight abuse of notation, we use

µt and µs instead of µ(t) and µ−1(s), respectively. Thus, µθ
s is the set of teachers of type

θ ∈ Θ that are assigned school s. For the vacant seat type θ∅, we define µ
θ∅
s as the set of

vacant seats under matching µ at school s, and |µθ∅
s | := qs − |µs|.12 We refer to µt as the

assignment of teacher t and µs as the assignment of school s in matching µ. For a subset
of teachers T̂, we denote the set of their matches in µ by µT̂.

regions, it seems reasonable to assume all schools are acceptable to new teachers.
12The identity of vacant seats does not matter for our purposes, and we will mainly use the cardinality of

this set in our model.
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Initially, some teachers are already employed by some schools. This is captured by a
status-quo matching ω. If ωt = s, then teacher t is a status-quo employee of school s. If
ωt = ∅, then teacher t is called a new teacher, who is unemployed at the status quo. By
definition, |ωs| ≤ qs for each school s. We denote the set of new teachers by N.

Teachers who are status-quo employees of schools are referred to as tenured teachers.
We make one assumption on teacher preferences: we assume that each tenured teacher
finds her status-quo assignment acceptable, i.e., ωt Pt ∅ for each t ∈ T \ N.

We refer to the list ⟨T, Θ, τ, S, q, ω, P⟩ as a teacher (re)assignment market. Only teacher
preferences are private information in our application. Thus, when there is no ambiguity,
we denote a market by teacher preferences P. We are seeking a matching given a market
P. We next introduce desirable properties of matchings.

A matching µ is individually rational if every teacher weakly prefers her assignment
under µ to her assignment under ω, i.e., µt Rt ωt for every t ∈ T.

The policymaker endows each school s with a type ranking, which is a reflexive, com-
plete, and transitive binary order and denoted by ⊵s, over the types of teachers and the
vacant seat type. We allow type rankings to induce indifference between types, including
the vacant seat type. Let ∼s and ▷s denote the symmetric and asymmetric parts of ⊵s. In
particular, if θ ∼s θ′, then θ ⊵s θ′ and θ′ ⊵s θ. If θ ▷s θ′, then θ ▷s θ′ but not θ′ ▷s θ.
Let ⊵= (⊵s)s∈S be the type ranking profile.

Given two matchings µ and γ, we say µ Lorenz dominates γ under ⊵s if for each type
θ ∈ Θ ∪ {θ∅}, ∑

θ′⊵sθ

|µθ′
s | ≥ ∑

θ′⊵sθ

|γθ′
s |. We say that µ is an unambiguous weak improve-

ment over γ under ⊵s for school s if (1) |µs| ≥ |γs| and (2) µs Lorenz dominates γs under
⊵s. A matching µ is status-quo improving for schools under ⊵ if µ is an unambiguous
weak improvement over ω under ⊵s for every school s ∈ S.13

A matching µ is status-quo improving under ⊵ if it is status-quo improving for
schools under ⊵ and individually rational. We denote the set of status-quo improving
matchings under ⊵ by MSI(⊵).

An important reason why we focus on status-quo improvement for schools as a de-
sirable property is that when used in conjunction with a carefully designed type ranking

13If we used a more stringent binary relation than Lorenz domination in the definition of status-quo im-
provement, such as using a responsive order, then as we demonstrate in Appendix E through an example,
we obtain incompatibility between our desired properties. More importantly, in Section 4, we demonstrate
that Lorenz domination is crucial to establishing a link between inequality reduction and status-quo im-
provement. On the other hand, Condition (1) in the definition of unambiguous weak improvement can be
dispensed of. All our analysis would go through with an appropriate change to the mechanism we introduce
in the next section. Moreover, our two versions of the mechanism, respecting unambiguous weak improve-
ments with and without Condition (1), led to similar empirical outcomes, in a market with overdemand
from teachers that have better types than vacant seats, as in the French market analyzed in our empirical
section. Since not allowing a school to have fewer teachers than it had at the status quo is more fitting with
the status-quo improvement idea, we keep Condition (1).
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profile for a given inequality measure, it is both sufficient and necessary in large mar-
kets to achieve inequality reduction, a central objective of the policymaker in our main
application. We carry out a formal analysis to this end in Section 4.

Next, we define our efficiency notion. Given two matchings µ and γ, µ Pareto domi-
nates γ if µt Rt γt for all t ∈ T, and µt′ Pt′ γt′ for some t′ ∈ T. A matching is Pareto efficient
if it is not Pareto dominated by any other matching. Let M be a subset of matchings. A
matching µ is constrained efficient in M if µ ∈ M and it is not Pareto dominated by any
other matching in M. Thus, given a type ranking profile ⊵, a matching is SI-constrained
efficient under ⊵ if it is constrained efficient in MSI(⊵), i.e., there is no other status-quo
improving matching under ⊵ that Pareto dominates it.

We inspect rules that select a matching for each market. Formally, a (direct) mecha-
nism φ is a function that chooses a matching for any market P. Let φ(P), φt(P), and φs(P)
denote the matching selected by mechanism φ in market P, the assignment of teacher t,
and the assignment of school s in that matching, respectively.

A mechanism φ is strategy-proof if truth-telling is a weakly dominant strategy
for all teachers, that is, for each market P, teacher t, and preference report P′

t ,
φt(Pt, P−t) Rt φt(P′

t , P−t), where P−t = (Pt′)t′∈T\{t}.

3 An SI-Constrained Efficient Mechanism
In this section, we introduce an SI-constrained efficient and strategy-proof mechanism.

To achieve this goal, we introduce additional tools.
Our mechanism will iteratively construct a sequence of directed graphs in which teach-

ers, schools, and the outside option are the nodes. Teachers can only point to schools or the
outside option and schools can only point to their status-quo employees in each of these
graphs. Our mechanism relies on executing two types of multi-lateral exchanges based on
the constructed directed graphs.

A cycle is a directed path of distinct teachers {tℓ}ℓ∈{1,...,k} and options {xℓ}ℓ∈{1,...,k} ⊆
S ∪ {∅}, denoted as (x1, t1, x2, t2, . . . , xk, tk) such that for all ℓ, if xℓ is a school, ωtℓ = xℓ,
each node points to the next node in the path, and tk points back to x1.

A chain is a directed path of distinct teachers {tℓ}ℓ∈{0,...,k−1} and (not necessarily dis-
tinct) schools {sℓ}ℓ∈{1,...,k}, denoted as (t0, s1, t1, . . . , sk−1, tk−1, sk) such that for all ℓ < k,
ωtℓ = sℓ and each node points to the next node in the path. Here, the chain starts with t0

and ends with sk.
As certain cycles and chains are encountered in the constructed graph, we will execute

the exchanges in them by assigning each teacher to the school or the outside option to
which she is pointing and remove her.

We will construct a sequence of matchings µ0 := ∅ ⊊ µ1 ⊊ µ2 ⊊ . . . ⊊ µK through
the iterative algorithm that calculates the outcome of our mechanism. In each Step k, as
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teachers are assigned in µk, they will be removed; similarly, schools whose all positions are
filled in µk will be removed. Let Tk and Sk be the sets of remaining teachers and schools
at the beginning of Step k, respectively. We initialize them as T1 := T and S1 := S.

For each Step k ≥ 1, school s, and type θ ∈ Θ, let bk,θ
s track the balance of number of

type θ teachers at school s in µk−1. This balance is defined as the difference between the
number of type θ teachers in µk−1

s and in ωs, who got assigned in µk−1:

bk,θ
s :=

∣∣∣ [µk−1
s ]θ

∣∣∣− ∣∣∣ [ωs \ Tk]θ
∣∣∣.

Similarly, we define the balance of vacant seat type, θ∅, at school s in µk−1 as follows:

bk,θ∅
s := −

(
(qs − |ωs|)︸ ︷︷ ︸

=|ωθ∅
s |= # initial vacant seats

− (qs − |µk−1
s | − |ωs ∩ Tk|)︸ ︷︷ ︸

net # current vacant seats

)
= −( |µk−1

s | − |ωs \ Tk|︸ ︷︷ ︸
net # currently filled vacant seats

).

Therefore, b0,θ
s = 0 for all θ ∈ Θ ∪ {θ∅}. Let bk = (bk,θ

s )θ∈Θ∪{θ∅},s∈S.
One of our main theoretical innovations relies on designing pointing rules that desig-

nate which possible directed edges will form in the algorithm.
Fix a type ranking profile ⊵. The pointing rule of schools relies on their type rankings

and a given tie breaker. Formally, a tiebreaker is a linear order ⊢ over teachers.14 It can be
randomly determined or can be the mandated priority orders for a particular application,
such as in the French case, or can be exogenously fixed in some other manner. For each
school s, using tiebreaker ⊢ and its type ranking ⊵s, we first construct a pointing order
⋗s over teachers in ωs, which is a linear order: For any two distinct teachers t, t′ ∈ ωs,

t ⋗s t′ ⇐⇒ τ(t) ◁s τ(t′) or
[
τ(t) ∼s τ(t′) and t ⊢ t′

]
.

Note that a worse-type teacher is prioritized over a better-type teacher under ⋗s, and only
when teachers with types for which s is indifferent are compared, we use the tiebreaker to
prioritize one over the other.

As the mechanism will iteratively assign and remove teachers, the pointing rule of
schools is “point to the highest remaining priority teacher in its pointing order.”

In Step k, any teacher t ∈ Tk is allowed to point to a school s as long as her assign-
ment to s, possibly replacing the teacher pointed to by s, would not violate the status-quo
improvement requirement for s when we consider the teachers in µk−1

s and ωs ∩ Tk. In
particular, let Ak

t be the opportunity set for t, that is, the set of schools to which t can point
in this step together with the outside option ∅. A school s ∈ Sk is included in Ak

t if (and
only if) at least one of the following two school improvement conditions holds:

1. (Improvement for s by teacher trades) if s points to some teacher t∗, and either τ(t) ⊵s

14Technically, each tiebreaker induces a new mechanism in our class.
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τ(t∗) or

∑
θ′ ⊵s θ

bk,θ′
s > 0 for all types θ ∈ Θ ∪ {θ∅} such that τ(t∗) ⊵s θ ▷s τ(t),

or
2. (Improvement for s by only incoming teachers) school s currently has a vacant po-

sition, i.e., qs − |µk−1
s | > |ωs ∩ Tk|, there are remaining new teachers, and either

τ(t) ⊵s θ∅ or

∑
θ′ ⊵s θ

bk,θ′
s > 0 for all types θ ∈ Θ ∪ {θ∅} such that θ∅ ⊵s θ ▷s τ(t).

When the above first (or second) condition holds, we refer to it as “Improvement Condi-
tion 1 (or 2) holds for s via t.”

Now, we are ready to define our mechanism through an iterative algorithm:

Definition 1. Status-quo Improving Cycles and Chains (SI-CC) Mechanism Induced by ⊵

and ⊢: Determine the pointing order ⋗s for each school s using ⊵s and ⊢.
Step k ≥ 1:

• Each s ∈ Sk points to the highest priority teacher in ωs ∩ Tk under ⋗s, if ωs ∩ Tk ̸= ∅,
denoted by ts := max⋗s ωs ∩ Tk. Otherwise, s does not point to any teacher.

• Each t ∈ Tk points to her most preferred option in Ak
t , denoted by xt := maxPt Ak

t .
• Outside option ∅ points to all teachers who are pointing to it.

There are two possible cases:

Case (i). There is a cycle in which for each school in the cycle Improvement Condition 1 holds
via the pointing teacher to it or a cycle between a single teacher and the outside option ∅:
Each teacher can be in at most one such cycle as she points at most to a single option. We
execute exchanges in each such cycle encountered by assigning each teacher t in that cycle to
xt, update µk−1 by including the new assignments to form µk, remove assigned teachers in this
step from Tk and filled schools in this step from Sk to form Tk+1 and Sk+1, respectively, and go
to Step k + 1.
Case (ii). There exists no such cycle:
There must be a chain (built in the following lines) and N ∩ Tk ̸= ∅.15 We select the chain
(t0, s1, t1, . . . , sℓ∗−1, tℓ∗−1, sℓ∗) for some ℓ∗ determined by the steps below:

– Chain construction step 0: Select as the first teacher of the chain the new teacher t0 =

max⊢ N ∩ Tk, i.e., the highest priority remaining new teacher under the tiebreaker, and
15Since Case (i) does not hold, no teacher points to the outside option. If via each teacher Improvement

Condition 1 holds for the school she is pointing to, there is a cycle in which, for all schools in the cycle, Im-
provement Condition 1 holds, which contradicts the definition of Case (ii). Therefore, at least via one teacher
Improvement Condition 2 holds for the school she is pointing to. Then, by definition of this condition, there
must remain a new teacher.
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then include school xt0 as s1 = xt0 in the chain.16 If Improvement Condition 1 does not
hold for s1 via t0, but only Improvement Condition 2 holds, then we end the chain with
ℓ∗ = 1; otherwise, we continue with the chain construction step 1.

– Chain construction step ℓ (for ℓ ≥ 1): Include to the chain teacher tsℓ , i.e., the teacher
pointed to by the last included school sℓ, as tℓ = tsℓ17 and school xtℓ , i.e., the school pointed
to by tℓ, as sℓ+1 = xtℓ . If Improvement Condition 1 does not hold for sℓ+1 via tℓ, but
only Improvement Condition 2 holds, we terminate the construction with ℓ∗ = ℓ+ 1.18

Otherwise, we continue with the chain construction step ℓ+ 1.

The last included school sℓ∗ terminates the selected chain.
We execute the exchanges in the selected chain by assigning each teacher in the chain to the
school to which she is pointing, update µk−1 by including the new assignments to form µk,
remove assigned teachers in this step from Tk and filled schools in this step from Sk to form
Tk+1 and Sk+1, respectively, and go to Step k + 1.

The mechanism terminates when all teachers are removed, say in Step K. Its outcome is the
final matching µK.

The name of the mechanism suggests that individual rationality for teachers and
status-quo improvement for schools are simultaneously satisfied. Indeed, this is the case.
We introduced several innovations in the mechanism that exploit improvement possibili-
ties over the status-quo matching for both teachers and schools.

Individual rationality is straightforward to show. A tenured teacher only points to
a school at least as good as her status-quo employer: as for this school Improvement
Condition 1 always holds via her, she will, at worst, form a cycle of size two with this
school when it points to her. A new teacher never points to a school to which she prefers
remaining unmatched. Additionally, observe that each teacher is assigned the best option
to which she can point in the step she is assigned.

What is more delicate is the status-quo improvement of schools, that is, how we make
sure that they always weakly improve with respect to their status-quo assignment in every
step. This is ensured through both teacher and school pointing rules.

A school’s pointing order designates in which order the school would like to send out
its status-quo employees. By pointing, the school effectively gives permission to one of its
status-quo employees to be assigned possibly to a different school. Thus, we ensure this
priority order respects the reverse of its type ranking: Lower ranked-type employees are
pointed to first, and higher ranked-type employees are pointed to later. This is the first

16Such a school exists, because if she does not point to a school, then she pointed to the outside option ∅
which contradicts the definition of Case (ii).

17Such a teacher exists by Improvement Condition 1.
18This iterative procedure is guaranteed to terminate. Otherwise, we would have a cycle in which for

each school in the cycle Improvement Condition 1 holds via the teacher pointing to it, a contradiction as
Case (i) does not hold.
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innovation.
The teacher pointing rule designates which teachers can be assigned to a school. A

teacher can point to a school only if she can unambiguously weakly improve the school’s
assignment over its status quo by replacing the employee pointed to by the school (Con-
dition 1) or occupying a vacant seat (Condition 2).

Under Condition 1, if the type of the pointing teacher is at least as good as the type
of the pointed employee, a school has no danger of becoming worse off if this replace-
ment goes through. However, we sometimes allow the type of the pointing teacher to
be worse than that of the pointed one. Such a teacher is allowed to point when the fol-
lowing holds. As trades improve a school over its status quo during the execution of the
algorithm, schools may acquire teachers who are of better types than the outgoing status-
quo employees. Therefore, they may build up a buffer so that replacing the employee it
is currently pointing to with a worse-type teacher can still status-quo improve the school,
although this replacement makes it worse off with respect to the previous step. The exis-
tence of the buffer is tracked by checking whether the sums of the relevant type balances
are strictly positive through Condition 1. The use of this buffer and allowing the schools
sometimes to be pointed to by a worse-type teacher than their currently pointed employee
help to achieve constrained efficiency.

While the first condition is about a trade the school will make by exchanging an outgo-
ing teacher with an incoming teacher, Condition 2 is only relevant as long as new teachers
remain in the algorithm. When Condition 2 holds for a school via some teacher, but not
Condition 1, the school will not send out an employee as it has extra capacity: it will only
hire one additional teacher by guaranteeing status-quo improvement.

We illustrate how the algorithm of the SI-CC mechanism works in Example A.1 in
Appendix D. We are ready to state our main result in this section.

Theorem 1. For any type ranking profile ⊵ and tiebreaker ⊢, the SI-CC mechanism is strategy-
proof and SI-constrained efficient under ⊵.

SI-constrained efficiency of the mechanism is delicate to show. Note that SI-
constrained efficiency implies that the mechanism outcome is Pareto undominated for
teachers among all status-quo improving matchings. However, the pointing rule for teach-
ers has restrictions imposed by the school improvement conditions. That is, a teacher can-
not arbitrarily point to the best school she likes. We show that the restrictions imposed
by these conditions are the necessary and sufficient conditions to maintain status-quo im-
provement for schools without causing the outcome to be Pareto dominated for teachers.
Therefore, implementing any further Pareto improvement for teachers would make the
schools worse off with respect to the status quo. Moreover, imposing further restrictions
for teacher pointing would prevent SI-constrained efficiency.
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The strategy-proofness of the mechanism relies on several observations. First, once a
teacher is pointed to by a school, she will continue to be pointed to until she is assigned.
We show that the opportunity set for each teacher t, Ak

t , weakly shrinks through steps
k = 1, . . .. Although Improvement Conditions 1 or 2 can stop holding for a school via a
teacher t through steps, we show that by submitting different preferences, teacher t cannot
affect which schools leave and stay in Ak

t before she is assigned.
According to the pointing rule of schools, in each step of SI-CC, each school points to

one of its employees who has the lowest-ranked type. One can wonder whether Theorem
1 holds when we consider alternative school pointing rules under the SI-CC mechanism.
Example A.2 in Appendix D shows that under any alternative pointing rule, a teacher can
manipulate SI-CC and it is no longer SI-constrained efficient.

4 Type Ranking Design to Reduce Inequality
As discussed in the Introduction, one of the main objectives of the policymaker is to

reduce inequalities across schools, for instance, in terms of the distribution of experienced
teachers (measured through their types). In this section, we give a foundation to our
concept of status-quo improvement by showing that it is directly related to inequality
reduction.

4.1 Inequality Measures for Teacher (Re)assignment

We start by introducing inequality measures to our setup. Before proceeding, it is im-
portant to enrich the framework presented thus far. This is necessary to account for an im-
portant aspect of the teacher assignment application: a significant number of employees in
each school do not apply for reassignment. In practice, these non-participants constitute
the vast majority of teachers and must be considered when measuring inequality across
schools. These teachers can be viewed as previously assigned their most preferred school
and, as a result, have no incentives to engage in the (re)assignment market.19 To capture
this feature, for each school we define the sets of teachers employed by the school who
are non-participants in the (re)assignment process. Given a set of schools S and types Θ,
we define the profile of non-participating employees E = (Es)s∈S where for each school
s, we have Es = (Eθ

s )θ∈Θ so that Eθ
s is the set of non-participating employees of school s

with type θ. With a slight abuse of notation, we also use Es to refer to the set of all non-

19When explicitly modeling non-participating teachers, one may consider endogenous participation—
teachers may choose to participate based on their prospects in the (re)assignment market. Participation
(followed by truth-telling) is a dominant strategy under mechanisms that are individually rational and
strategy-proof. Non-participation and participation (followed by truth-telling) yield the same outcome for
teachers already at their most preferred school. Assuming that (1) teachers will follow their dominant
strategy to participate if they are not currently at their most preferred school, and (2) those already assigned
to their preferred school will opt out of participation, decisions to participate are insensitive to changes in
the assignment mechanism. See Section 7 for further discussion in the light of empirical findings.
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participating employees of s, i.e., Es :=
⋃

θ∈Θ Eθ
s .20 As before, let T be the set of teachers

participating in the (re)assignment process.
Let K := |Θ| and let Θ := {θ0, θ1, . . . , θK−1}. Each type θ ∈ Θ is associated to a type

value vθ ∈ R+ which is a non-negative real number. We let vk := vθk and we label types
and values so that v0 := 0 < v1 < v2 < · · · < vK−1. We also let V := {v0, . . . , vK−1}.
These values will be used to compare assignments between schools. As an example, one
can think of a type value as the teachers’ years of experience (which may be bundled
together as we do in Section 5.3 in our empirical simulations). The vacant seat type θ∅ has
a value of zero so that v∅ := v0 = 0. To make sense of this assumption, let us note that the
teachers with lowest experience type θ0 are new teachers. Further, in practice, if a position
is left vacant by the mechanism, it is filled with a substitute teacher. Our assumption is
that new teachers with the lowest experience and substitute teachers are similar.21

Consider a (re)assignment market ⟨T, Θ, τ, S, q, ω, P⟩. Including the profile
of non-participating teachers E and the value profile over types, we refer to
⟨T, Θ, τ, S, q, ω, P; E,V⟩ as an economy. We say that the (re)assignment market is asso-
ciated with the economy. As before, when we refer to matchings (including status-quo
matching ω), we assume that they are defined for teachers in T, i.e., for participants. Thus,
at any matching µ ∈ M, µs ∪ Es is the final set of teachers employed by school s.

Fix a school s. A value distribution for school s is a vector δs = (δv
s )v∈V ∈ ∆K−1,

the simplex of dimension K − 1, i.e., δv
s ∈ [0, 1] for each v ∈ V and ∑v∈V δv

s = 1. Each
matching µ induces a value distribution for school s denoted by δ

µ
s = (δ

µ,v
s )v∈V ∈ ∆K−1

such that for each vk ∈ V ,

δ
µ,vk
s :=


|Eθk

s |+|µθk
s |

|Es|+qs
if k > 0

|Eθk
s |+|µθk

s |+(qs−|µs|)
|Es|+qs

if k = 0

.

For k > 0, δ
µ,vk
s refers to the fraction of teachers (participants and non-participants) with

type value vk assigned to s under µ. For k = 0, recall that |µθ∅
s | = qs − |µs| is the number of

vacant positions and δ
µ,0
s is the fraction of positions either vacant or occupied by a teacher

with a type value 0.22

We give the definition of Lorenz domination for value distributions here, which is
equivalent to first-order stochastic dominance if the value distribution were a probability

20Naturally, we assume that Eθ∅
s = ∅.

21As presented in Section 5.3, 75.18% of new teachers have zero years of experience. Hence, 24.82%
of new teachers have a positive experience, sometimes higher than tenured teachers. For example, these
are teachers migrating from private or international school systems or who have taken a leave from the
profession and are coming back.

22While not needed for our results, note that we assumed that v0 = 0.
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measure. For any two value distributions δs and δ̂s, we say that δs Lorenz dominates

(LDs) δ̂s if
k
∑
ℓ=0

δ
vK−1−ℓ
s ≥

k
∑
ℓ=0

δ̂
vK−1−ℓ
s for all k ∈ {0, . . . , K − 1}. We say that δs strictly Lorenz

dominates (strictly LDs) δ̂s if δs LDs δ̂s and the inequality above is strict for some k.
To compare inequality across schools, we use summary statistics to quantify each

school’s value distribution. A statistic is a function f : ∆K−1 → R.23 A statistic f is
Lorenz-dominance increasing (LD-increasing) if, for any two value distributions δs and
δ̂s, we have δs LDs δ̂s implies f (δs) ≥ f (δ̂s). We say that f is strictly LD-increasing if,
for any two value distributions δs and δ̂s, we have δs strictly LDs δ̂s implies f (δs) > f (δ̂s).
Clearly, the mean statistic defined by f (δs) = ∑K−1

k=0 vk δ
vk
s is LD-increasing. Many other

statistics, including the median statistic, satisfy this condition.24

Across all schools, let δ = (δs)s∈S ∈
(
∆K−1)|S| denote a profile of value distributions.

Given a statistic f , we denote its vector of outcomes for δ, with a slight abuse of notation,
as f (δ) :=

(
f (δs)

)
s∈S.

A statistic f is continuous if for any sequence of profiles of value distributions

{δn} such that δn → δ∗ for some δ∗ ∈
(
∆K−1)|S|, we have that f (δn) → f (δ∗).25 For

example, both the mean and median statistics are continuous.
With the notion of a statistic in our hands, we can define our inequality measure.

An inequality index is a function I : R|S| → R.26 Here, a point in the domain
z = (zs)s∈S ∈ R|S|, is typically the value of a statistic f evaluated as a vector function
at some matching µ for all schools, i.e., z = f (δµ) where δµ = (δ

µ
s )s∈S. Naturally, we

assume the policymaker prefers a lower value of an inequality index to a higher one. We
assume that inequality indices are continuously differentiable on an open and dense sub-
set of R|S|. A well-known example of an inequality index is the weighted Gini index (c.f.
Gini, 1912 and Bhattacharya and Mahalanobis, 1967; also see Sen, 1973) defined as G(z) :=

1
2 ∑s∈S ws zs

∑s∈S ∑s′∈S |zs − zs′ | ws ws′ where ws is the weight associated to school s such as

the proportion of teachers that can be employed by the schools, ws := |Es|+qs
∑s′∈S |Es′ |+qs′

.27 It
is often argued that the Gini index is not sensitive enough to the “tail” of the distribution
(see Atkinson et al., 2011). Two other indices used in practice to overcome this issue are

23Strictly speaking, a statistic should take the number of types K as input. For notational convenience, we
ignore this dependence.

24For a value distribution δs, the median statistic f is defined as the real value x satisfying ∑v≤x δv
s ≥

1
2 and ∑v≥x δv

s ≥ 1
2 . When there are multiple such values, we let x be the mean over all possible such

values.
25Recall that each profile of value distributions δ is a member of

(
∆K−1)|S| . We simply endow ∆K−1

with the standard topology of weak convergence of measures. The positive real line is endowed with the
standard Euclidean topology, while any product set is endowed with the product topology.

26Strictly speaking, an inequality index should take the number of schools |S|. For notational convenience,
we implicitly use this dependence.

27Note that the Gini index is continuously differentiable on an open and dense set of points even though
it may be non-differentiable at some points.
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as follows. The TX/BY ratio index (where X ∈ (0, 100), Y ∈ (0, 100 − X]), which takes
the ratio between the average of the statistics values above the top Xth percentile over
the average of the statistics values below the bottom Yth percentile (i.e., top 100−Yth per-
centile),28 and the maximin index (also known as the Atkinson-∞ index, Atkinson, 1970)29

defined as 1 − mins∈S zs
∑s∈S wszs

.

4.2 A Foundation for Status-quo Improvement in Large Markets: SI-CC
as a Second-Best Mechanism

Our goal in this section is to show that for a natural type ranking profile ⊵, status-
quo improvement for schools under ⊵ is both necessary and sufficient in some generic
sense for inequality reduction measured by a standard inequality index (such as the Gini
index) based on a standard welfare statistic (such as mean experience at a school) in large
economies.

We consider an economy ⟨T, Θ, τ, S, q, ω, P; E,V⟩ and allow the profile of non-
participating employees to vary. More specifically, we consider a sequence of non-
participating employee profiles {En}n≥1 such that for each n ≥ 1, the economy
⟨T, Θ, τ, S, q, ω, P; En,V⟩ is called an n-economy and is simply denoted as En such that
for each school s and type θ, we have

∣∣∣Eθ,n
s

∣∣∣ := n
∣∣Eθ

s
∣∣ where E1 := E. We refer to

⟨T, Θ, τ, S, q, P, ω; E1,V⟩ as the base economy. Therefore, an n-economy has n replicas
of each non-participating employee of each school at the base economy. Given a match-
ing µ of the associated (re)assignment market, for each school s, assuming that Eθ

s ̸= ∅
whenever µθ

s ̸= ∅ for any type θ, the economy without participants becomes “dominant”,

i.e., |Eθ,n
s |
|µθ

s | goes to ∞ as n increases.30 We note that the set of non-participants is often

quite large in applications, e.g., they represent about 93.7% of the whole set of teachers
in our application on the assignment of French teachers,31 and so assuming a dominant
non-participant market (i.e., n is large, as we will do) is certainly a good approximation in

28Formally, fix the value of the statistic z. For integer ℓ, define sℓ as the school with the ℓth highest statistic
value. Let k := max{k : ∑ℓ≥k wsℓ ≥ X/100} and k := min{k : ∑ℓ≤k wsℓ ≥ Y/100}. The TX/BY ratio index
is defined as

∑ℓ>k wsℓzsℓ +
(
X/100 − ∑ℓ>k wsℓ

)
zk

∑ℓ<k wsℓzsℓ +
(
Y/100 − ∑ℓ<k wsℓ

)
zk

.

T20/B20 ratio is one of the main indexes used by EUROSTAT to report inequalities regarding member
countries (European Commission, 2003), while T10/B50 and T10/B90 ratios have been used to measure
changes to the income inequality over time (cf. Chancel and Piketty, 2021 and Bozio et al., 2024).

29 This is a particular case of the generalization of the Gini index proposed by Donaldson and Weymark
(1980), which is also equivalent to the Atkinson index when the society’s inequality aversion parameter
approaches infinity (see Appendix H for its details).

30Actually, we do not need replica economies; we only need the ratio of the numbers of non-participating
teachers to participating teachers from each type at each school approaching infinity if the latter number is
positive as well as a well-defined limit for the distribution of types of non-participating teachers.

31In the 8 subjects we consider in the empirical analysis, the set of non-participants represents 94.1%.
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many applications.
Given a matching µ of the associated (re)assignment market, the value of a statistic

f may change when we vary n, as the statistic’s input, the value distribution profile of
matching µ takes into consideration the changing non-participating employee profile En.
So we use δ

µ,n
s for the eventual distribution of values induced by µ at school s in the n-

economy for a given n.
Given a statistic f , let the profile of value distributions δ∗ = (δ∗s )s∈S and the vector

of the statistic outcome z∗ f := f (δ∗) be defined by restricting our attention to only non-

participants: for each school s, we define δ
∗ vk
s :=

∣∣∣Eθk
s

∣∣∣
|Es| for each k and δ∗s = (δ∗ vk

s )K−1
k=0 .

For a given inequality index I and a statistic f , the economy is generic if I is contin-
uously differentiable at z∗ f and all partial derivatives of I are non-zero at z∗ f . Suppose
(L, H) is a partition of schools (i.e., L ∪ H = S and L ∩ H = ∅). We say that a type ranking
profile for schools ⊵ is induced by partition (L, H) if each school in L ranks types with
higher type values ahead of types with lower values and each school in H ranks lower
value types ahead of higher value types with vacant-seat type θ∅ ranked always below θ0.
Formally, ⊵ satisfies the following:

• For each school s ∈ L, θK−1 ▷s θK−2 ▷s . . . ▷s θ1 ▷s θ0 ▷s θ∅.
• For each school s ∈ H, θ0 ▷s θ∅ ▷s θ1 ▷s θ2 ▷s . . . ▷s θK−1.

When I is differentiable at z∗ f , we say ⊵ is the natural type ranking profile of I and f if
it is induced by partition (LI , f , HI , f ) where32

LI , f =

{
s ∈ S :

∂I
∂zs

(z∗ f ) ≤ 0
}

and HI , f =

{
s ∈ S :

∂I
∂zs

(z∗ f ) > 0
}

.

We are now ready to state the first relation between status-quo improvement and in-
equality reduction for generic economies:

Proposition 1. Consider an inequality index I and a continuous and LD-increasing statistic f .
Fix a generic base economy with status-quo matching of the participants ω. If in an n-economy
with large enough n, a matching µ is status-quo improving for schools under the natural type
ranking profile of I and f , then I

(
f (δµ,n)

)
≤ I

(
f (δω,n)

)
.

Before moving to the argument behind the above proposition, we make two com-
ments. First, while the genericity of the base economy in Proposition 1 is very weak for
standard indices such as the Gini index (for which it is enough that z∗ f has elements
that are pairwise distinct), it is strong for indices such as T20/B20 for which the partial
derivative of the inequality index in the base economy may be zero for many schools.

32Our analysis is insensitive to how we assign schools with zero index partial derivatives at z∗ f to these
two sets, as for generic economies such schools do not exist, and for non-generic economies the results in
the Appendix are insensitive to how these schools are assigned to these two sets.
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However, assuming that the matching µ in Proposition 1 changes for at least one school
with non-zero derivative, we show in Appendix A.7 how to extend the proposition to the
environment where the inequality index is only assumed to be differentiable in the base
economy.33 Second, we assume that an inequality index does not depend on the market
size n. However, since some indices depend on a vector of weights which itself depends
on market sizes (e.g., the weighted Gini index mentioned in Section 4.1), these indices may
depend on market sizes. To keep the notation concise, we do not model this in the main
text. However, the above result easily extends to such indices, as clarified in Appendix
A.3.

The proof of Proposition 1 is relegated to Appendix A.2 but we provide an intuition
below. Before this, let us state the following intuitive lemma which is used in the proof.

Lemma 1. Let (L, H) be a partition of schools and ⊵ be its induced type ranking profile in an
economy with status-quo matching ω. Given an LD-increasing statistic f , for any status-quo
improving matching µ for schools under ⊵, we have f (δµ

s ) − f (δω
s ) ≥ 0 for all s ∈ L, and

f (δµ
s )− f (δω

s ) ≤ 0 for all s ∈ H.

The intuition behind Proposition 1 is as follows. In an n-economy, where n is large
enough, the number of teachers not participating greatly exceeds the number of partic-
ipating teachers. In such a scenario, a change in µ has a relatively marginal impact on
the profile of values of the statistic, and therefore, the relevant domain of I is relatively
small.34 Consequently, if the partial derivative ∂I

∂zs
(z∗ f ) is strictly negative (positive), it will

remain so across the entire relevant domain of I . According to Lemma 1, when moving to
a status-quo improving matching, schools with negative (positive) derivatives experience
an increase (decrease) in their statistic value. Consequently, the value of the inequality
index I must decrease. Also note that for Lemma 1 to be true, the natural type ranking of
each school in H must rank the vacant seat type above the types of teachers with positive
type value. This feature ensures that teachers with a positive type value cannot directly
fill a vacant seat for schools in H. Indeed, if they were to do so, the statistic for a H school
could increase, which would, in turn, increase inequality. This natural type ranking used
in SI-CC forbids any positive type value teacher to point to a school due to Improvement
Condition 2.

It is crucial to note that this argument assumes an initial situation where there is a
significant imbalance between participating and non-participating teachers, which, again,

33To address the issue of non-differentiability, a natural way to proceed in practice is to use a “perturba-
tion” to the inequality index, ensuring that the perturbed index is continuously differentiable. This is always
feasible by the the Stone-Weierstrass Approximation Theorem (Stone, 1937). One can then define the natural
type ranking profile with respect to the perturbed index and obtain Proposition 1 for the nearby index. Of
course, it is rare for the common inequality indices (and for common statistics) not to be differentiable at
z∗ f . For example, it would only be the case for the Gini or the T20/B20 indexes if two schools had exactly
the same statistic value in the limit.

34Formally, for an n-economy, this relevant domain is co { f (δµ,n) : µ ∈ M}.
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is a realistic assumption which holds in our main empirical application. However, with-
out this assumption, the result may fail, and a status-quo improvement can exacerbate
inequality. The underlying intuition is that a status-quo improvement can transform a
school that initially lacks high-type teachers into one that is disproportionately assigned
such teachers, largely surpassing in this dimension any other school. Hence, the school
moves from a “poor” status to an “extremely rich” status in terms of high-type teachers,
which may eventually exacerbate inequality. While this is an intriguing phenomenon, we
consider it highly unlikely to occur in practical settings.35

Since SI-CC is status-quo improving under the type profile used, Proposition 1 applies
to this mechanism, we obtain the following corollary:

Corollary 1. Consider an inequality index I and a continuous and LD-increasing statistic f . Fix
a generic base economy with the status-quo matching of participants ω. Let µ be the matching
obtained via the SI-CC mechanism induced by the natural type ranking profile of I and f and any
tiebreaker ⊢. Then, in an n-economy with large enough n, I

(
f (δµ,n)

)
≤ I

(
f (δω,n)

)
.

We illustrate our concepts introduced in Section 4, such as an n-economy, type value
distribution under matchings, construction of a natural type ranking profile, and the im-
plication of Corollary 1 in Example A.4 in the Appendix using the T20/B20 ratio inequal-
ity index and mean statistic. This example also illustrates the need for the large market
assumption in Proposition 1 and Corollary 1.

Corollary 1 implies that the type ranking of schools can be designed in a way that
SI-CC reduces inequality. However, this does not imply that SI-CC is the “optimal” mech-
anism for achieving this goal. There may be alternative mechanisms that outperform SI-
CC in terms of inequality reduction, for instance, by violating status-quo improvement.
However, we give two senses below in which this is not the case.

First, we prove that the converse of Proposition 1 holds in a large domain sense. Hence,
there are economies in which a mechanism can reduce inequality only if it is status-quo
improving for schools under the natural type ranking profile.

To state these results, we introduce a property of inequality indices: Let s be any school
with the lowest value in z, i.e., zs ≤ zs for each s. Similarly, let s̄ be any school with the
highest value in z, i.e., zs̄ ≥ zs for each s. Inequality index I is regular if, whenever I is
differentiable at z, we have ∂I

∂zs
(z) < 0 and ∂I

∂zs̄
(z) > 0. This assumption is very weak and

35For our result to hold, large market is not critical: what matters is that, for each school s, the sign of the
derivatives of the inequality index for zs remains the same on the relevant domain. Also, after a sequence
of (re)assignments (occurring over several years)—assuming retirements etc, occur in a similar manner, we
may reach a point where there may be two schools, one in L and the other in H, which get so close to each
other in terms of their values of statistic that the (re)assignment of teachers participating may be enough
to have the school in L moving to H (and the other way around). However, the values are so close to each
other that whether we put one of these schools in L or in H will only have a marginal impact on the value
of the index.

22



satisfied by Gini and all standard inequality indices.36

Proposition 2. Consider a regular inequality index I and a continuous and strictly LD-increasing
statistic f . Then, there exists a generic base economy with a status-quo matching of the participants
ω, such that the following holds: in an n-economy with large enough n, an individually rational
matching µ is status-quo improving for schools under the natural type ranking profile of I and f ,
if and only if I

(
f (δµ,n)

)
≤ I

(
f (δω,n)

)
.

We next prove that, for most inequality indices and statistics (including mean and
median), no mechanism that is both individually rational and strategy-proof can generate
less inequality than SI-CC using the natural type ranking profile ⊵. In order to state this
result, we say that an inequality index I is symmetric if for each pair of schools s, s′ ∈ S
such that |Es|+ qs = |Es′ |+ qs′ , for any z, z′ such that z′s = zs′ , z′s′ = zs, and z′s′′ = zs′′ for
each s′′ ∈ S \ {s, s′}, we have I(z′) = I(z).

Consider two mechanisms φ and ψ. Given an inequality index I and a statistic f , φ

has less inequality than ψ when possible if, at every economy with the preference profile
of the participating teachers P,

1. I
(

f (δφ(P))
)
≤ I

(
f (δψ(P))

)
, and

2. whenever there is an individually rational matching µ such that I
(

f (δµ)
)

<

I
(

f (δψ(P))
)
, we have I

(
f (δφ(P))

)
< I

(
f (δψ(P))

)
.

Proposition 3. Consider a symmetric, regular, continuously differentiable inequality index I and
a continuous and strictly LD-increasing statistic f . Then, there is no individually rational and
strategy-proof mechanism that has less inequality when possible than the SI-CC mechanism in-
duced by the natural type ranking profile of I and f and any tiebreaker ⊢.37

Several comments are in order. First, the proof uses a sequence of replica economies
and we note that the argument works even when the size of the set of non-participating
employees is arbitrarily large. Thus, it does hold in the context of Proposition 1 and so
when SI-CC reduces inequality compared to the initial assignment. Second, assuming
differentiability of I may exclude some inequality indices such as the T20/B20 or the Gini
index, which are only differentiable almost everywhere. However, in Appendix A.8, we
show that our result applies to the T20/B20, the Gini, and the maximin indices.38 Finally,

36In Proposition A.2 of Appendix A.4, we prove that any (responsive) inequality index which satisfies the
(strict) Pigou-Dalton transfer principle and scale invariance—two standard axioms—is regular. This implies
that many inequality indices, including the Gini index, are regular. See for instance Idrees and Ahmad (2017)
and Costa and Pérez-Duarte (2019) for surveys on inequality measures and their properties.

37Because, in Proposition 3, we impose the condition that the mechanism has less inequality when pos-
sible than SI-CC, the proposition does not exclude the possibility that there is an individually rational and
strategy-proof mechanism which has a (weakly) smaller value of the inequality index than SI-CC at all in-
stances and a strictly smaller value at some instance. However, this mechanism will sometimes fail to select
a matching which strictly reduces inequality compared to SI-CC even though such a matching exists.

38It also applies to a large class of inequality indices which, in particular, are differentiable at any point
which is strictly ordered—which is the case for all inequality indices we know of. See Remark 1.
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we note that this result implies the following corollary of independent interest. Given an
inequality index I and a statistic f , we say that a mechanism φ minimizes inequality for
I and f if, for each economy with preference profile P, φ(P) ∈ arg min I

(
f (δµ)

)
where the

minimum is taken over matchings µ that are individually rational. Since SI-CC induced
by the natural type ranking does not minimize inequality (as made clear by the proof of
Proposition 3), we obtain the following result.

Corollary 2. Consider a symmetric, regular, differentiable inequality index I and a continuous
strictly LD-increasing statistic f . Then, there is no strategy-proof mechanism that minimizes
inequality for I and f .

5 Empirical Analysis: The Case of France

5.1 Institutional Background

Teacher recruitment is centralized in France. Anyone who wishes to become a teacher
has to pass a competitive examination. Those who succeed are assigned a teaching posi-
tion by the Ministry for a probation period of one year, at the end of which they get tenure
or not. Once public school teachers get tenure, they become civil servants. The govern-
ment manages the first assignment of new teachers to a school and the transfer process of
tenured teachers who previously received an assignment but wish to move.39

The assignment procedure takes place in two successive steps. Teachers are assigned to
one of the 31 French regions in the first step using a centralized procedure. Tenured teach-
ers who wish to change regions and new teachers submit a preference list over regions. In
the second step, teachers who are newly assigned to a region and tenured teachers who
wish to change schools within their region submit a preference list of schools. The same
first-step mechanism is then applied to each region using the new inputs. Our empirical
analysis focuses on the first step, regional assignment, due to the potential for strategic
reporting of preferences during the second step.40 From now on, we will treat each region
as a large single school. Participation in the assignment mechanism is compulsory for all
new teachers but optional for tenured teachers, who cannot be forced to change schools.

We combine data on 2013 (re)assignments with data on teacher and region character-
istics (DEPP, 2013, 2014b). There were about 396,000 secondary public school teachers
in France that year (DEPP, 2014a). When organizing the annual (re)assignment process,
the central administration has to take into account not only a large pool of tenured teach-
ers who wish to change positions but also some vacant positions that need to be filled—

39Our study focuses on the centralized (re)assignment process of public school teachers. Private schools
employ 16% of teachers in France. This market is decentralized and has a separate exam.

40Preferences reported during the second step of the assignment are more difficult to interpret for two
reasons. First, teachers can only rank up to 20 or 30 schools (depending on the region). Second, in addition
to ranking schools, teachers can also rank larger geographic areas, such as cities, for instance.
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about 9,800 public secondary school teachers retired in 2013—and new teachers, who have
passed the recruitment exam, validated their probation year, and need to be assigned to
their first jobs. In 2013, about 25,100 teachers participated in the regional (re)assignment
process, including around 17,200 tenured teachers and 7,900 new teachers.

5.2 Data and Descriptive Statistics

We use data on the (re)assignment of teachers to one of the 25 out of (a total of) 31
French regions.41 We have information on reported preferences and status-quo assign-
ments of teachers, Ministry-mandated priorities of regions,42 and the number of vacant
positions in each region. We use single teachers from the eight largest subjects, such as
French, Math, English, Sports, etc., and discard couples because they can submit joint
preferences, which can be in different subjects and create dependencies across subjects.
In order to keep the market structure balanced, we drop one seat for each teacher we
omit.43 Our final sample contains 10,483 teachers: 5,846 tenured teachers (55.8%) and
4,637 new teachers (44.2%). Table A.3 in Appendix B shows the decomposition for each
subject and the number of vacant positions (3,912).44 A central motivation of our analy-
sis is to rebalance the unequal distribution of experienced teachers across regions. Part of
this imbalance stems from differences in regions’ attractiveness. Table A.1 reports descrip-
tive statistics of teachers (Panel A), their status-quo assignment (Panel B), and the region
they rank first (Panel C). Two regions surrounding Paris, called Créteil and Versailles,
are particularly unattractive. The imbalance is blatant when we compare the number of
teachers asking to leave the region and the number asking to enter. In Math, 56.2% of the
tenured teachers who ask to change region come from Créteil or Versailles, but only 3.8%
of tenured teachers rank one of these two regions as their first choice. The high number of
transfer requests from less desirable regions leads to a significant exodus of teachers, cre-
ating numerous vacancies that must be filled. Every year, about 50% of the new teachers
get their first assignment in one of the three least attractive regions (Créteil, Versailles, or
Amiens). This structural imbalance is a major concern for policymakers and is often cited
as a reason for the teaching profession’s lack of appeal.45

41We discard the six overseas regions because of their specificities in terms of (i) teacher preferences—in
contrast to what we find in our estimates, distance from the current location often becomes an attractive
feature—and (ii) Ministry-mandated priorities—in some of these regions, like in Mayotte, teachers who
grew up there get bonus points when they rank it first.

42The Ministry-mandated priorities are determined by a point system which is mainly based on teachers’
experience, whether they ask for a spousal reunification in a region, and whether their status-quo school is
disadvantaged. See Appendix F.2.1 for details.

43For each tenured teacher we discard, we drop her corresponding position. For new teachers, we find
the share discarded (denoted by K%), and we delete K% of vacant positions in each region.

44Every table, figure, and result indexed with prefix A is in the Appendix.
45In 2014, 24% of the positions for the recruitment exam in France remained vacant because of a shortage

of applicants and the poor quality of those applying. In 2024, 17% of the positions remained vacant.
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In addition, it creates large differences in the experience profile of teachers across re-
gions. As reported in column (2) of Table A.2, in the youngest French region (Créteil),
teachers have on average 10 years of experience, versus 15 years in the oldest region
(Rennes), a gap that partly stems from the yearly inflow of new teachers to unattrac-
tive regions. Column (3) reports the share of teachers that have fewer than four years
of experience—22.6% in Créteil, but only 5.5% in Rennes—a statistic policymakers care
about because teachers contribute less to the educational development of their students
during the initial years of their career (Bates et al., 2021, Chetty et al., 2014, and Rock-
off, 2004). Reducing the uneven distribution of teachers by experience across regions and
lowering the likelihood of new teachers being assigned to disadvantaged regions became
key objectives for French policymakers (Cour des Comptes, 2013, 2017). They view these
objectives as essential for closing the achievement gap and enhancing the long-term at-
tractiveness of the teaching profession.

5.3 Specifications of the Empirical Analysis

Teacher types. We classify teachers into eleven experience bins, each representing a
teacher experience type. The first five types correspond to teachers with zero, one, two,
three, and four years of experience (types 1 to 5), respectively, while each subsequent bin
groups teachers by four years of experience (types 6 to 11).46 Vacant seats form a separate
type, with the same experience value (zero) as the first bin of teachers (vacant seat type
is designated as type 0), consistent with our theoretical model.47 We use this experience
partition because young teachers represent a large share of the participants (so dividing
them makes sense), and the evidence on teacher value-added to attainment suggests an
increasing value-added during the first few years of experience that flattens beyond these
initial years (Bates et al., 2021, Chetty et al., 2014, and Rockoff, 2004). Figure A.2 shows
a histogram of tenured and new teachers types in the (re)assignment market. Some new
teachers have experience as they return to teaching after a break.

Measuring inequality. We use the T20/B20 ratio index introduced in Section 4.1 as
our inequality index and the mean experience in a region as our statistic: We calculate
the ratio of the mean experience of the top 20% of regions to the mean experience of the
bottom 20% of regions, weighted by region size.48 It is particularly useful for capturing
dispersion between the tails of a distribution. The higher the T20/B20 ratio, the higher

46Figure A.3 provides a precise definition of the eleven experience types.
47As we already discussed, in practice, vacant positions are eventually filled by substitute teachers whom

we consider comparable to the least experienced new teachers.
48Two things are important to note: First, if a region is partly in the bottom 20% (or top 20%), we include

it fully when we discuss findings related to the bottom 20% regions (or top 20% regions) below. In calcu-
lating the T20/B20 index, this cutoff region is weighed by its proportional size that is inside the bottom (or
top) 20%, but not its whole size (see Footnote 28). Second, when calculating teacher mean experience, we
consider all teachers and vacant positions in a region, i.e., the teachers who request to move, those who do
not request to move, and vacant seats.
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the inequality. At status quo, this ratio is equal to 1.3588, meaning that the mean teacher
experience in the T20 regions—those in the top 20% of the experience distribution—is
35.88% higher than the mean experience in the B20 regions—those in the bottom 20% of
the distribution. Our empirical analysis will quantify by how much SI-CC reduces the
T20/B20 ratio.49

Regional type rankings for SI-CC. We design type rankings that induce SI-CC to re-
flect the policymaker’s distributional objectives. Our analysis in Section 4 guides us in
this design. Using the T20/B20 ratio inequality index and the mean experience statistic,
we construct an empirical version of the natural type ranking profile defined in Section 4.
In each subject, regions are partitioned into two groups: H and L. The regions in H and
L are referred to as high-type and low-type, respectively. To build this partition, we com-
pute the T20/B20 ratio and its partial derivative for each region at the status quo based
on the experience of all teachers, i.e., those who request to move and participate in the
(re)assignment process, those who do not, and vacant seats.50 We then use the sign of
the index partial derivative to create two groups: positive partial derivative regions are
assigned to H, and negative partial derivative regions are assigned to L. There are also
regions with a zero partial derivative. We assign those to L if their mean experience is
below the median region’s and to H otherwise.51

Recall that the natural type ranking for high-type regions orders (new) teachers with
no experience (type 1) first, then the vacant seat type (type 0), followed by the other
teacher types ordered by increasing experience (i.e., types are ranked as 1,0,2,3,...,11). In
contrast, low-type regions’ natural type ranking orders teacher types by decreasing level
of experience and the vacant seat type last (i.e., types are ranked as 11,10,...,1,0).52 Our
ultimate goal in designing type rankings in this manner is to ensure that the outcome of

49We also present robustness checks in Appendix H using an alternative index, the maximin inequality
index, and an alternative statistic, the share of teachers with more than four years of experience in a region.

50In Section 4, we used the limit of replica economies of non-participants to calculate the initial mean expe-
rience statistic vector. As a result, this statistic vector ignores all participating teachers in the (re)assignment
process, as they become negligible in the limit. In reality, our economy is large but finite, so we include these
teachers in our empirical construction. Excluding them to define the natural type ranking does not change
qualitatively the results.

51As made clear in the proof of Proposition A.3, our theoretical analysis is robust to which set we as-
sign the zero-partial derivative regions. In the limit of replica economies, their contribution to inequality
is negligible. Here, in our large but finite economy, we pay more attention to the construction, and we
perform robustness checks in which we simulate what happens if we assign all these regions to L or to H,
respectively. Our results are similar. See Appendix I for details.

52Table A.2 reports statistics on region types across the eight subjects. Column (1) reports the share of
subjects in which a region is classified as low-type. The three youngest regions, Créteil, Versailles, and
Amiens, are low-type in all subjects (and they are the largest regions with 20.8% of the whole market; see
Column 4). Due to their large size, the three youngest regions correspond to the B20 regions; except in
one subject, Amiens is not in B20 (and only the other two comprise the B20 regions), and in three subjects,
there are additional regions in B20. On the other hand, the T20 regions are smaller. Columns (2) and (3),
which report teacher mean experience at status quo and the share of teachers with fewer than four years of
experience, reveal a large correlation between region low/high type and these two statistics.
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our mechanism yields a more equal distribution of teachers across regions, as desired by
the French Ministry of Education.53 SI-CC can achieve this goal as proven in Proposition
1 and Corollary 1 (See also Proposition A.3) in a sufficiently large economy. This finding
remains to be verified empirically, as is the magnitude of a reduction of inequality.

Mechanisms. Our counterfactual analysis aims to formally define possible inputs,
quantify the performance of SI-CC, and benchmark its performance with two mecha-
nisms: a variant of a widely studied mechanism and a practically relevant mechanism:

• TTC*: This is a variant of SI-CC that relaxes the mechanism features that ensure status-
quo improvement for regions. More precisely, this mechanism differs from SI-CC in
two aspects in its algorithmic description: (1) we lift the restrictions on the set of re-
gions to which a teacher can point, and (2) tenured teachers can now start a chain
and potentially leave their position without being replaced (see Appendix F for a for-
mal definition). This benchmark is similar to the well-known TTC-variant mechanism
“You request my house – I get your turn” (YRMH-IGYT) introduced by Abdulka-
diroğlu and Sönmez (1999). TTC* is strategy-proof, Pareto efficient, and individually
rational for teachers, but not status-quo improving for regions. Intuitively, TTC* is
expected to generate higher teacher welfare and more mobility than SI-CC at the cost
of a potentially more unequal teacher distribution (see Section 5.4).

• The Current French Mechanism: This mechanism uses Gale and Shapley (1962)’s
teacher-proposing deferred acceptance (DA) algorithm with the modification to re-
gions’ priorities that each tenured teacher is moved to the top of their status-quo
region’s priorities (priorities are otherwise respected within status-quo teachers and
within other teachers, respectively). This modification ensures individual rational-
ity for tenured teachers. We use the Ministry-mandated priorities for regions which
makes this mechanism equivalent to each step of the current French assignment pro-
cess. This mechanism provides a second interesting benchmark that does not satisfy
status-quo improvement but may result in higher mobility for tenured teachers, who
generally receive higher priority than new teachers in all regions. As the mechanism
is designed to satisfy ”no justified envy” among non-status-quo employees of regions
(see Section 5.5), it assigns high experienced tenured teachers to more desirable re-
gions, who generally have higher priority than less experienced teachers.54

Estimation of teacher preferences. As we just mentioned, the Ministry uses a modi-

53Evidence from the US also suggests that younger regions value teacher experience more than older
regions (Bates et al., 2021). Title I school principals have a stronger preference for high-value-added teachers
(which strongly correlates with more experienced teachers) than principals in non-Title I schools, similar to
our natural type ranking profile.

54A matching µ satisfies ”no justified envy” among non-status-quo teachers if for any teacher t and region
s ̸= ωt such that t prefers s to her assignment µt, there is no teacher t′ ∈ µs \ ωs such that the region s gives
higher priority to t than t′.
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fied version of the DA algorithm to assign teachers to regions using the Ministry’s known,
mandated priorities. Teachers can rank all regions when they submit their preference list.
Yet, even under strategy-proof mechanisms, experimental and empirical papers show that
truthfulness is a strong assumption (Chen and Sönmez, 2006, Pais and Pinter, 2008, Rees-
Jones, 2018, Chen and Pereyra, 2019, and Hassidim et al., 2017). In our context, French
teachers have reasonably accurate information on their admission probabilities to each re-
gion, which might encourage some to discard from their preference list the regions with
a low assignment chance.55 To avoid the potential bias generated by teachers omitting re-
gions, instead of using the reported preferences, we estimate teacher preferences under a
stability assumption developed by Fack et al. (2019) and applied to the teacher assignment
by Combe et al. (2022). Appendix G provides a detailed presentation of the estimation
method and reports results on the preferences of tenured and new teachers. After esti-
mating teacher preferences, we use our utility estimates to draw teacher preferences 1,000
times. In each of the eight subjects and for each draw, we use these simulated preferences
to run the mechanisms. The results reported in the next section correspond to averages
over these 1,000 draws, aggregated over the eight subjects.

5.4 Benefits and Costs of Status-quo Improvement Property

This section inspects the benefits and costs of requiring status-quo improvement in
designing assignment mechanisms. To do so, we compare SI-CC to TTC*, which is not a
school-status-quo improving mechanism.

Better distribution of teacher experience. For the (re)assignment market, the left
panel of Figure 1 shows the cumulative distribution of teacher experience at SI-CC, TTC*,
and status-quo matchings in B20 regions.56 Every year, many experienced teachers leave
these regions. They are mostly replaced by inexperienced teachers. This imbalance hints
at a preference for tenured teachers for other older regions. As a result, the outcome under
TTC* is unlikely to improve over the status quo in B20 regions. Our analysis confirms this.
The distribution of teacher experience under TTC* does not Lorenz dominate the status
quo in B20 regions, while it does under SI-CC (see the left panel of Figure 1).57

Fact 1. In the B20 regions of France, the distribution of teacher experience (accounting for par-
ticipants, non-participants, and vacant seats) under SI-CC Lorenz dominates that under TTC*.

55Cutoffs for entry in each region are published every year. Combe et al. (2022) show that these cutoffs
are relatively persistent over time, providing reasonably accurate information to teachers on their chances
of assignment to each region.

56See Table A.2 for the status-quo experience distribution in all regions and Figure A.4 for the cumulative
distributions that include non-participating teachers. Stochastic dominance across mechanisms is identical
when we account for non-participants, as the cumulative distributions for each mechanism and for the
status-quo matching are all shifted up by the same curve pertaining to the non-participating teachers.

57 Figure A.5 shows that the distributional performance of SI-CC is unaffected by the choice of chain-
selection tiebreaker rule.
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Figure 1: Cumulative Distribution of Teacher Experience Types in the (Re)assignment Market

B20 Regions T20 Regions

Notes: This figure shows the cumulative distribution of teacher experience types in the (re)assignment
market in the B20 regions (left) and in T20 regions (right) under SI-CC, TTC*, and status quo. We identify
T20 and B20 regions in each subject and find the cumulative distribution aggregated across subjects. The
horizontal axis reports the eleven experience types of teachers, ordered from most experienced to least
experienced (left panel) and from least experienced to most experienced (right panel) in accordance with
the natural type rankings of these regions. The area shaded in gray corresponds to vacant positions. As B20
and T20 regions are determined with respect to all participating and non-participating teachers, their total
participating teacher numbers are different. T20 regions have fewer participating teachers.

Moreover, SI-CC assigns 1,527 teachers with zero or one year of experience to these regions, while
TTC* assigns 2,039 of them.

In the T20 regions, the objective is to assign younger teachers to reduce overall inequal-
ity (see the right panel of Figure 1 for the (re)assignment market).

Fact 2. In the T20 regions of France, the distribution of teacher experience (accounting for par-
ticipants, non-participants, and vacant seats) under SI-CC Lorenz dominates that under TTC*.
Moreover, SI-CC assigns 871 teachers with zero or one year of experience to these regions, while
TTC* only assigns 363 of them.

The difference in performance between SI-CC and TTC* stems from the following me-
chanics. Due to the status-quo improvement property, SI-CC prevents many tenured
teachers from leaving B20 regions, as few high-experience teachers want to come there
from T20 regions. This limits the possibility of assigning high-experience teachers to the
attractive T20 regions under SI-CC but not under TTC*. These teachers flow to the va-
cant seats of T20 regions through chains under TTC*. Thus, in aggregate, very few new
teachers with no experience are assigned to T20 regions under TTC*. On the other hand,
under SI-CC, new teachers with no experience are assigned to T20 regions through short
chains to fill vacant seats. This mechanics also explains why the experience distribution
under TTC* in T20 regions does not Lorenz dominate the status quo distribution (unlike
SI-CC). Moreover, under SI-CC, due to the status-quo improvement property, new teach-
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ers with higher experience are primarily assigned to B20 regions to increase these regions’
experience.

Lower inequality among regions. The status-quo improvement property ensures that
regions are not “negatively affected” by the (re)assignment of teachers in terms of their
natural type rankings. Older regions (which is used synonymously with high-type regions
in what follows) become relatively younger, and younger regions (which is used synony-
mously with low-type regions) become relatively older, reducing the initial difference in
teacher experience among regions. While the previous paragraphs discussed the distri-
butional performance of the mechanisms for the B20 and T20 regions, we now consider
their performance across all regions. Figure 2 plots, for each region, the change in teacher
experience between the two mechanisms we simulate and the status-quo matching.

In the (re)assignment market, compared to the status-quo matching, SI-CC increases
the average experience of teachers by 2.1 years in the younger regions and reduces the av-
erage experience of teachers by 0.7 years in the older regions (see the left panel of Figure 2).
As a result, SI-CC effectively lowers the experience difference between younger and older
regions by about 2.8 years. We reach similar conclusions regarding SI-CC’s performance
when considering the change in experience for the entire market, including teachers who
do not participate in the (re)assignment process (see the right panel of Figure 2).

Figure 2 also confirms the poor performance of TTC* in terms of distribution compared
to the status quo. In the (re)assignment market, TTC* reduces the average teacher expe-
rience in the three youngest regions (which primarily make up the B20 regions) by 0.26
years. It also increases the average experience in older regions by 1.5 years. We summarize
these findings as follows:

Fact 3. SI-CC reduces the large gap in average teacher experience that exists at the status-quo
matching between the younger regions and the older regions. Among teachers who participate in
the (re)assignment process, this gap goes down by 2.8 years of experience. SI-CC also reduces the
gap by 3.9 years compared to TTC*.

In the entire market — comprising both participating and non-participating teachers,
as well as vacant positions — the more balanced distribution of teacher experience is re-
flected in the improvement of our inequality index (see Table 1):

Fact 4. The improved distribution of teacher experience for the entire market under SI-CC is re-
flected by a reduction of the T20/B20 ratio (1.3487) compared to TTC* (1.3691). SI-CC also leads
to a lower T20/B20 ratio than the status quo (1.3588), but TTC* does not. These correspond to a
2.79% drop of the 35.88% status quo experience difference for SI-CC and a 2.87% surge for TTC*.

Thus, while under TTC* the average teacher experience in the T20 regions is 36.91%
higher than the average experience in the B20 regions, the experience gap ratio decreases
to 34.87% under SI-CC. The reduction in the T20/B20 inequality index achieved by SI-CC
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aligns with our theoretical results (i.e., Proposition 1 and Proposition A.3). We interpret
this as evidence that the French teacher market is sufficiently large for our findings to
hold.

Figure 2: Change in Teacher Experience (in years)

(Re)assignment market Entire market

Notes: This figure plots the change in teacher experience (in years) between TTC* and the status quo (grey
bars) and between SI-CC and status quo (green bars). First, for each subject, we compute the average
experience of teachers at each region at the status quo, including teachers who request to move and those
who do not. We rank regions in the increasing order of experience. For each subject, we find the difference
in teacher experience for the (re)assignment market and the entire market under each mechanism from the
status quo—also plotted in Figures A.7 and A.8 in the Appendix using the region weights as the size of
the X-axis bin of each rank (defined as the number of teachers and the number of vacant positions in the
region divided by the national total for the subject). Finally, starting with the least experienced regions
and averaging over subjects with their respective weights, we plot the experience gap (on the Y-axis) and
the average region weight (on the X-axis), and repeat the exercise for the second least experienced regions,
third, and so on.

Trade-off between teacher distribution and teacher welfare. We now examine
whether SI-CC’s better distributional performance comes at the expense of teacher wel-
fare. Surprisingly, Table 1 reveals that, on average, teachers prefer the outcomes of SI-CC
over TTC*. Thus, in this dimension, the distributional constraint aimed at reducing in-
equality does not compromise overall teacher welfare. However, this aggregate perfor-
mance of SI-CC over TTC* masks notable differences among teachers. Indeed, new teach-
ers benefit more under SI-CC, while tenured teachers fare better under TTC*. Specifically,
the rank distribution of regions assigned to new teachers under TTC* is Lorenz-dominated
by the distribution under SI-CC, as shown in Panel D of Table 1 for the first four choices.
Conversely, tenured teachers experience the opposite pattern. These findings are summa-
rized in the following fact.

Fact 5. On average, teachers prefer the region they are assigned under SI-CC (9.5th ranked re-
gion) compared to TTC* (9.7th ranked region). On average, new teachers prefer the region they
are assigned under SI-CC (11.5th ranked region) compared to TTC* (13.7th ranked region). The
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distribution of the region ranks that new teachers are assigned to under SI-CC Lorenz dominates
that under TTC* up to rank 22 (over 26). For tenured teachers, the distribution of the region ranks
under TTC* Lorenz dominates that under SICC.58

These results, reported in Panel E of Table 1, are important for two reasons: first, they
reveal that the welfare costs of SI-CC’s improved distributional performance are less evi-
dent than anticipated; and second, since satisfying new teacher preferences is a key factor
in the attractiveness of the teaching profession (Cour des Comptes, 2013, 2017), the posi-
tive outcome for new teachers could be viewed as a potential argument in favor of SI-CC.

These differences in rank distributions between new teachers and tenured teachers
can be understood as follows. SI-CC’s better performance for new teachers is due to a
much larger number of tenured teachers leaving the B20 regions under TTC* (798) than
under SI-CC (172). These exiting tenured teachers have to be replaced, and new teachers
are the most likely substitutes due to lower demand from other tenured teachers. In our
counterfactual analysis, we see that 1,779 new teachers are assigned to the B20 regions
under TTC* versus 1,110 under SI-CC.

The lower teacher mobility under SI-CC explains the worse distribution of ranks of
tenured teachers under SI-CC. Indeed, more tenured teachers move to a new region under
TTC* (2,040 teachers) compared to SI-CC (986 teachers). Teacher mobility costs are higher
in younger regions, in particular in the B20 regions, than in older regions and in the T20
regions. While similar numbers of tenured teachers leave older regions under SI-CC and
TTC* (477 vs. 672), more tenured teachers leave younger regions under TTC* (1,369, with
798 from the B20 regions) than under SI-CC (509, with 172 from the B20 regions). The
lower demand from tenured teachers for the younger regions compared to the demand
for the older regions explains the large difference in outflow under TTC*. The status-quo
improvement requirement under SI-CC limits outflow from younger regions, a concern
explored further in Section 5.5.

5.5 Increasing Mobility from Young Regions

The results we have presented so far show that SI-CC’s superior distributional per-
formance (compared to its benchmark mechanism, TTC*) comes at the cost of reduced
mobility, particularly for employees in the B20 regions. In this section, we demonstrate
that this cost can be mitigated with a simple modification of SI-CC, which we refer to as
SI-CC*. This mechanism adjusts new teachers’ preferences by placing the three youngest
regions (Créteil, Versailles, and Amiens)—which primarily comprise the B20 regions (see
Footnote 52)—at the top. Aside from this adjustment, the original ranking is preserved

58Table 1 shows the stochastic dominance for the first four ranks. In addition, we formally test whether the
stochastic dominance is statistically significant for the entire rank distribution. This allows us to determine
the rank up to which stochastic dominance applies.
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Table 1: Teacher Welfare

Main mechanisms Other mechanisms

SI-CC TTC* SI-CC* Current
French

(1) (2) (3) (4)

Panel A. Inequality Index
Ratio T20/B20
Value at status-quo = 1.3588 1.3487 1.3691 1.3489 1.3829

Panel B. Teacher mobility
Tenured teachers moved and

new teachers assigned 4,910 5,964 5,226 5,635
Tenured teachers moved

- from the B20 regions 172 798 537 910
Tenured teachers moved

- from the T20 regions 152 203 152 114
Tenured teachers moved

- from all regions 986 2,040 1,307 1,711
New teachers assigned 3,924 3,924 3,919 3,924
New teachers unassigned 713 713 718 713
New teachers with 0 exp. assigned

- to the B20 regions 665 1,311 987 1,406
New teachers with exp. > 0 assigned

- to the B20 regions 445 468 568 455

Panel C. Cumulative distribution of ranks of
regions that tenured teachers are assigned

Rank = 1 295 842 341 675
Rank ≤ 2 1,025 1,795 1,137 1,515
Rank ≤ 3 1,496 2,307 1,627 1,980
Rank ≤ 4 1,865 2,624 2,008 2,332
Rank any 5,846 5,846 5,846 5,846

Panel D. Cumulative distribution of ranks of regions
that new teachers are assigned

Rank = 1 812 467 692 315
Rank ≤ 2 1,177 733 986 511
Rank ≤ 3 1,427 916 1,175 671
Rank ≤ 4 1,626 1,068 1,323 814
Rank any 3,924 3,924 3,919 3,924

Panel E. Average rank of region assigned
All teachers 9.5 9.7 10.1 10.4
Tenured teachers 7.8 6.5 7.5 6.9
New teachers 11.5 13.7 13.3 14.8

Notes: Panel A of this table reports the T20/B20 ratio calculated for each allocation. Panel B reports statistics
on teacher mobility: numbers of tenured teachers who moved to a new region and assigned and unassigned
new teachers. Panels C and D present the cumulative distribution of the ranks of the regions teachers are
assigned to in their preferences. Panel E reports statistics on the average rank of the region teachers obtain.
The average numbers in the counterfactual simulations are rounded to the nearest integer.
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within the three youngest regions and among the other regions. We prove in Appendix
F.3 that SI-CC* is strategy-proof.59 Moreover, it is status-quo improving for schools. By
Proposition 1 (and Proposition A.3), in large markets, it reduces inequality when using
natural type rankings, as we do here.

The Ministry’s current priorities are primarily based on experience, so new teachers,
who generally have less experience than tenured teachers, have low priority in all regions.
Even when they rank regions that are not among the youngest (and more attractive) at the
top of their preferences, they are unlikely to be assigned to one of these regions due to the
”no justified envy” feature of the current mechanism: many tenured teachers also rank
these regions highly, and their demand exceeds these regions’ quotas. Thus, the current
mechanism, which uses the DA algorithm, implicitly forces new teachers to go down
their preferences until they apply to the youngest regions. Moreover, the French Ministry
of Education completes any incomplete rank-order list of new teachers so that all regions
are ranked to ensure all vacancies are filled. Therefore, requiring new teachers to rank
the youngest regions at the top of their preferences enables SI-CC* to reflect the current
treatment of new teachers by policymakers.

Benchmark mechanisms for SI-CC*. There are two natural benchmarks to which we
compare the outcome of SI-CC*, namely SI-CC (without preference modification for new
teachers) and the Current French mechanism (which uses priorities that are determined by
the Ministry’s formula, see Appendix F.2.1). These benchmarks allow us to check whether
SI-CC* can increase the mobility of tenured teachers closer to the Current French mecha-
nism than what SI-CC achieves while maintaining a better distribution of teachers (closer
to SI-CC) than the Current French mechanism.

Counterfactual results. Several findings stand out in the results reported in Table 1.
First, under SI-CC*, significantly more tenured teachers move away from the B20 regions
than under SI-CC. Mobility from these regions goes up from 172 under SI-CC to 537 under
SI-CC*. Second, as expected, SI-CC* leads to a smaller improvement in the distribution
of teachers. However, inequality still reduces below the status-quo level. While SI-CC
and SI-CC* produce almost identical distributions in the T20 regions, a slight difference
emerges in the B20 regions (see Figure 3). SI-CC* assigns 97 more teachers with zero
or one year of experience to the B20 regions than SI-CC. As a result, SI-CC* leads to a
reduction in the average teacher experience in the B20 regions compared to SI-CC (See
Figure 4). However, it is interesting to note that the 365 additional teachers who leave the
B20 regions under SI-CC* (compared to SI-CC) are partly replaced by experienced new
teachers (123 more under SI-CC* compared to SI-CC, see Table 1). Hence, the experience

59It is also individually rational if the three youngest regions are assumed acceptable to new teachers, a
plausible assumption given that the Ministry of Education currently completes new teachers’ lists to rank all
regions and fill vacancies. Dropout rates are negligible even though a majority of new teachers are assigned
to the youngest and least attractive regions.
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gap does not go up much under SI-CC*, and inequality still goes down below the status
quo.

Finally, for all distributional metrics considered, SI-CC* not only has a much better
performance than the status quo but also, and perhaps most importantly, than the Cur-
rent French mechanism. As noted before, the average teacher experience in the T20 re-
gions is 35.88% higher than in the B20 regions at status quo (in the entire market). SI-CC*
(resp. SI-CC) decreases this experience gap ratio by 2.75% (resp. 2.79%), whereas the
Current French mechanism increases it by 6.72%. In both younger and older regions, the
cumulative distribution of teacher experience under SI-CC* Lorenz dominates the sta-
tus quo and the Current French mechanism (see Figure 3).60 As a result, SI-CC* better
fulfills the twofold objective of (i) making younger regions older and (ii) making older
regions younger (See Figure 4). These latter results are important as they show that there
is not only significant room to improve upon the status quo but also upon the allocation
that the Ministry of Education reaches after the annual (re)assignment process. This lat-
ter improvement comes at a small cost regarding the overall teacher mobility, i.e., 5,635
teachers move under the Current French mechanism versus 5,226 under SI-CC*. Among
the tenured teachers of the B20 regions, 910 teachers move away under the Current French
mechanism versus 537 under SI-CC* (as a reminder, 798 teachers move away under TTC*).
However, on average, teachers prefer their assigned region under SI-CC* (10.1th rank) to
the Current French mechanism (10.4th rank). Finally, SI-CC* performs much better than
the current French mechanism when it comes to limiting the number of inexperienced
new teachers assigned one of the B20 regions (987 under SI-CC* versus 1,406 under the
current French mechanism).

6 Related Literature
The SI-CC mechanism has its roots in the top-trading cycles algorithms (see Shapley

and Scarf, 1974, Abdulkadiroğlu and Sönmez, 1999, Pápai, 2000, Roth et al., 2004 and Dur
and Ünver, 2019). On the other hand, the design of such mechanisms or the utilized
priorities based on the formal theory of inequality measures (or social welfare functions)
has no antecedent in market design, as far as we know. Thus, we discuss some related
literature on the design of constrained efficient mechanisms in allocation problems.

The design of efficient mechanisms in two-sided matching markets with a balanced
exchange constraint was previously studied by Dur and Ünver (2019) in the context of
student and worker exchange programs. The main difference from the current model
is that status-quo improvement was not required in the previous paper. Status-quo im-
provement substantially changes modeling choices and mechanism design.

Our paper is also related to Combe et al. (2022) who study teacher reassignment, in-

60See Figure A.6 for the entire market.
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Figure 3: Cumulative Distribution of Teacher Experience in the (Re)assignment Market - SI-CC*
vs. SI-CC and Current French

B20 Regions T20 Regions

Notes: See the caption of Figure 1 for the construction methodology of this figure.

Figure 4: Change in Teacher Experience (in years) - SI-CC* vs. SI-CC and Current French

(Re)assignment market Entire market

Notes: See the caption of Figure 2 for the construction methodology of this figure.

troduce a class of mechanisms that is two-sided Pareto efficient, and show that a unique
selection in this class is teacher optimal. Although both papers consider teacher reassign-
ment problems, our paper differs in important respects. Most importantly, the mecha-
nisms introduced in this previous study do not embed distributional objectives. Their
paper focuses only on Pareto-efficiency-based design and efficiency gains, which stands
in stark contrast with the objective of our paper, namely to design mechanisms that lead
to a better distribution of workers while satisfying incentive and constrained efficiency
properties using a formal approach based on an inequality index. Hence, one of our main
methodological contributions connecting status-quo improvement with inequality reduc-
tion is orthogonal to Combe et al. (2022)’s contributions. Also this previous study largely
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focuses on teachers with a status-quo assignment and largely ignores new teachers. Ac-
counting for the entire market, as we do in this paper, is important because new teachers
are a key driver of the unequal distribution of teachers in schools. Additionally, many of
the desirable mechanism properties, such as status-quo improvement, do not easily trans-
late to markets with vacancies and new teachers, and as a result theoretical and conceptual
treatment in our paper is substantially more complex along this dimension.61

The study of efficient mechanisms under distributional constraints remain under-
explored despite prior studies, including Suzuki et al. (2018) and Hafalir et al. (2024).
These works establish sufficient conditions for a variant of TTC that incorporates con-
straints and satisfies desirable properties, relying on M♮-concavity of the policy function.
Our ultimate objective is to reduce inequality when the policy function is an inequality
index which is typically not M♮-concave. Under a large market assumption, we demon-
strate the feasibility of constructing efficient mechanisms with desirable properties, even
under complex (yet standard) distributional constraints.

The SI-CC mechanism is also related to improvement cycles approach introduced by
Erdil and Ergin (2008, 2017). These two papers introduce algorithms to achieve a
constrained-efficient (or Pareto-efficient, respectively) stable matching in a school-choice
problem (or two-sided matching market) with indifferences in preferences of participants
starting from an arbitrary envy-free, individually rational, and non-wasteful (or stable)
one. They implement a stable improvement cycle in every round, making the students
(or both sides of the market) better off. In this sense, especially Erdil and Ergin (2017)
algorithm is similar in improving agents subject to some additional axiom. In SI-CC, this
axiom is status-quo improvement, while it is stability in the other two papers. While we
have strict preferences, the whole goal of other papers is achieving efficiency goals under
weak preferences, as we already have deferred acceptance algorithms of Gale and Shap-
ley (1962) that achieve these goals under stability with strict preferences. Therefore, when
used as direct mechanisms, these algorithms are not strategy-proof (or not strategy-proof
for either side of the market), while SI-CC is.

On the empirical side, our paper also complements a fast-growing literature that ex-
plores wage-based solutions to the unequal distribution of quality teachers in schools.
Several recent papers have developed equilibrium models of the labor market for teachers,
and used these models to inspect the effect of compensation policies on the distribution of
teacher quality (Biasi et al., 2021, Bobba et al., 2021, Bates et al., 2021, and Tincani, 2021).
Despite the tremendous progress made by these papers to shed light on price-based solu-
tions to distributional concerns, much less is known on solutions for labor markets that do

61Note that, even in the pure reassignment market, which is a special case of our entire market, we show
that our SI-CC mechanism does not belong to the class of TO-BE mechanisms defined in Combe et al. (2022),
and vice-versa. (see Example A.3 in Appendix D).
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not rely on prices, or that do so imperfectly. Yet, several countries use a centralized pro-
cess to assign teachers to schools, like Germany, Italy (Barbieri et al., 2011), Turkey (Dur
and Kesten, 2019), Mexico (Pereyra, 2013), Peru (Bobba et al., 2021), Uruguay (Vegas et al.,
2006), Portugal, and the Czech Republic (Cechlárová et al., 2015).62 Understanding how to
address distributional concerns in these regulated markets is important. The evidence also
points to a large cost of wage-based policies to attract good teachers in priority education
schools, which might encourage countries to rely on more centralized solutions (Bobba et
al., 2021).63 A more recent empirical paper, Laverde et al. (2023), quantifies the equitability
and gains in student learning outcomes that can be achieved through a more efficient and
equitable centralized (re)assignment process of teachers over the current semi-centralized
scheme used in Minnesota in the US.

Finally, our paper builds on a recent literature developing demand estimation methods
in school choice environments (Abdulkadiroğlu et al., 2017, Agarwal and Somaini, 2018,
and Calsamiglia et al., 2020). In particular, we build on techniques based on discrete choice
models with personalized choice sets which are relevant for preference estimation when
reported preferences might fail to be truthful even under strategy-proof mechanisms (Fack
et al., 2019, Akyol and Krishna, 2017, and Artemov et al., 2019).

7 Concluding Remarks
Minimalist Market Design. In our main application, we identified inequality reduc-

tion across regions in France and efficiency as key objectives of the French Ministry of
Education. Accordingly, our goal is to develop mechanisms that can efficiently and in-
dividually rationally (re)assign teachers to schools while reducing inequality. We have
demonstrated that the current mechanism used in France falls short of achieving this ob-
jective. In line with the ’Minimalist Market Design’ paradigm proposed by Sönmez (2023),
we address these shortcomings by proposing a new transparent mechanism that involves
minimal interference with the existing practices employed by the Ministry.

Our approach suggests a way for the Ministry to redesign teachers’ priorities and con-
duct the assignment process like the current practice. In fact, a mechanism similar to
the TTC and our proposal, which allows teachers to swap positions, is already in use for
primary school teacher assignments in France.64 In this mechanism, as in our proposal,

62Beside these fully centralized markets, in most teacher labor markets (like in the US), wage variations
are strongly limited by rigid pay scales that determine teacher salary as a function of experience. Biasi et
al. (2021) provides insightful discussions on non-flexible wage policies in the US: “Most US public school
districts pay teachers according to steps-and-lanes schedules, which express a teacher’s salary as a function
of their experience and education.”

63Bobba et al. (2021) finds that “it would take six times the current budget to equalize access to teacher
quality across Peru”. Thakur (2020) also investigates the distributional consequences of centralized assign-
ment for Indian Administrative Service jobs, the top-tier government jobs located across the country before
and after a mechanism change.

64In essence, this consists of running the TTC with the outcome of the Current French mechanism as the
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there are school/region priorities that are set by the Ministry. Thus, our proposed mecha-
nism offers a straightforward recommendation that does not require radical philosophical
and administrative changes. We believe that this minimal interference with the current
practices increases the likelihood of our suggested mechanisms (SI-CC or SI-CC*) being
adopted by the authorities in charge of the (re)assignment process.

Endogenous Participation. As discussed in Section 4.1, when teachers follow their
dominant strategies in the (re)assignment market, their participation decisions remain
unaffected by changes in the mechanisms, provided these mechanisms are individually
rational and strategy-proof (see Footnote 19). However, if teachers deviate from their
dominant strategies, participation decisions could be influenced by a change in the mech-
anism. Indeed, as observed in our empirical analysis, some teachers may not apply to a
school they deem unlikely to be assigned to.

In addition, a change in mechanism may alter the value assigned to a school, as the
likelihood of it being exchanged with another school in the future could increase or de-
crease. In such instances, a change in mechanism, which in turn alters the likelihood of
acceptance at various schools and the possibility that a school will be ”traded” in the fu-
ture, could impact participation decisions.

Our SI-CC* simulations provide our empirical counterfactual analysis with more ex-
ternal validity by accounting for some of these participation effects. This is because we
found that mobility outcomes for tenured teachers are similar under both SI-CC* and the
Current French mechanism, suggesting that participation decisions could be similar under
both mechanisms. Moreover, this is achieved without embedding any dynamic incentives
in SI-CC, but rather through a simple change in how new teacher preference submissions
are handled. More importantly, SI-CC* does lead to a reduction in inequality compared
to the status quo, unlike the Current French mechanism. Therefore, it can serve as a good
compromise mechanism without employing any of the currently used dynamic incentive
features of the Current French mechanism.65 The optimal design of such incentives in a
fully-fledged dynamic model is an interesting future research question.
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Koenig (eds.), 2018, July 10-15, Stockholm, Sweden.

Thakur, Ashutosh, “Matching in the Civil Service: A Market Design Approach to Public Admin-
istration and Development,” 2020. Working Paper.

Tincani, Michela M., “Teacher labor markets, school vouchers and student cognitive achievement:
Evidence from Chile,” Quantitative Economics, 2021, 12 (1), 173–216.

Vegas, Emiliana, Miguel Urquiola, and Pedro Cerdàn-Infantes, “Teacher Assignment, Mobility
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Supplemental Appendices

A Omitted Proofs

A.1 Proof of Theorem 1

Proof of Theorem 1. Consider an arbitrary market P. Fix a profile of type rankings ⊵.

SI-constrained efficiency: Recall that the requirement of status-quo improvement un-
der ⊵ is embedded in the definition of SI-constrained efficiency. Let µ̂ be the outcome of
SI-CC in this market induced by ⊵ for a tiebreaker ⊢. We proceed in two parts.

We first show that µ̂ is status-quo improving.

First, consider teachers. Under SI-CC, each school s points to all teachers in ωs one by
one. When a teacher t ∈ ωs is pointed to by s in some Step k, then s ∈ Ak

t and she can
always form a one-school cycle (s, t) whenever she points to s. Similarly, any new teacher
t ∈ N can form a cycle with ∅ in any step of SI-CC. Hence, µ̂t Rt ωt for each t ∈ T.

Next, consider schools. The first teacher of any executed chain is a new teacher. Hence,
if in some step of SI-CC, a school s is sending out a teacher, then it is simultaneously
acquiring another teacher; as a result, |µ̂s| ≥ |ωs|. In any Step k of SI-CC, when we
consider the set of remaining status-quo employees and teachers assigned in the first k − 1
steps, because of the positive balance requirement in School Improvement Conditions
1 and 2 and the previous observation, for each school s we achieve Lorenz domination
over ωs. Hence, µ̂s is an unambiguous weak improvement over ωs for each s ∈ S. This
completes the proof that µ̂ is status-quo improving.

Before proving µ̂ cannot be Pareto dominated by another status-quo improving match-
ing for teachers, we first state a claim that will be used in the proof.

Claim 1. For a school s, suppose Step K is a step in which s is assigned through a chain
with s as the last school. Let the set of remaining status-quo employees of s at the end of
Step K be denoted by ωK

s , i.e., ωK
s = ωs ∩ TK+1. Let γ be a matching such that γt = µK

t
for each t ∈ T \ TK+1, i.e., all teachers assigned in the first K steps of SI-CC are matched
with their assignment under SI-CC, and |γs| < |ωK

s ∪ µK
s |. Then, γ is not a status-quo

improving matching.

Proof. Suppose teacher t ∈ TK is assigned to s in this chain in Step K. By the construction of
SI-CC, it must be that t points to s under Condition 2. First observe that, by construction,
µK

s ⊆ γs. Also notice that, if ωK
s = ∅, then |γs| ≥ |ωK

s ∪ µK
s |, a contradiction with the

assumption of the claim. Hence, ωK
s = TK+1 ∩ ωs ̸= ∅. Since school s is the last school

in the implemented chain in Step K, ωK
s = TK+1 ∩ ωs⊆TK ∩ ωs ̸= ∅. Let ts ∈ TK ∩ ωs be
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the teacher pointed by s in Step K. Since, by the definition of SI-CC, school improvement
condition 1 does not hold for s via teacher t and school improvement condition 2 holds,
there exists some type θ ̸= θ∅ such that τ(ts) ⊵s θ ▷s τ(t), θ ▷s θ∅ and66

∑
θ′ ⊵s θ

bK,θ′
s = ∑

θ′ ⊵s θ

(∣∣∣[µK−1
s ]θ

′
∣∣∣− ∣∣∣[ωs \ TK]θ

′
∣∣∣) ≤ 0. (1)

Since s is the last element of the chain implemented in step K, there are two cases to
consider:

Case 1: s appears only once in the chain. In this case, we have µK
s = µK−1

s ∪ {t}. Since
θ ▷s τ(t), µK

s = µK−1
s ∪ {t} implies that

∑
θ′⊵sθ

∣∣∣[µK
s ]

θ′
∣∣∣ = ∑

θ′⊵sθ

∣∣∣[µK−1
s ]θ

′
∣∣∣ .

Case 2: s appears more than once in the chain. Since s can only point to a single tenured
teacher, the chain must be of the form (t0, s1, t1, ..., tℓ, s, ts, ..., t, s). Hence, µK

s = µK−1
s ∪

{tℓ, t}\{ts}. We note that τ(tℓ) ⊵s θ. Indeed, tℓ points to s because improvement condition
1 holds for s via tℓ and so, given Equation 1, we must have τ(tℓ) ⊵s θ. Now, since τ(ts) ⊵s

θ ▷s τ(t), we have that at Step K one teacher (namely, ts) of type greater than θ leaves s
while two teachers, one with type greater than θ (namely, tℓ) and one with type worse
than θ join school s. From this, we must have

∑
θ′⊵sθ

∣∣∣[µK
s ]

θ′
∣∣∣ = ∑

θ′⊵sθ

∣∣∣[µK−1
s ]θ

′
∣∣∣ .

Hence we get the above equality in both cases. Now, using Equation 1, we have

∑
θ′⊵sθ

∣∣∣[µK
s ]

θ′
∣∣∣ ≤ ∑

θ′⊵sθ

∣∣∣[ωs \ TK]θ
′
∣∣∣ . (2)

66Actually, the sum of balances ∑
θ′ ⊵s θ

bK,θ′
s never becomes negative in the mechanism for any type θ, as the

sum starts at zero at the beginning of Step 1, and whenever it is zero, we do not admit a teacher with a type
worse than θ by sending out a teacher with a type better than θ by Improvement Condition 1.
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Given µK
s ∩ ωK

s = ∅, we obtain

∑
θ′⊵θ

∣∣∣∣[µK
s ∪ ωK

s

]θ′
∣∣∣∣ = ∑

θ′⊵sθ

∣∣∣∣[µK
s

]θ′
∣∣∣∣+ ∑

θ′⊵sθ

∣∣∣∣[ωK
s

]θ′
∣∣∣∣ (3)

≤ ∑
θ′⊵sθ

∣∣∣[ωs \ TK]θ
′
∣∣∣+ ∑

θ′⊵sθ

∣∣∣∣[ωK
s

]θ′
∣∣∣∣

= ∑
θ′⊵sθ

∣∣∣[ωs \ TK]θ
′
∣∣∣+ ∑

θ′⊵sθ

∣∣∣∣[ωs ∩ TK+1
]θ′
∣∣∣∣

≤ ∑
θ′⊵sθ

∣∣∣[ωs \ TK]θ
′
∣∣∣+ ∑

θ′⊵sθ

∣∣∣∣[ωs ∩ TK
]θ′
∣∣∣∣

= ∑
θ′⊵sθ

∣∣∣ωθ′
s

∣∣∣
where the first inequality uses Equation 2 and the penultimate uses the fact that TK+1 ⊆
TK.

Finally, |γs| < |ωK
s ∪ µK

s |—which we assumed—can be written as

∑
θ▷sθ′

∣∣∣γθ′
s

∣∣∣+ ∑
θ′⊵sθ

∣∣∣γθ′
s

∣∣∣ < ∑
θ▷sθ′

∣∣∣∣[ωK
s ∪ µK

s

]θ′
∣∣∣∣+ ∑

θ′⊵sθ

[
ωK

s ∪ µK
s

]θ′

.

From this, we obtain

∑
θ′⊵sθ

∣∣∣γθ′
s

∣∣∣ < ∑
θ▷sθ′

∣∣∣∣[ωK
s ∪ µK

s

]θ′
∣∣∣∣− ∑

θ▷sθ′

∣∣∣γθ′
s

∣∣∣+ ∑
θ′⊵sθ

[
ωK

s ∪ µK
s

]θ′

(4)

= ∑
θ▷sθ′

∣∣∣∣[ωK
s

]θ′
∣∣∣∣+ ∑

θ▷sθ′

∣∣∣∣[µK
s

]θ′
∣∣∣∣− ∑

θ▷sθ′

∣∣∣γθ′
s

∣∣∣+ ∑
θ′⊵sθ

[
ωK

s ∪ µK
s

]θ′

≤ ∑
θ▷sθ′

∣∣∣∣[ωK
s

]θ′
∣∣∣∣+ ∑

θ′⊵sθ

[
ωK

s ∪ µK
s

]θ′

= ∑
θ′⊵sθ

[
ωK

s ∪ µK
s

]θ′

where the second inequality comes from the fact that µK
s ⊆ γs and the last equality by the

fact that all teachers in ωK
s have a weakly better type than θ (since ts must be the tenured

teacher at school s with the lowest type ranking according to ⊵s). Combining Equations 3
and 4, we obtain

∑
θ′⊵sθ

∣∣∣γθ′
s

∣∣∣ < ∑
θ′⊵sθ

∣∣∣ωθ′
s

∣∣∣ .

Therefore, γs is not unambiguous weak improvement over ωs for school s. ⋄

Next, we show that µ̂ cannot be Pareto dominated by another status-quo improving
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matching for teachers.

On the contrary, suppose there exists a status-quo improving matching γ that Pareto
dominates µ̂ for teachers. By considering the teachers assigned in each step of SI-CC
inductively, we show that such a matching cannot exist, in particular we should have
γ = µ̂.

We denote the set of teachers assigned in Step k of SI-CC in market P by Ik, i.e., Ik =

Tk \ Tk+1, and the union of these sets up to Step k as Ik
= ∪k

k′=1 Ik′ .

Step 1: Each teacher t ∈ I1 is assigned in µ̂ to the best school in A1
t . If γt Pt µ̂t for some

t ∈ I1, then γt ̸∈ A1
t . Thus, for school s = γt both school improvement conditions do not

hold for teacher t. Since this is Step 1, µ0 = ∅, and hence, the current balances b0,θ
s = 0 for

each schools s and type θ ∈ Θ ∪ {θ∅}. We consider the implications of the violation of the
two improvement conditions separately:

(a.) We first show that, since school improvement condition 1 does not hold, |γs| > |ωs|.
To show this, we consider the following two cases:

(a.1) There exists a teacher ts ∈ ωs to whom s is pointing:

Teacher ts has type τ(ts) ▷s τ(t): thus, t has a worse type than the worst type
status-quo employees of this school; or

(a.2) There does not exist a teacher to whom s is pointing:

Then, ωs = ∅.

Since γ is a status-quo improvement over ωs, by the first condition of the definition,
|γs| ≥ |ωs|.
Suppose Case (a.1) holds: If |γs| = |ωs|, then

∑
θ′ ⊵s τ(ts)

|ωθ′
s | > ∑

θ′ ⊵s τ(ts)

|γθ′
s |,

i.e., t being in γs violates the Lorenz dominance relation for type τ(ts), contradicting
γ is status-quo improving for s. This follows from the fact that τ(ts) is the worst type
of the status-quo teachers and τ(ts)▷s τ(t). Thus, |γs| > |ωs|.
Suppose Case (a.2) holds: Since t ∈ γs and ωs = ∅, we have |γs| > |ωs|.
Thus, in either case, we have |γs| > |ωs|.

(b.) Now, we show that the violation of the school improvement condition 2 for s via t
together with |γs| > |ωs| (which we just showed in a.) yields a contradiction. Indeed,
the violation of the school improvement condition 2 for s via t implies at least one of
the following conditions to hold:

(b.1) |ωs| = qs:

In this case, we showed above |γs| > |ωs|, which implies |γs| > qs contradicting
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the feasibility of γ as matching; or
(b.2) there are no new teachers:

In this case, since |γs| > |ωs|, there exists some school s′ such that |ωs′ | > |γs′ |,
contradicting γ status-quo improves s′ by the first condition of the status-quo im-
provement definition; or

(b.3) θ∅ ▷s τ(t):

Two subcases exist:

• |ωs| = qs or [ωs ̸= ∅ and θ∅ ▷s τ(ts) where ts is the teacher pointed by s in
Step 1]: As ωs ̸= ∅, Case (a.2) does not hold. Thus, Case (a.1) holds and by
Case (a.1), τ(ts) ▷s τ(t) implying

∑
θ′ ⊵s τ(ts)

|ωθ′
s | = qs > ∑

θ′ ⊵s τ(ts)

|γθ′
s |,

i.e., t being in γs violates the Lorenz dominance relation for the worst type
status-quo employees of s; or

• ωs = ∅ or [ωs ̸= ∅ and τ(ts) ▷s θ∅ where ts is the teacher pointed by s in Step
1]: For the vacant seat type θ∅,

∑
θ′ ⊵s θ∅

|ωθ′
s | = qs > ∑

θ′ ⊵s θ∅

|γθ′
s |,

i.e., t being in γs violates the Lorenz dominance relation for θ∅.

Either subcase contradicts γ status-quo improves s.

Then, school improvement conditions 1 and 2 cannot be violated, and t could have
been pointed to s in Step 1, which is a contradiction.
Hence, such a teacher t cannot exist with γtPtµ̂t. Since γt Rt µ̂t for each t then for each
t ∈ I1, γt = µ̂t.

Inductive assumption: For any k > 1, assume that for each k′ < k and t ∈ Ik′ , γt = µ̂t.
We show that the same holds for teachers in Ik:

Step k: Each teacher t ∈ Ik is assigned in µ̂ to the best school in Ak
t . If γt Pt µ̂t for some

t ∈ Ik, then γt ̸∈ Ak
t . Thus, for school s = γt both school improvement conditions are vio-

lated via teacher t. We consider the implications of the violation of the two improvement
conditions separately:

(a.) We first show that the violation of school improvement condition 1 yields

|γs \ Ik−1| > |ωs \ Ik−1|. (5)

In order to do so, we consider the following two cases:
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(a.1) There exists a teacher ts ∈ ωs ∩ Tk to whom s is pointing:

Then it has type τ(ts) ▷s τ(t) and there exists an intermediate type θ such that
τ(ts) ⊵s θ ▷s τ(t) with

0 ≥


∑

θ′ ⊵s θ

(∣∣∣[µk−1
s ]θ

′
∣∣∣− ∣∣∣[ωs \ Tk]θ

′
∣∣∣) if θ ▷s θ∅

∑
θ′ ⊵s θ, θ′ ̸=θ∅

(∣∣∣[µk−1
s ]θ

′
∣∣∣− ∣∣∣[ωs \ Tk]θ

′
∣∣∣)+ (

|ωs \ Tk| − |µk−1
s |

)
︸ ︷︷ ︸

= bk,θ∅
s = −# filled vacant seats

if θ∅ ⊵s θ (6)

By the inductive assumption, µk−1
t′ = γt′ for each t′ assigned until this step (i.e.,

those in Ik−1), and hence we can rewrite Inequality 6 as follows,

0 ≥


∑

θ′ ⊵s θ

(∣∣∣[γs ∩ Ik−1
]θ

′
∣∣∣− ∣∣∣[ωs ∩ Ik−1

]θ
′
∣∣∣) if θ ▷s θ∅

∑
θ′ ⊵s θ, θ′ ̸=θ∅

(∣∣∣[γs ∩ Ik−1
]θ

′
∣∣∣− ∣∣∣[ωs ∩ Ik−1

]θ
′
∣∣∣)+ (|ωs ∩ Ik−1| − |γs ∩ Ik−1|

)
if θ∅ ⊵s θ

(7)

By the definition of SI-CC, teacher t has a worse type than the remaining worst-
type status-quo employee of this school, i.e., those in ωs \ Ik−1.

We first consider the case θ ▷s θ∅. Suppose |γs \ Ik−1| ≤ |ωs \ Ik−1|, then as
τ(ts) ⊵s θ for the worst-type remaining employee ts ∈ ωs \ Ik−1 and the fact that
only status-quo teachers of school s who have weakly worse types than τ(ts) have
been assigned in previous steps of SI-CC, we have

|ωs \ Ik−1| = ∑
θ′ ⊵s θ

∣∣∣[ωs \ Ik−1
]θ

′
∣∣∣ = ∑

θ′ ⊵s θ

(∣∣∣ωθ′
s

∣∣∣− ∣∣∣[ωs ∩ Ik−1
]θ

′
∣∣∣). (8)

On the other hand, teachers with worse type than θ are in γs \ Ik−1, e.g, t ∈ γs \
Ik−1, and hence,

|γs \ Ik−1| > ∑
θ′ ⊵s θ

∣∣∣[γs \ Ik−1
]θ

′
∣∣∣ = ∑

θ′ ⊵s θ

(∣∣∣γθ′
s

∣∣∣− ∣∣∣[γs ∩ Ik−1
]θ

′
∣∣∣). (9)

Then the supposition that |γs \ Ik−1| ≤ |ωs \ Ik−1|, first part of Equation 7, and
Equations 8 and 9 together imply

∑
θ′ ⊵s θ

(∣∣∣γθ′
s

∣∣∣− ∣∣∣ωθ′
s

∣∣∣) < 0,

further implying

∑
θ′ ⊵s θ

|ωθ′
s | > ∑

θ′ ⊵s θ

|γθ′
s |,
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i.e., γ is not a status-quo improvement, a contradiction. Thus, when θ ▷s θ∅, we
should also have

|γs \ Ik−1| > |ωs \ Ik−1|. (10)

Next, we consider the case θ∅ ⊵s θ. Equations 8 and 9 still hold, excluding from
the sum θ′ = θ∅. That is,

|ωs \ Ik−1| = ∑
θ′ ⊵s θ, θ′ ̸=θ∅

(∣∣∣ωθ′
s

∣∣∣− ∣∣∣[ωs ∩ Ik−1
]θ

′
∣∣∣). (11)

|γs \ Ik−1| > ∑
θ′ ⊵s θ, θ′ ̸=θ∅

(∣∣∣γθ′
s

∣∣∣− ∣∣∣[γs ∩ Ik−1
]θ

′
∣∣∣). (12)

The facts that |ωs \ Ik−1| = |ωs| − |ωs ∩ Ik−1| and |γs \ Ik−1| = |γs| − |γs ∩ Ik−1|
together with the second part of Equation 7 imply

0 ≥ ∑
θ′ ⊵s θ, θ′ ̸=θ∅

(∣∣∣[γs ∩ Ik−1
]θ

′
∣∣∣− ∣∣∣[ωs ∩ Ik−1

]θ
′
∣∣∣)−|ωs \ Ik−1|+ |γs \ Ik−1|+ |ωs|− |γs|

(13)
Equations 11, 12, and 13 imply

∑
θ′ ⊵s θ, θ′ ̸=θ∅

(∣∣∣γθ′
s

∣∣∣− ∣∣∣ωθ′
s

∣∣∣)+ (|ωs| − |γs|
)
< 0.

Hence, we have

∑
θ′ ⊵s θ

|ωθ′
s | > ∑

θ′ ⊵s θ

|γθ′
s |,

i.e., when θ∅ ⊵s θ, γ is not a status-quo improvement, a contradiction. Thus, this
case (i.e., θ∅ ⊵s θ) cannot hold. Therefore, we have θ ▷s θ∅ and Equation 5 holds
in order γ to be a status-quo improvement.

(a.2) School s is not pointing to any teacher:

Then, ωs \ Ik−1
= ∅, and hence, as t ∈ γs \ Ik−1 we have |γs \ Ik−1| > |ωs \ Ik−1|.

Observe that in the algorithm of SI-CC at each step we make sure that each school
acquires at least as many teachers as it sends out and hence, |µk−1

s | ≥ |ωs ∩ Ik−1|.
Since µk−1

s = γs ∩ Ik−1 by the inductive assumption, we have |γs ∩ Ik−1| ≥ |ωs ∩ Ik−1|.
Therefore, as we also showed that |γs \ Ik−1| > |ωs \ Ik−1| holds regardless of either
Case (a.1) or Case (a.2) holds, we obtain |γs| > |ωs|.

(b.) The violation of the school improvement condition 2 for s via t, on the other hand,
implies at least one of the following three conditions to hold:
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(b.1) All vacant seats of school s have been assigned to teachers in Ik−1, i.e., |ωs \ Ik−1| =

qs − |µk−1
s |:

By the inductive assumption, µk−1
t′ = γt′ for each t′ assigned until this step (i.e.,

those in Ik−1), we have

qs − |γs ∩ Ik−1| = |ωs \ Ik−1|.

By the feasibility of a matching, we have

qs − |γs ∩ Ik−1| ≥ |γs \ Ik−1|.

In Case (a), we showed that, for γ to be a status-quo improvement, |γs \ Ik−1| >
|ωs \ Ik−1|. Then, we have

|ωs \ Ik−1| = qs − |γs ∩ Ik−1| ≥ |γs \ Ik−1| > |ωs \ Ik−1|,

which is a contradiction.
(b.2) There are no remaining new teachers, i.e., N ∩ Tk = N \ Ik−1

= ∅:

We know from Case (a) that Equation 5 holds, i.e.,∣∣∣γs\Ik−1
∣∣∣ > ∣∣∣ωs\Ik−1

∣∣∣ .

If there are no remaining new teachers at Step k, then in the future steps of SI-
CC, including Step k, only the remaining tenured teachers can be assigned in the
algorithm. By this, together with µk−1

t′ = γt′ for each t′ ∈ Ik−1 (i.e., the inductive
assumption), and that γ is individually rational67 , we have⋃

s′∈S

γs′\Ik−1
=
⋃

s′∈S

ωs′\Ik−1.

This implies by Equation 5 that there exists some school s′ ̸= s such that∣∣∣γs′\Ik−1
∣∣∣ < ∣∣∣ωs′\Ik−1

∣∣∣ , (14)

Given that γs′ status-quo improves s′, and hence |γs′ | ≥ |ωs′ |, we further have∣∣∣γs′ ∩ Ik−1
∣∣∣ = |γs′ | −

∣∣∣γs′ \ Ik−1
∣∣∣ > |ωs′ | −

∣∣∣ωs′ \ Ik−1
∣∣∣ = ∣∣∣ωs′ ∩ Ik−1

∣∣∣ .

Since µk−1
t′ = γt′ for each t′ ∈ Ik−1 by the inductive assumption,∣∣∣µk−1

s′

∣∣∣ = ∣∣∣γs′ ∩ Ik−1
∣∣∣ > ∣∣∣ωs′ ∩ Ik−1

∣∣∣ . (15)

67Recall that ωt Rt ∅ for all t ∈ T.
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Thus, a chain was implemented in a previous step in the SI-CC algorithm, and s′

was the last school in this chain. Let ℓ ≤ k − 1 be the last step at which such a
chain was implemented. Equation 14 imply

|γs′ | =
∣∣∣γs′\Ik−1

∣∣∣+ ∣∣∣µk−1
s′

∣∣∣ < ∣∣∣ωs′\Ik−1
∣∣∣+ ∣∣∣µk−1

s′

∣∣∣ = ∣∣∣(ωs′\Ik−1
) ∪ µk−1

s′

∣∣∣ (16)

where the first equality follows from the first equality in Equation 15 (which fol-
lows from the inductive assumption) and the last equality follows from the fact
that µk−1

s′ ⊆ Ik−1.

Note that, after replacing k − 1 with k′ in every place, Equation 16 holds for each
step k′ with ℓ < k′ ≤ k − 1. To see this, recall that by the definition of Step ℓ,
either a cycle or a chain in which s′ was not the last school was implemented at
any step following Step ℓ. In both cases, if s′ was part of this cycle or chain, the
number of status-quo teachers leaving equals the number of teachers entering so
that the Inequality 14 written for Step k′ instead of k − 1 remains correct, implying
Inequality 16 also holds for Step k′.

So at the end of Step ℓ, a chain was just implemented where s′ was the last school
of the chain and |γs′ | <

∣∣∣(ωs′\Iℓ−1
) ∪ µℓ−1

s′

∣∣∣ . But then, by Claim 1 applied for
Step ℓ and school s′, we conclude that γ is not status-quo improving, which is a
contradiction.

(b.3) ∑
θ′ ⊵s θ

bk,θ′
s ≤ 0 for some θ such that θ∅ ⊵s θ ▷s τ(t):

First, notice that the explanation provided in Case (a.1) when θ∅ ⊵s θ holds even
if ωs ∩ Tk = ∅. Hence, in this case, by following the exact steps as in Case (a.1),
we show including t in γ violates status-quo improvement for s, a contradiction.

Then, Condition 2 cannot be violated as none of these conditions hold, consequently
implying that t can point to school s in Step k of the SI-CC algorithm, which is a contra-
diction. Hence, such a teacher t ∈ Ik with γt Pt µ̂t cannot exist.

Since γt Rt µ̂t for each t, we have for each t ∈ Ik, γt = µ̂t, completing the induction and
showing that γ = µ̂, and hence, µ̂ is constrained efficient.

Strategy-proofness: We state two claims that we will use in the proof.

Claim 2. Suppose teacher t is assigned in Step K of SI-CC. For any k < K, Ak+1
t ⊆ Ak

t .

Proof. Let s ̸∈ Ak
t . We show that s ̸∈ Ak+1

t . We consider two possible cases.

Case 1. School s does not have a vacant position at Step k: First, notice that, if there is
no remaining status-quo employee of s in Step k, then s should have been removed in an
earlier step of SI-CC. Thus, there exists a remaining status-quo teacher of s in Step k. Then,
s points to a teacher in ωs ∩ Tk, say ts in Step k. As s ̸∈ Ak

t , there exists some type θ such
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that τ(ts) ⊵s θ ▷s τ(t) with

∑
θ′ ⊵s θ

bk,θ′
s ≤ 0. (17)

Also, notice that s cannot be the last school in an executed chain in Step k. 68 That is, s
cannot get a teacher without sending out a status-quo employee. Moreover, s cannot send
out a status-quo employee without getting a new one by the definition of SI-CC.

If school s is part of the executed cycle or chain in Step k, then the teacher assigned to
s has a type weakly better than type θ under ▷s and similarly, the teacher leaving school
s, namely, ts also has a type weakly better than type θ. Hence, after executing the cycle or
chain in Step k, Inequality 17 still holds after replacing k with k + 1. If ωs ∩ Tk+1 = ∅, then
s is removed at the end of Step k. Otherwise, s points to a teacher in Step k + 1 who has a
type weakly better than τ(ts) under ⊵s.

If school s is not part of the executed cycle or chain in Step k, Inequality 17 still holds
after replacing k with k+ 1 as s’s current match and its set of remaining status-quo teachers
does not change in the algorithm.

In either case, s /∈ Ak+1
t .

Case 2. School s has a vacant position at Step k: Either (i) ∑
θ′ ⊵s θ

bk,θ′
s ≤ 0 for some type θ

such that θ∅ ⊵s θ ▷s τ(t) or (ii) ∑
θ′ ⊵s θ

bk,θ′
s > 0 for every θ such that θ∅ ⊵s θ ▷s τ(t) but

there does not exist a remaining new teacher in Step k. By the definition of SI-CC, under
the latter case, a cycle needs to be executed in Step k.

First, notice that if school s is not part of the executed cycle or chain in Step k, then both
cases (i) and (ii) continue to hold for Step k + 1, and therefore, s /∈ Ak+1

t .

Second, suppose a chain is executed in Step k and s is a part of that chain. Then, as
explained above, case (ii) cannot hold and thus case (i) holds. Without loss of generality,
suppose θ is the lowest ranked type under ▷s such that case (i) holds.

If s is the last school of the executed chain, then the teacher assigned to s, say t′, has a
type weakly better than type θ and occupies a vacant seat. Since θ∅ ▷s τ(t) and τ(t′) ▷s

τ(t), case (i) still holds in Step k + 1, and therefore s /∈ Ak+1
t .

If s is not the last school in the executed chain, and t′ is assigned to s. Then, s points
to a teacher in ωs ∩ Tk, say ts, as explained in Case 1 above, and τ(ts) ▷ τ(t). Since both
t′ and ts have types weakly better than θ, after executing the chain in Step k, case (i) still
holds for Step k + 1, and therefore s /∈ Ak+1

t .

Third, suppose, instead of a chain, a cycle is executed in Step k, and s is in this cycle.
By following Case 1’s reasoning, we show that s /∈ Ak+1

t . ⋄

68Otherwise, improvement condition 2 for s would be satisfied but then s would have available seats.
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Claim 3. Consider a Step k of SI-CC mechanism such that there exists a path of schools
and teachers (s1, t1, s2, t2, . . . , sℓ, tℓ) in which for each ℓ′ ≤ ℓ, school sℓ′ points to teacher
tℓ′ and teacher tℓ′−1 points, according to the school improvement condition 1, to school sℓ′
for each ℓ′ ≤ ℓ and s1 ∈ Ak

tℓ . If none of the schools in this path are assigned a teacher in
this step, the same path forms in Step k + 1 and s1 ∈ Ak+1

tℓ .

Proof. As no teacher is assigned to the schools of the path in Step k, the teachers in the
path remain in Step k + 1. Since tℓ′ = tsℓ′ is the highest priority remaining status-quo
employee under the pointing order in Step k of school sℓ′ , she continues to be so in Step
k + 1, thus, school sℓ′ points to tℓ′ in Step k + 1. Moreover, no other status-quo employee
of these schools is assigned to any other school in Step k, because the assignment of
status-quo employees requires the school pointing to them and each school points to at
most one teacher in this step. Thus, as school improvement condition 1 holds for each
school sℓ′ via teacher tℓ′−1 in Step k, the same condition continues to hold in Step k + 1 via
the same teacher. Hence, sℓ′ ∈ Ak+1

tℓ′−1
for each ℓ′. Since Ak+1

tℓ′−1
⊆ Ak

tℓ′−1
by Claim 2, and sℓ′ is

the favorite school of teacher tℓ′−1 in the opportunity set in Step k, we still have sℓ′ as the
favorite school of teacher tℓ′−1 in Step k+ 1 and she continues to point to sℓ′ in Step k+ 1. ⋄

We are ready to finish the proof for the strategy-proofness of SI-CC. Recall that we
denote the set of teachers assigned in Step k of SI-CC by Ik.

Notice that any teacher t cannot affect A1
t by misreporting her preferences since A1

t
does not depend on the submitted preferences. Moreover, by Claim 2, {Ak′

t }k′ , the oppor-
tunity sets for teacher t, weakly shrink throughout SI-CC. Hence, any teacher t cannot be
assigned to a school s /∈ A1

t under SI-CC.
First, we consider the teachers in I1. Each teacher t ∈ I1 is assigned to her best choice

in A1
t . Hence, any teacher t ∈ I1 cannot benefit from misreporting her preferences.

Next, we consider a teacher t ∈ I2. As explained above, teacher t cannot be assigned
to school s /∈ A1

t under SI-CC. Teacher t ∈ I2 is assigned to her favorite school in A2
t when

she submits her true preferences. We denote her favorite school in A2
t according to Pt by

s′. By Claim 2, A2
t ⊆ A1

t . Hence, if t ∈ I2 can benefit from misreporting her preferences,
then she is assigned to some school s ∈ A1

t \ A2
t . We will show that s Pt s′ and s ∈ A1

t \ A2
t

lead to a contradiction.Particularly, we show t cannot prevent the cycle or chain executed
in step 1 without hurting herself.

If t forms a cycle in step 1 by misreporting and pointing to some school s′′ ∈ A1
t , then

by Claim 3, s′′ ∈ A2
t and the path leading to t in this cycle starting with school s′′ forms

again when she submits her true preference relation Pt, which does not match her in step
1. Hence, any such school s′′ cannot be preferred to s′, which is t’s assignment under
truthtelling.

If a chain is executed in step 1 when teacher t is truthful, teacher t cannot be a part of
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an executed chain by misreporting and pointing to some other school in A1
t . This follows

from the fact that the executed chain starts with a specific new teacher and a teacher t̄,
who is pointed to by her status-quo school ωt̄, can only be added to the executed chain if
a previously included teacher points to school ωt̄, independent of t̄’s preferences.

Thus, teacher t can prevent the executed chain by only forming a cycle by misreporting.
However, as explained above, in such a cycle, t will be assigned to a school weakly worse
than s′.

Moreover, with a similar reasoning to a chain, teacher t cannot affect the executed
cycles in step 1 by submitting a different preference list without being matched in step 1
in a new cycle (and therefore, making her weakly worse off as we showed above).

By using similar arguments, we can show that any teacher in Ik where k > 2 cannot
benefit from misreporting her preferences.

A.2 Proof of Proposition 1

Before moving to the proof of Proposition 1, we start by proving Lemma 1.
Proof of Lemma 1. Let ⊵ be the type ranking profile induced by the partition (L, H)

and µ be a matching which is status-quo improving for schools under ⊵ when ω is the
status-quo matching.

Fix s ∈ L. By the construction of ⊵s and by the definition of the status-quo improve-
ment for schools property, we have that for k = 0, . . . , K − 2:

k

∑
ℓ=0

|µθK−1−ℓ
s | ≥

k

∑
ℓ=0

|ωθK−1−ℓ
s |

⇐⇒
k

∑
ℓ=0

|EθK−1−ℓ
s |+

k

∑
ℓ=0

|µθK−1−ℓ
s | ≥

k

∑
ℓ=0

|EθK−1−ℓ
s |+

k

∑
ℓ=0

|ωθK−1−ℓ
s |

⇐⇒
k

∑
ℓ=0

δ
µ,vK−1−ℓ
s ≥

k

∑
ℓ=0

δ
ω,vK−1−ℓ
s after dividing both sides by |Es|+ qs.

For k = K − 1, by the status-quo improvement for schools property, Lorenz dominance
condition at θ∅ implies

K−1

∑
ℓ=0

|µθK−1−ℓ
s |+ (qs − |µs|) ≥

K−1

∑
ℓ=0

|ωθK−1−ℓ
s |+ (qs − |ωs|)

⇐⇒
K−1

∑
ℓ=0

|EθK−1−ℓ
s |+

K−1

∑
ℓ=0

|µθK−1−ℓ
s |+ (qs − |µs|) ≥

K−1

∑
ℓ=0

|EθK−1−ℓ
s |+

k

∑
ℓ=0

|ωθK−1−ℓ
s |+ (qs − |ωs|)

⇐⇒
K−1

∑
ℓ=0

δ
µ,vK−1−ℓ
s ≥

K−1

∑
ℓ=0

δ
ω,vK−1−ℓ
s after dividing both sides by |Es|+ qs.
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Thus, we deduce that δ
µ
s LDs δω

s . Since f is LD-increasing, we have that f (δµ
s ) ≥ f (δω

s ).

Now, fix s ∈ H. By the definition of the status-quo improvement for schools property,
Lorenz dominance condition at θ∅ implies

|µθ0
s |+ |µθ∅

s | ≥ |ωθ0
s |+ |ωθ∅

s |
⇐⇒ |µθ0

s |+ (qs − |µs|) ≥ |ωθ0
s |+ (qs − |ωs|)

⇐⇒ |Eθ0
s |+ |µθ0

s |+ (qs − |µs|) ≥ |Eθ0
s |+ |ωθ0

s |+ (qs − |ωs|)
⇐⇒ δ

µ,0
s ≥ δω,0

s after dividing both sides by |Es|+ qs

⇐⇒ 1 − δ
µ,v0
s ≤ 1 − δω,v0

s

⇐⇒
K−2

∑
ℓ=0

δ
µ,vK−1−ℓ
s ≤

K−2

∑
ℓ=0

δ
ω,vK−1−ℓ
s .

Note also that ∑K−1
ℓ=0 δ

µ,vK−1−ℓ
s = 1 = ∑K−1

ℓ=0 δ
ω,vK−1−ℓ
s so that trivially ∑K−1

ℓ=0 δ
µ,vK−1−ℓ
s ≤

∑K−1
ℓ=0 δ

ω,vK−1−ℓ
s . Now, using the Lorenz domination condition of the status-quo improve-

ment for schools property at any θk such that θ∅ ▷s θk—that is k = 1, . . . , K − 1—we have:

|µθ∅
s |+

k

∑
ℓ=0

|µθℓ
s | ≥ |ωθ∅

s |+
k

∑
ℓ=0

|ωθℓ
s |

⇐⇒ (qs − |µs|) +
k

∑
ℓ=0

|µθℓ
s | ≥ (qs − |ωs|) +

k

∑
ℓ=0

|ωθℓ
s |

⇐⇒
K−1

∑
ℓ=0

|Eθℓ
s |+ (qs − |µs|) +

k

∑
ℓ=0

|µθℓ
s | ≥

K−1

∑
ℓ=0

|Eθℓ
s |+ (qs − |ωs|) +

k

∑
ℓ=0

|ωθℓ
s |

⇐⇒
k

∑
ℓ=0

δ
µ,vℓ
s ≥

k

∑
ℓ=0

δ
ω,vℓ
s after dividing both sides by |Es|+ qs

⇐⇒ 1 −
k

∑
ℓ=0

δ
µ,vℓ
s ≤ 1 −

k

∑
ℓ=0

δ
ω,vℓ
s

⇐⇒
K−2−k

∑
ℓ=0

δ
µ,vK−1−ℓ
s ≤

K−2−k

∑
ℓ=0

δ
ω,vK−1−ℓ
s .

We conclude that δω
s LDs δ

µ
s . Since f is LD-increasing, we have that f (δω

s ) ≥ f (δµ
s ).

Proof of Proposition 1. Fix an inequality index I , a continuous and LD-increasing
statistic f , and a base generic economy ⟨T, Θ, τ, S, q, P, ω; E1,V⟩. Let us start by defining,
for each n-economy En, the relevant domain of I for the statistic f as

Z f ,n = co { f (δµ,n) : µ ∈ M} .

In the sequel, we let O be the set of points at which I is continuously differentiable (which,
by assumption, is an open and dense set of values in R|S|).
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Since genericity holds, by definition, we have that ∂I
∂zs

(z∗ f ) ̸= 0 for each school s and
z∗ f ∈ O. Since O is an open set, there is ε′ > 0 small enough such that Bε′(z∗ f ) ⊂ O.69

Hence, for each z ∈ Bε′(z∗ f ), I is continuously differentiable. Since derivatives of I at z∗ f

are non-zero, by continuity, there must be ε ∈ (0, ε′) such that, for each school s, either

∂I
∂zs

(z) > 0 for each z ∈ Bε(z∗ f )

or
∂I
∂zs

(z) < 0 for each z ∈ Bε(z∗ f ).

The set of schools for each of which the former inequality is satisfied is HI , f as z∗ f ∈
Bε(z∗ f ) while the set of schools for each of which the latter inequality is satisfied is LI , f

for the same reason. Note that, in our sequence of replica economies, for each school s,
δ

µ,n
s converges to δ∗s . Therefore, by continuity of statistic f , for n large enough, f (δµ,n) =(
f (δµ,n

s )
)

s∈S ∈ Bε(z∗ f ) for each matching µ.70 Since Bε(z∗ f ) is convex, this also implies
that convex combination of the points { f (δµ,n) : µ ∈ M} is in Bε(z∗ f ). Hence, the relevant
domain Z f ,n of I in an n-economy is included in Bε(z∗ f ). In the sequel, we fix such a large
enough n.

First, this implies that I has well-defined partial derivatives everywhere on its relevant
domain. Since for each z in this relevant domain, there is an open neighborhood of z
in which partial derivatives are well-defined and continuous, this also implies that total
derivatives of I are well-defined on this relevant domain.

Second, this also implies that, for each school s ∈ HI , f , ∂I
∂zs

is strictly positive on its
relevant domain Z f ,n and for each school s ∈ LI , f , ∂I

∂zs
is strictly negative on this relevant

domain Z f ,n.

With these in mind, let µ be a status-quo improving matching for schools for the nat-
ural type ranking profile of I and f . We define ∆s = f (δµ

s )− f (δω
s ) as the change in the

statistic value from ω to µ for each school s. Because µ status-quo improves ω for schools
for natural type ranking profile and f is LD-increasing, we have ∆s ≥ 0 for each s ∈ LI , f

and ∆s ≤ 0 for each s ∈ HI , f by Lemma 1. Since I is differentiable in Z f ,n, its total differ-
ential satisfies dI = ∑s∈S

∂I
∂zs

(z)dzs. Then, to calculate the total variation in the inequality
index from ω to µ, we obtain the following path integral on the linear path in variable

69Using standard notations, Bε′(z∗ f ) denotes the open ball with radius ε′ around z∗ f .
70ε > 0 can be taken uniformly over all µ because there are finitely many such µ for a given economy.
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u ∈ [0, 1] so that ẑs(u) = u∆s + f (δω
s ) for each school s, and ẑ(u) =

(
ẑs(u)

)
s∈S,

I
(

f (δµ)
)
− I

(
f (δω)

)
=

∫ I
(

f (δµ)
)

I
(

f (δω)
) dI = ∑

s∈S

∫ 1

0
∆s

∂I
∂zs

(
ẑ(u)

)
du

= ∑
s∈LI , f

∆s

∫ 1

0

∂I
∂zs

(
ẑ(u)

)
du − ∑

s∈HI , f

|∆s|
∫ 1

0

∂I
∂zs

(
ẑ(u)

)
du

≤ 0,

where the second line equality follows from the fact that ∆s ≤ 0 for each school s ∈ HI , f ;
and the last line inequality is true because the set LI , f includes all schools with a negative
partial derivative of I with respect to their statistic value on the relevant domain, HI , f

includes all schools with a positive partial derivative of I with respect to their statistic
value on the relevant domain, and ∆s ≥ 0 for each school s ∈ LI , f .

A.3 Proposition 1 for Inequality Indices which Depend on Market
Sizes

Inequality indices may naturally depend on the base economy and the replica
economies for each size n through the weights (wn

s )s assigned to schools. This is the case,
for instance, for the weighted Gini index defined as

G(z) :=
1

2 ∑s∈S wszs
∑
s∈S

∑
s′∈S

|zs − zs′ |wn
s wn

s′

which depends on the weights wn
s = |En

s |+qs
∑s′∈S |En

s′ |+qs′
associated to each school s. Clearly,

along a sequence of n-economies, those weights vary.
To capture the dependence of an inequality index to the market size through the

weights, let us redefine an inequality index as a function I : R|S| × [0, 1]|S| → R. Fix-
ing a base economy ⟨T, Θ, τ, S, q, P, ω; E1,V⟩, in the n-economy En, we denote the value
taken by the index when the value of the statistic is z and the vector of weights is
wn = (wn

s )s∈S ∈ [0, 1]|S| by I(z, wn). We sometimes refer to {wn}n≥1 as the sequence of
weights associated to inequality index I . We restrict our attention to sequences {wn}n≥1

which converge and denote the limit point by w∗. We maintain our assumption that an
inequality index is continuously differentiable in each zs argument on an open and dense
set. Formally, let O := {(z, w) ∈ R|S| × [0, 1]|S| : for each s, ∂I

∂zs
(z, w) exists and is contin-

uous in both arguments}. Our assumption is that O is open and dense in R|S| × [0, 1]|S|.
In this context, genericity is defined as follows: For a given inequality index I , associated
sequence of weights {wn}n≥1 and statistic f , the base economy is generic if (z∗ f , w∗) ∈ O
and ∂I

∂zs
(z∗ f , w∗) ̸= 0 for all s.

Given inequality index I , associated sequence of weights {wn}n≥1 and statistic f , we
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define LI ,w∗, f as the set of schools s with ∂I
∂zs

(z∗ f , w∗) ≤ 0 and, similarly, HI ,w∗, f stands for
the set of schools s with ∂I

∂zs
(z∗ f , w∗) > 0. The natural type ranking profile is defined as

the type ranking profile induced by partition (LI ,w∗, f , HI ,w∗, f ).
While this involves no substantial changes, for the sake of completeness, we now state

and prove Proposition 1 in a context where the inequality index may depend on n (the
size of the economy) through its weights.

Proposition A.1. Consider an inequality index I , a continuous and LD-increasing statistic f , a
generic base economy with status-quo matching of the participants ω, and an associated sequence of
weights {wn}n≥1. If in an n-economy with large enough n, a matching µ is status-quo improving
for schools under the natural type ranking profile of I , associated weights {wn}n≥1, and f , then

I
(

f (δµ,n), wn) ≤ I
(

f (δω,n), wn).
Proof. Fix an inequality index I , a continuous and LD-increasing statistic f , a generic
base economy ⟨T, Θ, τ, S, q, P, ω; E1,V⟩, and an associated sequence of weights {wn}n≥1.
Let us start by defining, for each n-economy En, the relevant domain of I for the statistic f
as

Z f ,n = co { f (δµ,n) : µ ∈ M} .

Since genericity holds, by definition, we have that ∂I
∂zs

(z∗ f , w∗) ̸= 0 for each school s
and, in addition, (z∗ f , w∗) ∈ O. Since O is an open set, there is ε′ > 0 small enough
such that Bε′(z∗ f ) × Bε′(w∗) ⊂ O. Hence, for each (z, w) ∈ Bε′(z∗ f ) × Bε′(w∗), ∂I

∂zs
(z, w)

exists and is continuous in both arguments. Since partial derivative of I with respect to
zs for each school s at (z∗ f , w∗) is non-zero, by continuity of ∂I

∂zs
(·, ·) in both arguments at

(z∗ f , w∗), there must be ε ∈ (0, ε′) such that for each school s, either

∂I
∂zs

(z, w) > 0 for each (z, w) ∈ Bε(z∗ f )× Bε(w∗)

or
∂I
∂zs

(z, w) < 0 for each (z, w) ∈ Bε(z∗ f )× Bε(w∗).

The set of schools for each of which the former inequality holds is HI ,w∗, f while the set
of schools for each of which the latter one holds is LI ,w∗, f . Note that, in our sequence
of replica economies, for each school s, δ

µ,n
s converges to δ∗s . Therefore, by continuity

of statistic f , for n large enough, f (δµ,n) =
(

f (δµ,n
s )

)
s∈S ∈ Bε(z∗ f ) for each matching

µ.71 Since Bε(z∗ f ) is convex, this also implies that convex combination of the points
{ f (δµ,n) : µ ∈ M} is in Bε(z∗ f ). Hence, for any profile of weights w, the relevant domain
Z f ,n of I(·, w) in an n-economy is included in Bε(z∗ f ).72 Further, given that wn converges

71ε > 0 can be taken uniformly over all µ because there are finitely many such µ for a given economy.
72Note that the relevant domain of I(·, w) does not depend on the vector of weights w.



Appendices: Page 17 of 65

to w∗, for a large enough n, we must have that wn ∈ Bε(w∗). In the sequel, we fix such
a large enough n ensuring that both the relevant domain of I(·, wn) in an n-economy is
included in Bε(z∗ f ) and wn ∈ Bε(w∗).

First, this implies that I(·, wn) has well-defined partial derivatives everywhere on its
relevant domain. Since for each z in this relevant domain, there is an open neighborhood
of z in which partial derivatives are well-defined and continuous, this also implies that
total derivatives of I(·, wn) are well-defined on this relevant domain.

Second, this also implies that, for each school s ∈ HI ,w∗, f , ∂I
∂zs

(·, wn) is strictly positive
on its relevant domain Z f ,n and for each school s ∈ LI ,w∗, f , ∂I

∂zs
(·, wn) is strictly negative

on this relevant domain Z f ,n.

With these in mind, let µ be a status-quo improving matching for schools under
the natural type ranking profile of I , its associated weights {wn}n≥1, and f . We de-
fine ∆s = f (δµ

s ) − f (δω
s ) as the change in the value from the status quo to µ for each

school s. Because µ status-quo improves ω for natural type ranking profile and f is LD-
increasing, we have that ∆s ≥ 0 for each s ∈ LI , f and ∆s ≤ 0 for each s ∈ HI , f by
Lemma 1. Since I(·, wn) is differentiable in subdomain Z f ,n, its total differential satisfies
dI(·, wn) = ∑s∈S

∂I
∂zs

(z, wn)dzs. Then to calculate the total variation in the inequality index
from ω to µ, we obtain the following path integral on the linear path in variable u ∈ [0, 1]
so that ẑs(u) = u∆s + f (δω

s ) for each school s, and ẑ(u) =
(
ẑs(u)

)
s∈S,

I
(

f (δµ), wn)− I
(

f (δω), wn) =
∫ I
(

f (δµ),wn
)

I
(

f (δω),wn
) dI(·, wn) = ∑

s∈S

∫ 1

0
∆s

∂I
∂zs

(
ẑ(u), wn)du

= ∑
s∈LI , f

∆s

∫ 1

0

∂I
∂zs

(
ẑ(u), wn)du − ∑

s∈HI , f

|∆s|
∫ 1

0

∂I
∂zs

(
ẑ(u), wn)du

≤ 0,

where the second line equality follows from the fact that ∆s ≤ 0 for each school s ∈
HI ,w∗, f , and the last line inequality is true because the set LI ,w∗, f includes all schools with
a negative partial derivative of I(·, wn) with respect to their statistic value on the relevant
domain and HI ,w∗, f includes all schools with a positive partial derivative of I(·, wn) with
respect to their statistic value on the relevant domain, and ∆s ≥ 0 for each school s ∈
LI ,w∗, f .

A.4 Relationship between Regularity and Standard Axioms on In-
equality Indices

We show that the regularity of an inequality index is ensured when the index satisfies
the three properties defined below. First, say that the index I satisfies the strict Pigou-
Dalton transfer principle if the following holds. Fix any p > 0 and any two schools s, s′
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such that zs − p > zs′ + p and let z′ be the vector z where zs is replaced by zs − p and
zs′ is replaced by zs′ + p (we refer to p as a Pigou-Dalton transfer), we must have that
I(z′) < I(z). Further, index I satisfies scale invariance, if for any λ > 0, I(λz) = I(z).
Finally, we say that I is responsive if whenever I is differentiable at z, we have ∂I

∂zs
(z) ̸= 0

for all s.

Proposition A.2. Consider a responsive inequality index I which satisfies the strict Pigou-Dalton
transfer principle and scale invariance. Then, index I is regular.

Proof. Fix a responsive inequality index I which satisfies the strict Pigou-Dalton transfer
principle and scale invariance. Consider z = (zs1 , ..., zsm) where zs1 ≤ ... ≤ zsm (and
m := |S|) and where I is differentiable. Let ε > 0 and zε = (zs1 , ..., zsm + ε). We want to
show that I(zε) > I(z) which implies that the right derivative of I at z with respect to zsm

is positive and since I is differentiable at z, this also implies that ∂I(z)
∂zsm

≥ 0.73 Clearly, by

responsiveness of I , we obtain that ∂I(z)
∂zsm

> 0. (Note that a symmetric reasoning applies

to show that ∂I(z)
∂zs1

< 0.)

To see that I(zε) > I(z), let λ =
∑m

i=1 zsi
∑m

i=1 zsi+ε
and observe that (1) by scale invariance

I(zε) = I(λzε); (2) we can move from λzε to z by subtracting λ(zsm + ε)− zsm > 0 from
the mth element of λzε and adding (1 − λ)zsi to each ith element of λzε for i ̸= m. Note
that

(λ(zsm + ε)− zsm)− (1 − λ)
(
zs1 + ... + zsm−1

)
= λε − (1 − λ)zsm − (1 − λ)

(
zs1 + ... + zsm−1

)
= λε − (1 − λ)

(
zs1 + ... + zsm−1 + zsm

)
=

∑m
i=1 zsi

∑m
i=1 zsi + ε

ε − ε

∑m
i=1 zsi + ε

m

∑
i=1

zsi

= ε

(
∑m

i=1 zsi

∑m
i=1 zsi + ε

− ∑m
i=1 zsi

∑m
i=1 zsi + ε

)
= 0.

Hence, we can move from λzε to z by a sequence of m − 1 Pigou-Dalton transfers (i.e., for
i = 1, ...m− 1, transfer (1− λ)zsi from the mth element of λzε to the ith element of λz). This
is a well-defined Pigou-Dalton transfer for ε > 0 small enough given that zsm + ε > zsi for
all i ̸= m). Then, because I satisfies the strict Pigou-Dalton transfer principle, we obtain
that I(λzε) > I(z). We conclude that I(zε) > I(z), as claimed.

A.5 Proof of Proposition 2

The following lemma implies Proposition 2.

Lemma A.1. Consider a regular inequality index I and a continuous and strictly LD-increasing

73This cannot be strengthened to a strict inequality. Indeed, it is well-known that a strictly increasing
function at a point can have a derivative equal to 0 at that point.
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statistic f . Fix any generic base economy with two schools, no new teachers, no vacant seats, Θ =

{θ1, θ2}, and status-quo matching ω. Then, in an n-economy with large enough n, an individually
rational matching µ status-quo improves schools under the natural type ranking profile of I and
f , if and only if I

(
f (δµ,n)

)
≤ I

(
f (δω,n)

)
.

Proof. Given Proposition 1, we only prove the “if part”. Fix a regular inequality index I
and a continuous and strictly LD-increasing statistic f . Let S = {s−, s+} be such that s− is
the school s with ∂I

∂zs
(z∗ f ) < 0 and s+ is the school s with ∂I

∂zs
(z∗ f ) > 0. These schools are

well-defined by genericity and regularity. Therefore, the natural type ranking profile of I
and f , ⊵= (⊵s− ,⊵s+), over the type set Θ = {θ1, θ2} satisfies (ignoring θ∅ without loss of
generality as there are no vacant seats)

θ2 ▷s− θ1 and θ1 ▷s+ θ2

as LI , f = {s−} and HI , f = {s+}.
Recall that for each n-economy, the relevant domain of I for the statistic f is

Z f ,n = co { f (δµ,n) : µ ∈ M} .

In the sequel, we let O be the set of points at which I is continuously differentiable
(which, by assumption, is an open and dense set of values in R|S|). Since O is an open set,
there is ε′ > 0 small enough such that Bε′(z∗ f ) ⊂ O. Hence, for each z ∈ Bε′(z∗ f ), I is
continuously differentiable. Since derivatives of I at z∗ f are non-zero, by continuity, there
must be ε ∈ (0, ε′) such that

∂I
∂zs−

(z) < 0 for each z ∈ Bε(z∗ f ),

and
∂I

∂zs+
(z) > 0 for each z ∈ Bε(z∗ f ).

Since our sequence of economies consists of replicas, it is easy to show that, δµ′,n con-

verge to a profile of value distributions given by δ∗ :=
(
|Eθ1

s |
|Es| , |E

θ2
s |

|Es|

)
s∈S

for any matching

µ′. Because f is continuous, for n large enough, f (δµ′,n) =
(

f (δµ′,n
s )

)
s∈S ∈ Bε(z∗ f ) for each

matching µ′.74 Since Bε(z∗ f ) is convex, this also implies that any convex combination of
the points { f (δµ,n) : µ ∈ M} is in Bε(z∗ f ). Hence, the relevant domain Z f ,n of I in an
n-economy is included in Bε(z∗, f ). In the sequel, we fix such a large enough n.

Assume that an individually rational matching µ does not status-quo improve schools
with respect to the natural type ranking profile ⊵. We want to show that I

(
f (δµ,n)

)
>

74ε > 0 can be taken uniformly over all µ′ because there are finitely many such µ′.
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I
(

f (δω,n)
)
. That µ does not status-quo improve schools with respect to the natural type

ranking profile ⊵ means that for some school s ∈ {s−, s+}

1. either |µs| < |ωs|, or
2. for some θ ∈ {θ1, θ2} :

∑
θ′⊵sθ

|µθ′
s | < ∑

θ′⊵sθ

|ωθ′
s |.

Assume without loss that s = s−. Note first that if |µs− | < |ωs− | then for the school
s+, we must have qs+ ≥ |µs+ | > |ωs+ | since µ is individually rational.75 This implies that
s+ must have some empty seat initially, a contradiction. Note that this argument shows
more generally that |µs| = |ωs| for each s. Hence, Condition (2) above must hold. Note
that with only two types, this implies that θ = θ2, i.e.,

|µθ2
s− | < |ωθ2

s− |

and so since |µs− | = |ωs− |, this also implies that

|µθ1
s− | > |ωθ1

s− |.

Since for each school s ∈ {s−, s+} and each k = 1, 2 :

δ
µ,vk
s =

|Eθk
s |+ |µθk

s |
|Es|+ qs

,

we must also have that
δ

µ,v2
s− < δω,v2

s−

and
δ

µ,v1
s− > δω,v1

s− .

Similarly, we must have
δ

µ,v2
s+ > δω,v2

s+

and
δ

µ,v1
s+ < δω,v1

s+ .

With this in our hands, we can define ∆s = f (δµ
s )− f (δω

s ) as the change in the statis-
tic value from the status quo to µ for each school s ∈ {s−, s+}. Because f is strictly
LD-increasing, we have that ∆s− < 0 and ∆s+ > 0. Since, by our assumption that
n is large enough, I is differentiable in subdomain Z f , its total differential satisfies

75Note that individual rationality is needed here. Indeed, consider the following example. There is a
teacher t1 with type θ1 initially assigned school s−. There are teachers t′1 with type θ1 and t′2 with type
θ2 initially assigned school s+. Let µ be the matching which simply makes t′2 unassigned. This violates
condition 1. in the definition of status-quo improvement and so µ does not status-quo improve schools.
However, we achieve perfect equality across schools.
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dI = ∑s∈S
∂I
∂zs

(z)dzs. Then to calculate the total variation in the inequality index from
ω to µ, we obtain the following path integral on the linear path in variable u ∈ [0, 1] so
that ẑs(u) = u∆s + f (δω

s ) for each school s ∈ {s−, s+}, and ẑ(u) =
(
ẑs+(u), ẑs−(u)

)
,

I
(

f (δµ)
)
− I

(
f (δω)

)
=

∫ I
(

f (δµ)
)

I
(

f (δω)
) dI = ∑

s∈S

∫ 1

0
∆s

∂I
∂zs

(
ẑ(u)

)
du

= ∆s−

∫ 1

0

∂I
∂zs

(
ẑ(u)

)
du + ∆s+

∫ 1

0

∂I
∂zs

(
ẑ(u)

)
du

> 0,

where the last line inequality follows from ∆s− < 0 and ∆s+ > 0 together with the fact
that ∂I

∂zs−
(z) < 0 on the relevant domain of I and ∂I

∂zs+
(z) > 0 on the relevant domain of

I . This last fact comes from our assumption that n is large enough. This implies that the
value of the inequality index I strictly increases, i.e.,

I
(

f (δµ,n)
)
> I

(
f (δω,n)

)
.

A.6 Proof of Proposition 3

Consider a market with the set of schools S = {s1, s2, s3, s4}, (re)assignment quota
vector q = (1, 1, 1, 1) and the set of types Θ = {θ0, ℓ, h} with type values 0 = v0 < vℓ < vh.
We assume schools do not have vacant seats and there are no new teachers (particularly
no teachers of the lowest type θ0). Since effectively there are only two types, a type value
distribution for a school is simply a vector (x, y) ∈ [0, 1] × [0, 1] where x is the fraction
of teachers of type ℓ assigned to the school and y the fraction of teachers of type h (we
omit vacant seats since there are none). In what follows, f (x, y) will be the value of the
statistic for the type value distribution (x, y). Suppose the status-quo matching ω and set
of profiles of teachers who do not participate in the (re)assignment En for some n are as
follows (where the letter name of the teacher also denotes the type of the teacher):

ωs1 = {ℓ1} and En
s1
= {ℓ1

1, . . . , ℓn
1},

ωs2 = {ℓ2} and En
s2
= {ℓ1

2, . . . , ℓn
2},

ωs3 = {h3} and En
s3
= {h1

3, . . . , hn
3},

ωs4 = {h4} and En
s4
= {h1

4, . . . , hn
4}.

While our variables depend on n, we do not explicitly note the dependence to n whenever
this is clear from the context.

Recall that, since I is regular and {s1, s2} = arg mins z∗ f
s and {s3, s4} = arg maxs z∗ f

s ,
we must have ∂I

∂zs
(z∗ f ) < 0 for each s ∈ {s1, s2} while ∂I

∂zs
(z∗ f ) > 0 for each s ∈ {s3, s4}

where—as each school in {s1, s2} has only type ℓ non-participating employees and each
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school in {s3, s4} has only type h non-participating employees —

z∗ f =
(

f (1, 0), f (1, 0), f (0, 1), f (0, 1)
)
.

Thus,

LI , f :=
{

s ∈ S :
∂I
∂zs

(z∗ f ) ≤ 0
}

= {s1, s2},

while

HI , f :=
{

s ∈ S :
∂I
∂zs

(z∗ f ) > 0
}

= {s3, s4}.

Partition
(

LI , f , HI , f ) induces the natural type ranking profile ⊵ where

1. for each school s ∈ LI , f , h ▷s ℓ ▷s θ0 ▷s θ∅, and
2. for each school s ∈ HI , f , θ0 ▷s θ∅ ▷s ℓ ▷s h.

Suppose the preference profile P of the participating teachers is given as

ℓ1 : s3 Pℓ1 s1,

ℓ2 : s4 Pℓ2 s2,

h3 : s2 Ph3 s1 Ph3 s3,

h4 : s2 Ph4 s1 Ph4 s4.

There are four individually rational matchings besides ω:

µ1
s1
= {h3}, µ1

s2
= {h4}, µ1

s3
= {ℓ1}, µ1

s4
= {ℓ2}.

µ2
s1
= {h4}, µ2

s2
= {h3}, µ2

s3
= {ℓ1}, µ2

s4
= {ℓ2}.

µ3
s1
= {h3}, µ3

s2
= {ℓ2}, µ3

s3
= {ℓ1}, µ1

s4
= {h4}.

µ4
s1
= {ℓ1}, µ4

s2
= {h4}, µ4

s3
= {h3}, µ4

s4
= {ℓ2}.

We consider the SI-CC mechanism induced by the natural type ranking profile ⊵. One
can check that SI-CC yields matching µ1. It should be clear that µ1 and µ2 are the match-
ings which yield the smallest value for the inequality index I . More generally, let us prove
that

I
(

f (δµ1
)
)
= I

(
f (δµ2

)
)
< I

(
f (δµ3

)
)
= I

(
f (δµ4

)
)
< I

(
f (δω)

)
. (18)

The first equality is straightforward while the second one holds by symmetry of I . As
for the inequalities, let us start with the first strict inequality, i.e.,

I
(

f (δµ1
)
)
< I

(
f (δµ3

)
)
.

Consider changing the matching from µ3 to µ1. We denote the change in the value of the
statistic at a school s by ∆s. First, the value of the statistic does not vary for s1 and s3. For
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school s2, it varies by ∆s2 = f (1 − 1
n+1 , 1

n+1) − f (1, 0) > 0 and for school s4 it varies by
∆s4 = f ( 1

n+1 , 1 − 1
n+1) − f (0, 1) < 0 (the strict inequalities use our assumption that f is

strictly LD-increasing).
Since I is differentiable everywhere, its total differential satisfies dI = ∑s∈S

∂I
∂zs

(z)dzs.
Then to calculate the total variation in the inequality index from µ3 to µ1, we obtain the

following path integral on the linear path in variable u ∈ [0, 1] so that ẑs(u) = u∆s + f (δµ3

s )

for each school s, and ẑ(u) =
(
ẑs(u)

)
s∈S,

I
(

f (δµ1
)
)
− I

(
f (δµ3

)
)

=
∫ I
(

f (δµ1
)
)

I
(

f (δµ3
)
) dI =

∫ 1

0
∑
s∈S

∆s
∂I
∂zs

(
ẑ(u)

)
du

=
∫ 1

0

[
∆s2

∂I
∂zs2

(
ẑ(u)

)
+ ∆s4

∂I
∂zs4

(
ẑ(u)

)]
du

< 0,

where the strict inequality uses the facts that ∆s2 > 0 and ∆s4 < 0, and also ∂I
∂zs2

(
ẑ(u)

)
< 0

and ∂I
∂zs4

(
ẑ(u)

)
> 0 for each u ∈ [0, 1). To see why the latter is true, observe that, by

definition,

ẑs2(u) = u f
(

1 − 1
n + 1

,
1

n + 1

)
+ (1 − u) f (1, 0),

ẑs1(u) = f
(

1 − 1
n + 1

,
1

n + 1

)
ẑs3(u) = f

(
1

n + 1
, 1 − 1

n + 1

)
while

ẑs4(u) = u f
(

1
n + 1

, 1 − 1
n + 1

)
+ (1 − u) f (0, 1).

Since f is strictly LD-increasing, f (0, 1) > f
(

1
n+1 , 1 − 1

n+1

)
> f

(
1 − 1

n+1 , 1
n+1

)
> f (1, 0),

we must have that ẑs2(u) < ẑs(u) < ẑs4(u) for each s ∈ {s1, s3} and u ∈ [0, 1). By
assumption, we must have ∂I

∂zs2

(
ẑ(u)

)
< 0 for each u ∈ [0, 1) while ∂I

∂zs4

(
ẑ(u)

)
> 0 for each

u ∈ [0, 1). Hence, we must have

I
(

f (δµ1
)
)
< I

(
f (δµ3

)
)
.

Now, to complete the proof for Equation (18), let us show the inequality

I
(

f (δµ4
)
)
< I

(
f (δω)

)
.

Consider changing the matching from ω to µ4. Again, let us denote the change in the
value of the statistic at school s by ∆s. First, the value of the statistic does not vary for s1
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and s3. For school s2, it varies by ∆s2 = f (1 − 1
n+1 , 1

n+1)− f (1, 0) > 0 and for school s4 it
varies by ∆s4 = f ( 1

n+1 , 1 − 1
n+1)− f (0, 1) < 0 (the strict inequalities use our assumption

that f is strictly LD-increasing). By a similar argument as above, we have that the total
variation in the inequality index from ω to µ4 corresponds to the following path integral
on the linear path in variable u ∈ [0, 1] so that z̄s(u) = u∆s + f (δω

s ) for each school s, and
z̄(u) =

(
z̄s(u)

)
s∈S,

I
(

f (δµ4
)
)
− I

(
f (δω)

)
=

∫ I
(

f (δµ4
)
)

I
(

f (δω)
) dI =

∫ 1

0
∑
s∈S

∆s
∂I
∂zs

(
z̄(u)

)
du

=
∫ 1

0

[
∆s2

∂I
∂zs2

(
z̄(u)

)
+ ∆s4

∂I
∂zs4

(
z̄(u)

)]
du

< 0.

The inequality is proved as follows. Since δµ4,n, δω,n converge to the profile of value dis-
tributions

(
(1, 0), (1, 0), (0, 1), (0, 1)

)
, and because statistic f is continuous, we have

f (δµ4,n) → z∗ f and f (δω,n) → z∗ f .

Given that ∂I
∂zs2

(z∗ f ) < 0 and ∂I
∂zs4

(z∗ f ) > 0, by continuous differentiability, there exists

ε > 0 such that any z ∈ Bε(z∗ f ) satisfies ∂I
∂zs2

(z) < 0 and ∂I
∂zs4

(z) > 0. From now on,

we assume that n is large enough so that f (δµ4,n) and f (δω,n) are both in Bε(z∗ f ). Since
z̄(u) is a convex combination of f (δµ4,n) and f (δω,n) and Bε(z∗ f ) is convex, we have that
z̄(u) ∈ Bε(z∗ f ). Since any point in Bε(z∗ f ) has the same sign for derivatives as at z∗ f , we
conclude that for n large enough,

∂I
∂zs2

(
z̄(u)

)
< 0 and

∂I
∂zs4

(
z̄(u)

)
> 0,

for each u ∈ [0, 1]. Hence, in such a case

I
(

f (δµ4
)
)
− I

(
f (δω)

)
=

∫ 1

0

[
∆s2

∂I
∂zs2

(
z̄(u)

)
+ ∆s4

∂I
∂zs4

(
z̄(u)

)]
du

≤
∫ 1

0

[
∆s2

∂I
∂zs4

(
z̄(u)

)
+ ∆s4

∂I
∂zs4

(
z̄(u)

)]
du

< 0.

We conclude that Equation (18) holds.
Now, let us consider a mechanism φ which is individually rational, strategy-proof and

has less inequality than SI-CC whenever possible. Because at preference profile P, SI-CC
selects µ1, and φ has less inequality than SI-CC, by Equation (18), φ must select either µ1

or µ2 at P. First, suppose φ(P) = µ1. When h3 submits an alternative preference relation
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deeming s1 unacceptable,
h3 : s2 P′

h3
s3,

she will be better off under φ. To see this, observe that h3 will no longer be matched with
s1 in an individually rational matching for the new preference profile (P′

h3
, P−h3). Now,

under SI-CC, one can check that h3 remains at s3 and the matching achieved is µ4. Further,
by Equation (18), the unique individually rational matching with strictly less inequality
than µ4 is matching µ2. Therefore, we should have

φ
(

P′
h3

, P−h3

)
= µ2.

Thus, teacher h3 receives her first choice post at s2 by omitting s1 from her list, and she
successfully manipulates φ if φ(P) = µ1, a contradiction with the strategy-proofness of φ.

Second, suppose φ(P) = µ2. When h4 submits an alternative preference relation deem-
ing s1 unacceptable,

h4 : s2 P′
h4

s4,

she will be better off. To see this, observe that h4 will no longer be matched with s1 in
an individually rational matching for the new preference profile (P′

h4
, P−h4). Now, under

SI-CC, one can check that the selected matching remains µ1. Further, by Equation (18), all
other individually rational matchings have strictly more inequality than µ1. Therefore, we
should have

φ
(

P′
h4

, P−h4

)
= µ1.

Thus, teacher h4 receives her first choice post at s2 by omitting s1 from her list, and she
successfully manipulates φ if φ(P) = µ2, a contradiction with the strategy-proofness of φ.

A.7 Proposition 1 without Genericity

In the sequel, we assume that I is continuously differentiable at z∗ f but we do not
assume that the derivatives ∂I

∂zs
(z∗ f ) are non-zero. Now, we say that ⊵ is the natural type

ranking of I and f , if it is induced by partition (LI , f , HI , f ) where

LI , f =

{
s ∈ S :

∂I
∂zs

(z∗ f ) ≤ 0
}

and HI , f =

{
s ∈ S :

∂I
∂zs

(z∗ f ) > 0
}

.

Schools with ∂I
∂zs

(z∗ f ) equal to 0 at z∗ f are typically schools for which a small increase in

z∗ f
s may make the derivative ∂I

∂zs
(z∗ f ) > 0 while a small decrease may make ∂I

∂zs
(z∗ f ) < 0.

However, since, in a large economy, these are schools with derivatives close to 0 on the
relevant domain of I , they only have a marginal impact on the value achieved by the
inequality index. (Note then that it does not matter whether those are in LI , f or HI , f , so
we took the convention to include them in LI , f .)

If a matching µ changes the assignment only for schools with a partial derivative of I



Appendices: Page 26 of 65

with respect to their statistic value equal to zero at z∗ f then it’s clear that the impact on the
inequality index will be small in a large economy. Thus, we say that matching µ is reactive
if δ

µ
s ̸= δω

s for at least one school s with non-zero derivatives. The term “reactive” simply
comes from the fact that a matching which violates this condition has only a marginal
impact on the value of the inequality index in a large economy.

Now, we can state a version of Proposition 1 without the genericity requirement.

Proposition A.3. Consider a regular inequality index I which is continuously differentiable at
z∗ f and a continuous and strictly LD-increasing statistic f . Fix a (potentially non-generic) base
economy with status-quo matching of the participants ω. If in an n-economy with large enough n,
a reactive matching µ status-quo improves schools with respect to the natural type ranking profile
of I and f , then

I
(

f (δµ,n)
)
≤ I

(
f (δω,n)

)
.

Proof. Fix a regular inequality index I which is continuously differentiable at
z∗ f and a continuous and strictly LD-increasing statistic f . Also fix a base economy
⟨T, Θ, τ, S, q, P, ω; E,V⟩. Because I is differentiable at z∗ f , the following sets form a par-
tition of S : L̃ := {s : ∂I

∂zs
(z∗ f ) < 0}, M̃ := {s : ∂I

∂zs
(z∗ f ) = 0} and H̃ := {s :

∂I
∂zs

(z∗ f ) > 0}. Further, by regularity, L̃ and H̃ are non-empty. Pick any β∗ < 0 satis-
fying β∗ > maxs∈L̃

∂I
∂zs

(z∗ f ). Similarly, pick any β∗ > 0 satisfying β∗ < mins∈H̃
∂I
∂zs

(z∗ f ).
Let µ be a reactive matching that status-quo improves schools under the natural type

ranking profile of I and f .
Define ∆s = f (δµ

s ) − f (δω
s ) as the change in the statistic value from the status quo

to µ for each school s. Observe that because µ status-quo improves ω for the natural
type ranking profile of I and f , and f is LD-increasing, we have that ∆s ≥ 0 for each
s ∈ L̃ ∪ M̃ = LI , f and ∆s ≤ 0 for each s ∈ H̃ = HI , f by Lemma 1. Since µ is reactive and
f is strictly LD-increasing, either ∆s > 0 for some s ∈ L̃ or ∆s < 0 for some s ∈ H̃. Now,
fix ρ > 0 such that

β∗ ∑
s∈L̃

∆s + ∑
s∈M̃

∆sρ − β∗ ∑
s∈H̃

|∆s| < 0. (19)

This is well-defined since, from our previous observation, the first and the last term in the
expression are non-positive and one of them is strictly negative. Because I is continuously
differentiable, there must be ε > 0 such that for each z ∈ Bε(z∗ f ),

∂I
∂zs

(z) > β∗ for each s ∈ H̃,

∂I
∂zs

(z) ∈ (−ρ, ρ) for each s ∈ M̃,
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and
∂I
∂zs

(z) < β∗ for each s ∈ L̃.

Recall that, in our sequence of replica economies, for each school s, δ
µ,n
s converges to

δ∗s . Therefore, by continuity of statistic f , for n large enough, f (δµ′,n) =
(

f (δµ′,n
s )

)
s∈S ∈

Bε(z∗ f ) for each matching µ′.76 Since Bε(z∗ f ) is convex, this also implies that convex com-
bination of the points { f (δµ,n) : µ ∈ M} is in Bε(z∗ f ). Hence, the relevant domain

Z f ,n = co
{

f (δµ′,n) : µ′ ∈ M
}

of I in an n-economy is included in Bε(z∗ f ) for large enough n. In the sequel, we fix such
a large enough n. This implies that, for each school s ∈ H̃, ∂I

∂zs
is greater than β∗ > 0 on its

relevant domain Z f ,n, for each school s ∈ M̃, ∂I
∂zs

is in (−ρ, ρ) on its relevant domain Z f ,n

and for each school s ∈ L̃, ∂I
∂zs

is smaller than β∗ < 0 on this relevant domain Z f ,n.

Now, since I is differentiable, its total differential satisfies dI = ∑s∈S
∂I
∂zs

(z)dzs. Then to
calculate the total variation in the inequality index I from ω to µ, we obtain the following
path integral on the linear path in variable u ∈ [0, 1] so that ẑs(u) = u∆s + f (δω

s ) for each
school s, and ẑ(u) =

(
ẑs(u)

)
s∈S,

I
(

f (δµ)
)
− I

(
f (δω)

)
=

∫ I
(

f (δµ)
)

I
(

f (δω)
) dI = ∑

s∈S

∫ 1

0
∆s

∂I
∂zs

(
ẑ(u)

)
du

= ∑
s∈L̃

∆s

∫ 1

0

∂I
∂zs

(
ẑ(u)

)
du + ∑

s∈M̃

∆s

∫ 1

0

∂I
∂zs

(
ẑ(u)

)
du − ∑

s∈H̃

|∆s|
∫ 1

0

∂I
∂zs

(
ẑ(u)

)
du

≤ β∗ ∑
s∈L̃

∆s + ∑
s∈M̃

∆sρ − β∗ ∑
s∈H̃

|∆s|

< 0

where the second line equality follows from the fact that ∆s ≤ 0 for each school s ∈ H̃ =

HI , f ; the weak inequality is true because the set L̃ includes all schools with a negative
partial derivative of I with respect to their statistic value smaller than β∗ on the relevant
domain, H̃ includes all schools with a positive partial derivative of I greater than β∗ with
respect to their statistic value on the relevant domain while M̃ includes all schools with a
partial derivative of I with respect to their statistic value on the relevant domain that are
in in (−ρ, ρ); the strict inequality holds true by construction of ρ in Equation (19).

A.8 Proposition 3 for Gini and Other Indices That are not Differen-
tiable Everywhere

We explain how to obtain the conclusion of Proposition 3 for inequality indices that
may not be differentiable everywhere such as the Gini index.

76Recall that there are finitely many such µ′ for a given economy.
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First, let us make a technical remark. So far a value distribution for a given school
s was a point in ∆K−1 and the support was fixed to the set of values V . However, in
the sequel, we will sometimes consider sequences of value distributions with varying
support. Hence, we see a value distribution δs as a distribution (with mass points) in the
larger space ∆(R+) and use weak convergence of measure to define our topology on this
space. A profile of value distributions δ is a member of ∆(R+)|S| and we simply use the
product topology on this product space.

With this topology, we say that f is continuous if δn → δ∗ implies f (δn) → f (δ∗). We
also say that statistic f is non-trivial if for any value distribution δs which puts full mass
on v > 0 (for any school s), we have f (δs) > 0. We focus on the weighted Gini index
defined as

G(z) :=
1

2 ∑s∈S wszs
∑
s∈S

∑
s′∈S

|zs − zs′ |ws ws′

which is differentiable everywhere but at {z : zs = zs′ for some s ̸= s′}. We assume that
weight ws := |Es|+qs

∑s′∈S |Es′ |+qs′
for each school s.

Proposition A.4. Consider the Gini index G. Fix any strictly LD-increasing, continuous and
non-trivial statistic f . There is no individually rational and strategy-proof mechanism that has
less inequality when possible than SI-CC induced by the natural type ranking profile of G and f .

Proof. Consider a market with the set of schools S = {s1, s2, s3, s4}, (re)assignment quota
vector q = (1, 1, 1, 1) and the set of types Θ = {ℓ, h} with type values v0 = 0 < vℓ < vh.
Since there are only two types, a type value distribution for a school is simply a vector
(x, y) ∈ [0, 1] × [0, 1] where x is the fraction of teachers of type ℓ and y the fraction of
teachers of type h (we omit vacant seats with type θ∅ and lowest type of new teachers with
type θ0 since there are none). In what follows, f (x, y) will be the value of the statistic for
the type value distribution (x, y). Suppose the status-quo matching ω and set of profiles
of teachers who do not participate in (re)assignment are as follows (where the letter name
of the teacher also denotes the type of the teacher):

ωs1 = {ℓ1} and Ek
s1
= {ℓ1

1, . . . , ℓk−1
1 , ℓk

1},

ωs2 = {ℓ2} and Ek
s2
= {ℓ1

2, . . . , ℓk−2
2 , hk−1

2 , hk
2},

ωs3 = {h3} and Ek
s3
= {h1

3, . . . , hk−2
3 , ℓk−1

3 , ℓk
3},

ωs4 = {h4} and Ek
s4
= {h1

4, . . . , hk−1
4 , hk

4};

such that k ≥ 3 and for each school s,
∣∣Ek

s
∣∣ = k. Note that this defines a sequence of

economies for k = 3, 4, . . ., which are not replica economies. We let zk
si

:= f (δω,k
si ) for each

i ∈ {1, . . . , 4}. We use δω∗
si

to denote limk→∞ δω,k
si . Note that δω∗

s1
= δω∗

s2
= (1, 0) and

δω∗
s3

= δω∗
s4

= (0, 1). We let z∗si
:= limk→∞ f (δω,k

si ) = f (δω∗
si

) for each i ∈ {1, . . . , 4}.
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In the sequel, we assume that vh and vℓ are close enough to each other so that

3 f (1, 0) > f (0, 1). (20)

This is well-defined since f is continuous and non-trivial.77 With this, we can state and
prove the following lemma.

Lemma A.2. There is ε > 0 such that

∂G
∂zs1

(z),
∂G
∂zs2

(z) < 0 and
∂G
∂zs3

(z),
∂G
∂zs4

(z) > 0

for each z ∈ Bε(z∗) where G is differentiable.

Proof. Recall that z∗ =
(

f (1, 0), f (1, 0), f (0, 1), f (0, 1)
)
. First, we show that

∂G
∂zs1

(z),
∂G
∂zs2

(z) < 0

for any z ∈ Bε(z∗) where G is differentiable provided that ε is small enough. We pick ε > 0
small enough so that any z ∈ Bε(z∗) satisfies zs1 , zs2 < zs3 , zs4 . Pick z ∈ Bε(z∗) and assume
wlog that zs1 < zs2 < zs3 < zs4 (the argument is the same for the other possible orderings
consistent with zs1 , zs2 < zs3 , zs4).78 It is easily checked that

∂G
∂zs2

(z) < 0 =⇒ ∂G
∂zs1

(z) < 0,

and so we focus on proving that ∂G
∂zs2

(z) < 0.
Given that the expression of Gini in our example is

G(z) = −3zs1 − zs2 + zs3 + 3zs4

4(zs1 + zs2 + zs3 + zs1)
,

Simple algebra yields that
∂G
∂zs2

(z) < 0

if and only if the following holds:

zs1 − zs3 − 2zs4 < 0. (21)

At z∗ =
(

f (1, 0), f (1, 0), f (0, 1), f (0, 1)
)

the above inequality simplifies to

f (1, 0) < 3 f (0, 1),

77Indeed, 3 f (1, 0) > f (0, 1) writes as 2 f (1, 0) > f (0, 1)− f (1, 0). As vh goes to vℓ > 0, the right-hand side
vanishes by continuity of f . The left-hand side remains strictly positive since f is non-trivial.

78Recall that points where G is differentiable are those that are strictly ordered.
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which is satisfied as f (0, 1) > f (1, 0) through the fact that f is strictly LD-increasing and
as f (0, 1) > 0 by non-triviality of f . Hence, Equation (21) holds at z provided that ε > 0 is
small enough. Thus, we obtain that for such ε > 0,

∂G
∂zs1

(z),
∂G
∂zs2

(z) < 0

for any z ∈ Bε(z∗) where G is differentiable.
Now, we want to show that

∂G
∂zs3

(z),
∂G
∂zs4

(z) > 0

for any z ∈ Bε(z∗) where G is differentiable provided here again that ε > 0 is small enough.
Again, we pick ε > 0 small enough so that any z ∈ Bε(z∗) satisfies zs1 , zs2 < zs3 , zs4 . Pick
z ∈ Bε(z∗) and assume wlog that zs1 < zs2 < zs3 < zs4 . Again, it is easily checked that

∂G
∂zs3

(z) > 0 =⇒ ∂G
∂zs4

(z) > 0.

Simple algebra yields,
∂G
∂zs3

(z) > 0

if and only if the following holds:

2zs1 + zs2 − zs4 > 0. (22)

At z∗ =
(

f (1, 0), f (1, 0), f (0, 1), f (0, 1)
)

the above inequality simplifies to

3 f (1, 0) > f (0, 1),

which is satisfied by Equation(20). Hence, Equation (22) holds at z provided that ε > 0 is
small enough. Thus, we obtain that for such ε > 0,

∂G
∂zs3

(z),
∂G
∂zs4

(z) < 0

for any z ∈ Bε(z∗) where G is differentiable. This completes the proof.
Recall that the relevant domain of G for the statistic f in the market indexed by k is

Z f ,k = co
{

f (δµ,k) : µ ∈ M
}

.

In the sequel, we let ε > 0 be given by Lemma A.2. Note that for k large enough the
relevant domain Z f ,k ⊂ Bε(z∗). Indeed, for any µ, δµ,k → δ∗ and so, by continuity of
f , we must have that f (δµ,k) → f (δ∗) = z∗. Hence, for k large enough, f (δµ,k) ∈ Bε(z∗).
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Given that there are finitely many possible matchings µ, we obtain that for k large enough,
f (δµ,k) ∈ Bε(z∗) for each matching µ. Hence, Z f ,k ⊂ Bε(z∗).

Suppose the preference profile P of the teachers who are participating in
(re)assignment are given as follows:

ℓ1 : s3 Pℓ1 s1,

ℓ2 : s4 Pℓ2 s2,

h3 : s2 Ph3 s1 Ph3 s3,

h4 : s2 Ph4 s1 Ph4 s4.

In this example, there are four individually rational matchings besides ω:

µ1
s1
= {h3}, µ1

s2
= {h4}, µ1

s3
= {ℓ1}, µ1

s4
= {ℓ2}.

µ2
s1
= {h4}, µ2

s2
= {h3}, µ2

s3
= {ℓ1}, µ2

s4
= {ℓ2}.

µ3
s1
= {h3}, µ3

s2
= {ℓ2}, µ3

s3
= {ℓ1}, µ1

s4
= {h4}.

µ4
s1
= {ℓ1}, µ4

s2
= {h4}, µ4

s3
= {h3}, µ4

s4
= {ℓ2}.

One can check that SI-CC yields matching µ1.79 It should be clear that µ1 and µ2 are
the matchings which yield the smallest value for the inequality index G. More generally,
let us prove that

G
(

f (δµ1
)
)
= G

(
f (δµ2

)
)
< G

(
f (δµ3

)
)
,G
(

f (δµ4
)
)
< G

(
f (δω)

)
. (23)

The equality is straightforward. As for the inequalities, let us first start with the strict

inequality, i.e.,
G
(

f (δµ1
)
)
< G

(
f (δµ3

)
)
.

Consider changing the matching from µ3 to µ1. We denote the change in the value of the
statistic at school s by ∆s. First, the value of the statistic does not vary for s1 and s3. For
school s2, it varies by ∆s2 = f

(
k−3

k , 3
k

)
− f

(
k−2

k , 2
k

)
> 0 and for school s4 it varies by

∆s4 = f
(

1
k , k−1

k

)
− f (0, 1) < 0 (the strict inequalities use our assumption that f is strictly

LD-increasing).
Since, by construction, G is differentiable on its relevant domain Z f ,k, its total differen-

tial satisfies dG = ∑s∈S
∂G
∂zs

(z)dzs.80 To calculate the total variation in the inequality index
from µ3 to µ1, we obtain the following path integral on the linear path in variable u ∈ [0, 1]

79In the sequel, SI-CC refers to SI-CC defined with respect to the natural type ranking.
80This comes from the fact that, by construction, at any matching µ, the value of the statistic at si is always

strictly smaller than the value of the statistics at si+1 for each i. So at any point z in the relevant domain,
there is no pair s, s′ such that zs = zs′ . Hence, G is indeed differentiable on its relevant domain.
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so that ẑs(u) = u∆s + f (δµ3

s ) for each school s, and ẑ(u) =
(
ẑs(u)

)
s∈S. We obtain

G
(

f (δµ1
)
)
− G

(
f (δµ3

)
)

=
∫ G
(

f (δµ1
)
)

G
(

f (δµ3
)
) dG =

∫ 1

0
∑
s∈S

∆s
∂G
∂zs

(
ẑ(u)

)
du

=
∫ 1

0

[
∆s2

∂G
∂zs2

(
ẑ(u)

)
+ ∆s4

∂G
∂zs4

(
ẑ(u)

)]
du

< 0,

where the strict inequality uses the fact that

∂G
∂zs2

(
ẑ(u)

)
< 0,

∂G
∂zs4

(
ẑ(u)

)
> 0

for each u ∈ [0, 1). This comes from the fact that ẑ(u) ∈ Z f ,k ⊂ Bε(z∗). Hence, we must
have

G
(

f (δµ1
)
)
< G

(
f (δµ3

)
)
.

Note that a same argument applies to show that G
(

f (δµ1
)
)
< G

(
f (δµ4

)
)
.

Now, to complete the proof for Equation (23), let us show the weak inequality, i.e.,

G
(

f (δµ4
)
)
< G

(
f (δω)

)
(here again, the same argument applies to prove that G

(
f (δµ3

)
)
< G

(
f (δω)

)
).

Consider changing the matching from ω to µ4. Again, let us denote the change in
the value of the statistic at school s by ∆s. First, the value of the statistic does not vary
for s1 and s3. For school s2, it varies by ∆s2 = f ( k−3

k , 3
k ) − f ( k−2

k , 2
k ) > 0 and for school

s4 it varies by ∆s4 = f (1
k , k−1

k ) − f (0, 1) < 0 (the strict inequalities use our assumption
that f is strictly LD-increasing). By a similar argument as above, we have that the total
variation in the inequality index from ω to µ4 corresponds to the following path integral
on the linear path in variable u ∈ [0, 1] so that z̄s(u) = u∆s + f (δω

s ) for each school s, and
z̄(u) =

(
z̄s(u)

)
s∈S,

G
(

f (δµ4
)
)
− G

(
f (δω)

)
=

∫ G
(

f (δµ4
)
)

G
(

f (δω)
) dG =

∫ 1

0
∑
s∈S

∆s
∂G
∂zs

(
z̄(u)

)
du

=
∫ 1

0

[
∆s2

∂G
∂zs2

(
z̄(u)

)
+ ∆s4

∂G
∂zs4

(
z̄(u)

)]
du

< 0.

where the strict inequality uses the fact that

∂G
∂zs2

(
z̄(u)

)
< 0,

∂G
∂zs4

(
z̄(u)

)
> 0
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for each u ∈ [0, 1). Again, this comes from the fact that z̄(u) ∈ Z f ,k ⊂ Bε(z∗). Hence,
Equation (23) holds true.

Now, let us consider a mechanism φ which is individually rational, strategy-proof and
has less inequality than SI-CC whenever possible. Because at preference profile P, SI-CC
selects µ1, and φ has less inequality than SI-CC, by Equation (23), φ must select either µ1

or µ2 at P. First, suppose φ(P) = µ1. When h3 submits an alternative preference relation
deeming s1 unacceptable,

h3 : s2 P′
h3

s3,

she will be better off. To see this, observe that h3 will no longer be matched with s1 in
an individually rational matching for the new preference profile (P′

h3
, P−h3). Now, under

SI-CC, one can check that h3 remains at s3 and the matching achieved is µ4. Further, by
Equation (23), the unique individually rational matching with strictly less inequality than
µ4 is matching µ2. Therefore, we should have

φ
(

P′
h3

, P−h3

)
= µ2.

Thus, teacher h3 receives her first choice post at s2 by omitting s1 from her list, and she
successfully manipulates φ if φ(P) = µ1, a contradiction with the strategy-proofness of φ.

Second, suppose φ(P) = µ2. When h4 submits an alternative preference relation deem-
ing s1 unacceptable,

h4 : s2 P′
h4

s4,

she will be better off. To see this, observe that h4 will no longer be matched with s1 in
an individually rational matching for the new preference profile (P′

h4
, P−h4). Now, under

SI-CC, one can check that the selected matching remains µ1. Further, by Equation (23), all
other individually rational matchings have strictly more inequality than µ1. Therefore, we
should have

φ
(

P′
h4

, P−h4

)
= µ1.

Thus, teacher h4 receives her first choice post at s2 by omitting s1 from her list, and she
successfully manipulates φ if φ(P) = µ2, a contradiction with the strategy-proofness of φ.

Remark 1. The argument can be applied beyond the Gini index. For instance, it applies to the
T20/B20 ratio inequality index as defined in Section 4. In the context of the example, this is

I(z) = max{zs1 , zs2 , zs3 , zs4}
min{zs1 , zs2 , zs3 , zs4}

.

Note that, as for the Gini index, this index is differentiable at points that are strictly ordered. In
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addition, a version of Lemma A.2 holds in the sense that there is ε > 0 such that

∂I
∂zs1

(z) ≤ 0,
∂I
∂zs2

(z) ≤ 0

for each z ∈ Bε(z∗) where I is differentiable. In addition, the inequality is strict for {zsi} =

arg min{zs1 , zs2} and, similarly,

∂I
∂zs3

(z) ≥ 0,
∂I
∂zs4

(z) ≥ 0

for each z ∈ Bε(z∗) where I is differentiable. Here again, the inequality is strict for {zsi} =

arg max{zs3 , zs4}. Given this, one can check that the argument goes through as well for this
inequality index. More generally, if we have an inequality index I which is differentiable at points
that are strictly ordered and the above version of Lemma A.2 holds then Proposition A.4 holds for
this inequality index as well.
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B Other Figures and Tables

Figure A.1: Share of Disadvantaged Students and Older to Younger Teacher Ratio in France

Share of students in a priority education school Ratio of teachers age 50+ to age 30–

Notes: The left map plots the share of students enrolled in a “priority education” school in each region, a
label given to the most disadvantaged schools in France. The right map plots the ratio of the number of
teachers older than 50 to the number of teachers younger than 30. Column (3) of Table A.4 provides the
underlying statistics. Age can be used as a proxy for the experience level of a teacher. The ratio is equal
to 1.1 and 1.6 in Créteil and Versailles, respectively. In contrast, the most attractive region, Rennes, had
almost 7.4 and 5 times more teachers older than 50 than teachers younger than 30 compared to Créteil and
Versailles, respectively.
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Figure A.2: Distribution of Teacher Experience Types

Notes: This figure shows the number of teachers with each experience type. We classify teachers into eleven
experience bins with each bin referring to a separate type.

Figure A.3: Definition of Teacher Experience Types

Notes: This figure describes, for each of the 11 teacher experience types, the minimum experience of the
type, its maximum experience, and its mean experience (noted type value). We consider vacant positions as
a separate type with a mean experience of zero. Each new cohort starts their job in September. For example,
if a teacher started her tenured job in September 2005 after the centralized match, she would appear with
the experience level of 8 years in 2013 in our data set and be designated to type 6.
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Table A.1: Descriptive Statistics on Teachers and Regions

Tenured Teachers New Teachers

French Math English French Math English
(1) (2) (3) (4) (5) (6)

Panel A. Characteristics of teachers
Female (%) 78.8 48.9 84.3 80.7 44.4 82.7
Married (%) 47.6 44.1 44.7 41.3 42.4 43.9
Is in priority education school (%) 14.1 12.6 8.1 - - -
Experience (yrs) 6.69 5.31 5.64 1.76 1.16 1.02
Has advanced teaching qualif. (%) 15.9 20.7 7.3 13.6 30.6 12.9

Panel B. Characteristics of the regions to which teachers are assigned at status-quo
Is the teacher’s birth region (%) 12.9 10.7 11.8 - - -
Is Créteil or Versailles (%) 53.0 56.2 46.9 - - -
Is in South of France (%) 7.1 7.1 7.8 - - -
Students in urban areas (%) 66.4 68.9 66.1 - - -
Disadvantaged students (%) 53.6 53.9 53.6 - - -
Students in priority education (%) 25.4 25.4 24.2 - - -
Students in private school (%) 17.7 17.7 18.5 - - -
Teachers younger than 30 yrs (%) 13.5 13.5 12.5 - - -

Panel C. Characteristics of the regions teachers rank first
Is the teacher’s birth region (%) 35.8 46.1 42.6 35.3 39.7 40.3
Is in South of France (%) 22.1 26.6 30.7 17.1 18.4 20.5
Is Créteil or Versailles (%) 4.4 3.8 3.2 1.4 1.5 1.4
Students in urban area (%) 66.7 52.4 51.4 62.8 59.5 60.5
Disadvantaged students (%) 52.8 53.3 53.7 53.1 53.3 53.0
Students in priority education (%) 20.3 16.5 15.4 21.6 20.5 20.2
Students in private school (%) 26.4 25.1 26.5 22.7 22.0 22.5
Teachers younger than 30 yrs (%) 6.5 6.4 6.0 8.2 8.6 8.3
Observations (#) 859 605 629 786 958 750

Notes: This table reports descriptive statistics for teachers and regions in three subjects: French, Math, and
English. Statistics are reported for the sample of teachers we use for the demand estimations. Columns (1) to
(3) report statistics for tenured teachers. Columns (4) to (6) report statistics for new teachers. New teachers
have missing values for statistics related to the region of status-quo assignment. We discard teachers who
submit a joint list with their partner, teachers who are from one of the six regions that are overseas, and
teachers for whom one of the individual characteristics is missing. The last row reports the number of
teachers in each subject. Panels A, B, and C, respectively, present descriptive statistics of teachers, of the
region to which they are assigned at the status quo, and of the region they rank first. Appendix J provides a
detailed description of each variable.
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Table A.2: Descriptive Statistics on Region Types

Share of
subjects in
which region
is low type

Mean experience
across
subjects
(in years)

Share of
teachers with
fewer than 4
years of experience

Region
weight

(1) (2) (3) (4)
Créteil 100% 10.05 22.6% 7.6%

Versailles 100% 11.15 19.1% 9.9%
Amiens 100% 11.71 16.5% 3.3%
Orléans-Tours 100% 12.99 10.7% 4.2%
Nice 87.5% 13.15 9.4% 3.4%
Lyon 87.5% 13.27 7.5% 4.7%
Dijon 75% 13.23 13.2% 2.7%
Toulouse 75% 13.63 6.9% 4.8%
Grenoble 62.5% 13.50 9.9% 5.3%
Rouen 62.5% 13.53 8.9% 3.3%
Strasbourg 62.5% 13.72 9.0% 2.8%
Lille 50% 13.41 9.4% 6.5%
Aix-Marseille 50% 13.61 7.6% 4.7%
Limoges 50% 13.70 7.2% 1.2%
Reims 37.5% 13.83 8.7% 2.1%
Paris 37.5% 14.26 10.3% 2.9%
Montpellier 25% 13.93 7.1% 4.5%
Besancon 25% 13.97 8.9% 2.0%
Poitiers 25% 14.06 7.1% 2.7%
Caen 12.5% 13.93 6.9% 2.3%
Nantes 12.5% 14.01 7.7% 4.5%
Clermont-Ferrand 12.5% 14.08 6.7% 1.9%
Nancy-Metz 0% 14.49 5.4% 3.6%
Bordeaux 0% 14.51 6.4% 5.0%
Rennes 0% 15.00 5.5% 3.9%

Notes: This table reports descriptive statistics on region types and characteristics. Region types are defined
separately for each subject. We use the sign of the partial derivatives of the T20/B20 ratio index to create
two groups of regions: (1) Low-type regions have a negative derivative (or a zero derivative but an average
experience at the status quo that is lower than the median experience), and (2) high-type regions have a
positive derivative (or a zero derivative but an average experience at the status quo that is higher than the
median experience). Differences between the distribution of teacher experience across regions in different
subjects mean that a region can be low-type in one subject but high-type in another. The first column reports
the share of subjects in which a region is classified as low-type. Columns 2 and 3 report the average teacher
experience at the status quo and the share of teachers with fewer than four years of experience, respectively.
Column 4 reports the region weight, defined as the region’s relative size. The size captures the number of
teachers in the region and the number of vacant positions.
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Table A.3: Number of teachers and vacant positions

Subjects All New Tenured Vacant
teachers teachers teachers positions

(1) (2) (3) (4)
All subjects 10,483 4,637 5,846 3,912
Sports 2,072 569 1,503 475
French 1,645 786 859 663
Math 1,563 958 605 824
English 1,379 750 629 646
History-Geography 1,235 660 575 567
Spanish 1,003 317 686 249
Physics-Chemistry 838 311 527 254
Biology 748 286 462 246

Table A.4: Statistics on Regions

Regions Ratio: % of teachers Ratio: % of students % of students % of students
# of tenured asking for a new # of teachers enrolled in whose reference obtaining their

teachers asking to assignment aged priority parent has baccalaureate
enter / exit coming from more than 50 / education no diploma

the region the region less than 30
(1) (2) (3) (4) (5) (6)

Rennes 15.55 0.5 8.10 7.9 14.18 91.54
Bordeaux 8.95 0.8 6.56 14.6 19.22 86.25
Toulouse 6.56 1.5 5.29 8.9 17.38 88.57
Paris 3.02 2.8 6.90 25.5 21.54 85.48
Aix-Marseille 2.54 1.9 5.08 30.1 27.20 81.77
Grenoble 1.74 2.3 3.91 16.5 19.80 88.17
Amiens 0.08 6.2 1.89 23.9 27.71 82.41
Créteil 0.03 22.7 1.14 35.5 31.62 83.94
Versailles 0.05 25.7 1.62 24.9 21.88 87.92

Notes: This table reports descriptive statistics for the three most attractive regions (Rennes, Bordeaux,
and Toulouse), the three least attractive regions (Amiens, Créteil, and Versailles), and three intermediate
regions (Paris, Aix-Marseille, and Grenoble). Attractiveness is measured by the ratio of the number of
tenured teachers asking to enter a region to the number of teachers asking to leave the region (reported in
column 1). All statistics reported in this table come from the following reference: Direction de l’Evaluation
de la Prospective et de la Performance (2014). In column (1), the number of teachers asking to enter the
region corresponds to the number of teachers who rank the region as their first choice in their preference
list, while the number of teachers asking to leave the region corresponds to the number of teachers who
are initially assigned the region and submit a preference list to move to another region.
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Figure A.4: Cumulative Distribution of Teacher Experience Types in the Entire Market

B20 Regions T20 Regions

Notes: This figure shows the cumulative distribution of teacher experience types in the entire market, i.e.,
including participating and non-participating teachers, in the B20 regions (left) and in T20 regions (right)
under SI-CC, TTC*, and status quo. We identify T20 and B20 regions in each subject and find the cumulative
distribution aggregated across subjects. The horizontal axis reports the eleven experience types of teachers,
ordered from most experienced to least experienced (left panel) and from least experienced to most experi-
enced (right panel) in accordance with the natural type rankings of these regions. The area shaded in gray
corresponds to vacant positions.
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Figure A.5: Cumulative Distribution of Teacher Experience Types for the (Re)assignment Market -
Different Chain Selection Rules

B20 Regions T20 Regions

Notes: This figure shows the cumulative distribution of teacher experience types in B20 and T20 regions
for the (re)assignment market using three different chain selection rules under SI-CC. The suffixes “i”, “r”,
and “d” respectively stand for increasing, random, and decreasing. These orderings mean that the teachers
starting a chain are respectively selected by increasing, random, and decreasing order of their maximum
Ministry-mandated priority points. The left panel reports the distribution in the B20 regions of France,
and the right panel the distribution in the T20 regions of France. The horizontal axis reports the eleven
experience types of teachers, ordered from most experienced to least experienced (left panel) and from least
experienced to most experienced (right panel). The area shaded in gray corresponds to vacant positions.
The thick dark gray line (marked as “Status-quo” in the legend) corresponds to the cumulative distribution
of teacher types at the status-quo matching.

Figure A.6: Cumulative Distribution of Teacher Experience in the Entire Market - SI-CC* vs. SI-CC
and Current French

B20 Regions T20 Regions

Notes: See the caption of Figure A.4 for the construction methodology of this figure.
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Figure A.7: Change in Region Experience (in years) subject by subject - (Re)assignment market
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Figure A.8: Change in Region Experience (in years) subject by subject - Entire market
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C Other Applications
In this appendix, we explain other applications of our mechanisms in more detail. We

give three concrete applications.
Intra-district school choice after a status-quo assignment. In the US, Austin Inde-

pendent School District (AISD) of Texas assigns students to schools through an address
based matching procedure.81 Unfortunately, address based assignment ends up with seg-
regated schools.82 In order to eliminate the segregation and fill the empty seats at the
under-demanded schools, AISD runs a transfer procedure in which a student who is in
relative demographic majority in her assigned school can apply to the schools in which
she belongs to the minority demographic group. Moreover, new students who arrive at
the district after the matching procedure is run can also participate in this transfer proce-
dure.83

In addition to the transfer programs to achieve racial diversity at schools, many school
districts, including Davenport, IA (DCS, 2019), and Seminole, FL (SCPS, 2021), run trans-
fer programs to achieve diversity in terms of the socioeconomic status (SES) of the stu-
dents. Diversity transfer programs based on SES are also suggested to the school district
by The United States Department of Education and the United States Department of Jus-
tice (ED, 2011).

Job rotation. Job rotation is defined as the horizontal movement of employees among
different positions in a company. It is a well-established and commonly practiced human
resource management program in many settings. It benefits companies through employee
enrichment and success of developing future managers as well as decreased worker turn-
over due to increased job satisfaction of the participants (Cheraskin and Campion, 1996).

Job rotation programs can also be used as a means to obtain certain distributional goals
of a company such as achieving gender balance across different departments of the com-
pany and retention of female employees and increasing the development of more female
leaders through rotation programs.84

Other civil services. There are other centralized matching procedures for civil servants
from different professions. For example, police officers are assigned to neighborhoods by
centralized procedures in several US cities such as Chicago (Sidibe et al., 2021); doctors
are assigned to government hospitals in some countries such as Turkey and for their first

81There are 128 school programs in AISD. In the 2020-2021 school year, the total enrolment in AISD is
more than 75,000 (AISD, 2021).

82In 2019, the student body at 15% and 63% of the elementary schools were composed of more than 60%
white and hispanic-black students, respectively.

83The majority minority transfer program is used in many school districts in the US including Huntsville,
AL (HCS, 2020), Suffolk, VA (SPSK12, 2021), and Florence, SC (F1S, 2019).

84Observe that companies use professionally designed centralized matching software for job rotations,
for example see https://www.tws-partners.com/corporate-functions/hr/.

https://www.tws-partners.com/corporate-functions/hr/
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residency jobs in many countries including Canada, the U.K., and the U.S. (Roth, 1984);
civil administrators are assigned centrally for example in India (Thakur, 2020).

In police officer (re)assignment, senior officers are known to shy away from urban
centers, while the police departments would like more of officers in urban centers due to
disproportionate crime rates, similar to our distributional problems in teacher assignment.

Another concrete example in this domain is the Indian Administrative Services, the
top-tier government jobs in India. This selective service conducts first time assignment
of officials to regional government jobs in states of India every year, while reassignment
is conducted separately. The state has distributional objectives based on spread of talent
across states, constitutional affirmative action, and respect of preferences for home states.
Our procedures can be used in these domains as well to achieve different distributional
objectives.

D Examples
We illustrate how SI-CC works with the following example:

Example A.1. Let S = {s1, s2, s3, s4}, T = {h1, ℓ1, m2, h3, m3, oN}. The status-quo matching ω

is given as
ωs1 = {h1, ℓ1}, ωs2 = {m2}, ωs3 = {h3, m3}, ωs4 = ∅,

and oN is a new teacher. Let qs1 = qs3 = 2 and qs2 = qs4 = 1. The preferences of teachers are:

s2 Ph1 s4 Ph1 s3 Ph1 s1 Ph1 ∅

s3 Pℓ1 s1 Pℓ1 s4 Pℓ1 ∅ Pℓ1 s2

s4 Pm2 s3 Pm2 s2 Pm2 s1 Pm2 ∅

s1 Ph3 s3 Ph3 s2 Ph3 s4 Ph3 ∅

s2 Pm3 s1 Pm3 s3 Pm3 s4 Pm3 ∅

s2 PoN s1 PoN s3 PoN s4 PoN ∅

Let Θ = {h, m, ℓ, o}, and the letter name of each teacher is her type.85 The type ranking profile
⊵ is given as, observing θ∅ is the vacant seat type and is redundant to rank for s1, s2, and s3 which

85Type o is the “no experience” new teacher type.
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have no vacant seats:86

h ▷s1 m ▷s1 ℓ ▷s1 o ▷s1 θ∅

o ▷s2 θ∅ ▷s2 ℓ ▷s2 m ▷s2 h

o ▷s3 θ∅ ▷s3 ℓ ▷s3 m ▷s3 h

h ▷s4 m ▷s4 ℓ ▷s4 o ▷s4 θ∅

In Step 1 of SI-CC, we obtain the graph in Figure A.9 (such that the status-quo employees of
each school are placed in a dashed bubble around the school). Notice that, h1 does not point to
her top choice, s2, since neither improvement condition holds for s2 via her. There exists a cycle,
(h3, s1, ℓ1, s3), in which every school satisfies Improvement Condition 1. We execute that cycle by
assigning h3 and ℓ1 to s1 and s3, respectively.

s1

h1

s3

h3

m3

s2m2

ℓ1

s4 oN

Figure A.9: Graph of Step 1 of SI-CC

In Step 2 of SI-CC, we obtain the graph in Figure A.10. There exists no cycle. We execute chain
(oN, s2, m2, s4), whose first teacher is the only new teacher oN, by assigning oN and m2 to s2 and
s4, respectively.

86In general, the ranking of the vacant seat type matters for ensuring a reduction of inequality as detailed
in Section 4. Also note that since there is a single new teacher and no two status-quo employees of a school
are of the same type (given strict type rankings), no tiebreaker is needed in this example.
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s1

h1

s3

m3

s2m2

s4 oN

Figure A.10: Graph of Step 2 of SI-CC

In Step 3 of SI-CC, we obtain the graph in Figure A.11. Notice that, h1 (m3) points to s3 (s1)
even though she has a worse type than the teacher pointed by s3 (s1). Such a situation is possible
due to the positive balance buffer achieved as a result of the exchanges executed in the earlier steps.
There exists a cycle, (h1, s3, m3, s1), in which every school satisfies Improvement Condition 1. We
execute that cycle by assigning h1 and m3 to s3 and s1, respectively.

s1

h1

s3

m3

Figure A.11: Graph of Step 3 of SI-CC

The outcome matching of SI-CC is µ such that

µs1 = {h3, m3}, µs2 = {oN}, µs3 = {ℓ1, h1}, µs4 = {m2}.

Example A.2 below shows that SI-CC can be manipulated by a teacher and it is not
constrained-efficient under an alternative pointing rule.

Example A.2. Let S = {s, s′, s′′}, T = {t1, t2, t3, t4}, the status-quo matching be

ωs = {t1, t2}, ωs′ = {t3}, ωs′′ = {t4},

and qs = 2, qs′ = qs′′ = 1. Notice that, there is no vacant seat in any school. Teachers t2, t3,
and t4 have the same types, i.e., τ(t2) = τ(t3) = τ(t4). The type ranking profile ⊵ is given as:
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τ(t1)▷s τ(t) for all t ̸= t1. The preferences of the teachers are

sPt1s′Pt1s′′Pt1∅, s′Pt2sPt2s′′Pt2∅,

sPt3s′Pt3s′′Pt3∅, s′′Pt4sPt4s′Pt4∅.

If in the first step of SI-CC school s points to t1, the best school t3 can point is s′. Therefore, she
will be assigned to s′. In particular, under true preferences, SI-CC assigns all employees to their
status-quo schools. This outcome is not SI-constrained efficient because it is Pareto dominated by
another status-quo improving matching ν for teachers where νt1 = νt3 = s, νt2 = s′ and νt4 = s′′.
Moreover, if t3 swaps the rankings of s′ and s′′, then SI-CC selects ν, i.e., t3 manipulates SI-CC
when s points t1 in the first step.

In Example A.3, we show that, in the same setting as Combe et al. (2022), SI-CC is not
equivalent to the teacher optimal selection of TO-BE they propose.87

Example A.3. Let S = {s1, s2}, T = {t1, t2, t′2}, ωs1 = {t1}, ωs2 = {t2, t′2}, qs1 = 1 and
qs2 = 2. Let τ(t2) ▷s1 τ(t′2) ▷s1 τ(t1) ▷s1 θ∅ and τ(t1) ▷s2 τ(t2) ▷s2 τ(t′2) ▷s2 θ∅. Each
teacher prefers the other school to her status-quo school.

One can check that the matching selected by the teacher optimal selection of TO-BE matches88

t1 to s2 and t2 to s1 while SI-CC matches t1 to s2 but t′2 to s1.

Example A.4. Below we illustrate our concepts introduced in Section 4 as well as the arguments
behind Proposition 1 and Corollary 1 using the T20/B20 ratio inequality index and mean statistic.
We also illustrate the need for the large market assumption in these results.

Let S = {s1, s2}, T = {h1, ℓ1, h2, ℓ2}. The status-quo matching ω is given as

ωs1 = {h1, ℓ1}, ωs2 = {h2, ℓ2},

87Combe et al. (2022) already noted that their class of TO-BE mechanisms do not entirely define the class
of status-quo improving, strategy-proof and two-sided Pareto efficient mechanisms. However, they did not
investigate it further. Our example suggests that other non-trivial mechanisms, such as SI-CC, exist outside
their class.

88One can easily check that this example is well defined in their setting. Just set the preferences of the
schools over the teachers being equivalent to the schools’ ranking over their corresponding types.
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Let qs1 = qs2 = 2. The preferences of teachers are89:

s2Ph1s1Ph1∅

s1Pℓ1s2Pℓ1∅

s2Ph2s1Ph2∅

s1Pℓ2s2Pℓ2∅.

Let Θ = {θ1, θ2, θ3} = {ℓ, m, h}, and the letter name of each teacher is her type. We consider
the following values for the types: (since there are no vacant seats we do not explicitly refer to the
vacant seat type θ∅)

v1 = vℓ = 2, v2 = vm = 4, v3 = vh = 6.

We let the profile of non-participating employees be given for any n ≥ 1 as

En
s1
= {m1

1, . . . , mn
1},

En
s2
= {ℓ1

2, . . . , ℓn
2}.

Suppose we use the mean statistic as f and the T20/B20 index as the inequality index I .90

We start our illustration by constructing the natural type ranking profile of I and f . The non-

participant profile value distribution δ∗ such that for any school s and type k = 1, 2, 3, δ
∗vk
s = |Eθk

s |
|Es| ,

is as follows:
δ∗s1

= (0, 1, 0) , δ∗s2
= (1, 0 , 0) .

The non-participant mean type value vector is found as follows:

z∗ f = f (δ∗) = (4, 2) ,

leading to the following ordering of the statistics:

z∗ f
s2 < z∗ f

s1 .

The value of T20/B20 index at z∗ f is 4/2 = 2. We have that the partial derivatives of I are well
defined at z∗ f and one can easily verify that they are also ordered as

∂I
∂zs2

(z∗ f ) < 0 <
∂I
∂zs1

(z∗ f ).

89It may be seen as questionable for teachers to participate in the (re)assignment process while ranking
all other schools as worse than their current one — such as teacher ℓ1 and h2. One could easily adjust the
example to ensure that these teachers rank other schools higher than their initial schools, but they fail to be
assigned to any of those preferred schools.

90See Section 4 for the definition.
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Thus, we obtain the following partition of schools induced by I and f at the base economy:

LI , f = {s2} and HI , f = {s1},

and the natural type ranking profile of G and f , denoted as ⊵, is

h ▷s2 m ▷s2 ℓ

ℓ▷s1 m ▷s1 h.

The outcome matching of SI-CC is µ such that

µs1 = {ℓ1, ℓ2}, µs2 = {h1, h2}.

Note that this is the unique (non-trivial) individually rational and status-quo improving matching
for schools under the natural type ranking profile of I and f . Next, we show how much the
outcome of SI-CC reduces the T20/B20 index with respect to the status quo for different n values
(the replications of the base economy): First, we illustrate the status-quo value distribution for each
school s, δω

s = (δω,2
s , δω,4

s , δω,6
s ):

δω,n
s1

=

(
1

n + 2
,

n
n + 2

,
1

n + 2

)
, δω,n

s2
=

(
n + 1
n + 2

, 0,
1

n + 2

)
.

This leads to a mean statistic vector of

f (δω,n) =

(
4,

2n + 8
n + 2

)
.

We obtain the following value for the T20/B20 index at the status-quo matching ω in an n-
economy:

I( f (δω,n)) = 4
n + 2

2n + 8
.

Then we consider the outcome µ of SI-CC which leads to a value distribution profile

δ
µ,n
s1 =

(
2

n + 2
,

n
n + 2

, 0
)

, δ
µ,n
s2 =

(
n

n + 2
, 0 ,

2
n + 2

)
,

and a mean statistic vector
f (δµ,n) =

(
4

n + 1
n + 2

, 2
n + 6
n + 2

)
.

We note that 4n+1
n+2 ≥ 2n+6

n+2 if and only if n ≥ 4. Hence, we obtain the following value for the
T20/B20 index at the matching achieved by SI-CC in an n-economy:

I( f (δµ,n)) =

{
(n + 6)/2(n + 1) for n ≤ 4
2(n + 1)/(n + 6) for n ≥ 4

}
.
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It is easy to check that I( f (δµ,n)) < I( f (δω,n)) if and only if n > 2. Next, we find the outcome
of the T20/B20 index at ω and µ for different n-economies.

n non-participant T20/B20 of the status quo T20/B20 of SI-CC matching T20/B20
economy size I

(
f (δω,n)

)
I
(

f (δµ,n)
)

variation
1 33.33% 1.2 1.75 +46%
2 50% 1.33 1.33 +0%
3 60% 1.43 1.12 −22%
4 66.67% 1.5 1 −33%
5 71.43% 1.56 1.09 −30%
6 75% 1.6 1.17 −27%
10 83.33% 1.71 1.37 −20%
20 90.91% 1.83 1.62 −11%
50 96.15% 1.93 1.82 −6%

∞ 100% I(z∗ f ) = 2 −

SI-CC achieves a more equitable outcome than the status-quo matching when the non-
participants economy size is large enough (i.e., if it represents more than 50% of the whole market).
When n is smaller than 2, the school in LI , f surpasses the school in HI , f in terms of average
experience of teachers under the SI-CC outcome and this shift is large enough that the inequality
index increases. This shift in school status only occurs when the non-participants’ economy size is
relatively small and as the market size increases, SI-CC reduces inequality.

E Extension: Impossibilities under Alternative Status-quo
Improvement Definition

In this section, we weaken restrictions on school ranking over teachers. Instead of the
Lorenz domination relation for unambiguous weak improvement, we use a responsive
order induced by schools ranking over the types of teachers (Roth, 1985). To this end, we
first construct an order over teachers and vacancy option, denoted by ∅, for a given ⊵s

and denote it by ≿⊵s
s . Let ≻⊵s

s and ∼⊵s
s denote the asymmetric and symmetric parts of

≿⊵s
s .

Given ⊵s, the order of school s over T ∪ {∅} is given as:

• τ(t) ⊵s τ(t′) if and only if t ≿⊵s
s t′;

• τ(t) ⊵s θ∅ if and only if t ≿⊵s
s ∅.

For any |T̄| < qs responsiveness implies that for any t, t′ ∈ T \ T̄

• T̄ ∪ {t} ≿⊵s
s T̄ if and only if t ≿⊵s

s ∅;
• T̄ ∪ {t} ≿⊵s

s T̄ ∪ {t′} if and only if t ≿⊵s
s t′.



Appendices: Page 52 of 65

Note that, responsive order is more general than Lorenz preferences. In particular, if µs

Lorenz dominates matching ωs, then µs ≿⊵s
s ωs. However, the other way may not be

true. We illustrate this in the following example.

Example A.5. Let T = {t1, t2, t3, t4, t′1, t′4}, S = {s}, ωs = {t1, t2, t3, t4}, and τ(t1) = τ(t′1) ▷s

τ(t2) = τ(t3) ▷s τ(t4) = τ(t′4). Consider the following matching µs = {t1, t′1, t4, t′4}. Matching
µs does not Lorenz dominate ωs. However, it is possible that µs ≻⊵s

s ωs.

The following example shows that, when unambiguous (and therefore, status-quo)
improvement is defined based on responsive orders, there is no mechanism that is con-
strained efficient and strategy-proof.

Example A.6. There are six teachers, T = {t1, t′1, t2, t′2, t, t′}, and four schools, S = {s1, s2, s, s′}.
Schools do not have vacant seats. Let ωs1 = {t1, t′1}, ωs2 = {t2, t′2}, ωs = {t} and ωs′ = {t′}.
Let ⊵ be the type ranking profile such that:

τ(t) ▷s1 τ(t1) ▷s1 τ(t′1) ▷s1 τ(t′) ▷s1 θ∅ ▷s1 τ(t2) ▷s1 τ(t′2)

τ(t′) ▷s2 τ(t2) ▷s2 τ(t′2) ▷s2 τ(t) ▷s2 θ∅ ▷s2 τ(t1) ▷s2 τ(t′1)

τ(t1) ▷s τ(t2) ▷s τ(t′2) ▷s τ(t′1) ▷s τ(t′) ▷s τ(t) ▷s θ∅

τ(t1) ▷s′ τ(t2) ▷s′ τ(t′2) ▷s′ τ(t′1) ▷s τ(t) ▷s′ τ(t′) ▷s′ θ∅.

For notational simplicity, we use ≿s instead of ≿⊵s
s for all s ∈ S, Moreover, we assume that

{t, t′} ≻sk {tk, t′k} for k ∈ {1, 2}. Notice that, this relation is consistent with responsiveness.
Preferences of the teachers are:

s2 Pt s1 Pt s Pt ∅, s1 Pt′ s2 Pt′ s′ Pt′ ∅,

s Pt1 s1 Pt1 ∅, s′ Pt′1
s1 Pt′1

∅,

s Pt2 s2 Pt1 ∅, s′ Pt′2
s2 Pt′2

∅.

First note that under any status-quo improving matching, if t is assigned to her first ranked school
s2, then t′ must also be assigned to s2. Indeed, let µ be a status-quo improving matching such that
µt = s2. Since {t, t′} ≻s2 {t2, t′2} ≻s2 {t2, t} ≻s2 {t′2, t}, status-quo improvement implies
that µt′ = s2. With a similar argument, if µt′ = s1, then µt = s1. So it implies that there are only
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three possible constrained efficient matchings:

µ1 :=

(
t t′ t1 t′1 t2 t′2
s1 s1 s s′ s2 s2

)

µ2 :=

(
t t′ t1 t′1 t2 t′2
s2 s2 s1 s1 s s′

)

µ3 :=

(
t t′ t1 t′1 t2 t′2
s1 s2 s s1 s2 s′

)

Let φ be a constrained efficient mechanism. Assume that φ(P) = µ1. In that case, let
P′

t : s2 P′
t s P′

t ∅ P′
t s1. Under (P′

t , P−t), the only constrained efficient matching is µ2 so that
φ(P′

t , P−t) = µ2 and the manipulation of t is successful. If φ(P) = µ2, then t′ can report
P′

t′ : s1 P′
t′ s′ P′

t′ ∅ P′
t′ s2 so that the only constrained efficient matching under (Pt′ , P−t′) is µ1 and

φ(Pt′ , P−t′) = µ1, a successful manipulation for t′. If φ(P) = µ3 then t or t′ can manipulate in
reporting the same profile as before. We conclude that φ cannot be strategy-proof.

F Descriptions and Theoretical Results Pertaining to Other
Mechanisms used in the Empirical Analysis

F.1 TTC*

Technically, TTC* is an extension of the YRMH-IGYT mechanism of Abdulkadiroğlu
and Sönmez (1999) to the case when there are multiple positions at a school. Most notably,
a school’s two positions can be assigned simultaneously in two different ways when a
chain is executed in a step: A vacant position can be assigned through the chain in which
it is the last school, and an occupied position can be filled by an incoming teacher while
its status-quo employee for that position is assigned to a different school.

Definition A.1. The TTC* Mechanism Let ⊢ be a tiebreaker over tenured teachers and ⊢∗ be a
tiebreaker over all teachers. For each school s, we construct a pointing order ⋗s over teachers in
ωs using its type rankings ⊵s and ⊢: For any two distinct teachers t, t′ ∈ ωs

t ⋗s t′ ⇐⇒ τ(t) ◁s τ(t′) or [τ(t) ∼s τ(t′) and t ⊢ t′].

The second tiebreaker ⊢∗ will be used for chain selection below. It is a separate tiebreaker as in
TTC*, chains can be started by any teacher, i.e., not only by new teachers, and thus, choice of it
presents another policy tool.

A general Step k is defined as follows:
Step k:

• Each remaining school s points to the highest priority remaining teacher in ωs under ⋗s, if not
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all students in ωs are already removed. Otherwise, school s does not point to any teacher.
• Each remaining teacher t points to her most preferred remaining option.
• Outside option ∅ points to all teachers pointing to it.

Due to finiteness, there exists either

(i) a cycle, or
(ii) a chain.

Then:

• If Case (i) holds: Each teacher can be in at most one cycle as she points at most to a single
option. We execute exchanges in each cycle by assigning the teachers in that cycle to the school
she points to, remove assigned teachers and filled schools, and go to Step k + 1.

• If Case (i) does not hold: Then case (ii) holds, i.e., there exists a chain. In particular, each
remaining teacher initiates a chain. Then we select the chain such that the first teacher of the
chain is the highest priority teacher under chain tiebreaker ⊢∗ and the last school of the chain
is one that does not point to a teacher.
We execute the exchanges in the selected chain by assigning each teacher in the chain to the
school she points to, remove assigned teachers and filled schools, and go to Step k + 1.

The mechanism terminates when all teachers are removed.

F.2 The Current French Mechanism

The Current French Mechanism uses a version of teacher proposing Gale and Shap-
ley (1962) deferred-acceptance (DA) algorithm using school priority orders mandated by
the French Ministry of Education. In the next subsection, we explain how these priori-
ties are determined. The mechanism modifies these mandated priorities so that it is an
individually rational mechanism for tenured teachers. Other than this modification, the
priority relations of schools remain unchanged among the status-quo teachers and the
non-status-quo teachers. Then the mechanism utilizes the DA algorithm using these mod-
ified school priorities and the submitted teacher preferences. Also see Guillen and Kesten
(2012), Pereyra (2013), and Compte and Jehiel (2008) regarding the use of this algorithm
in another context and teacher assignment context. This mechanism is strategy-proof for
teachers. See Combe et al. (2022) for a more detailed presentation of this mechanism and
its properties.

F.2.1 Determinants of the Current Ministry-Mandated Priorities in France

This subsection of the appendix presents the criteria used by the French Ministry of
Education in 2013 to prioritize teachers.

Priorities that apply to all teachers
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• Seniority in the profession. The number of points teachers receive depends on their
“class”. Teachers move up class during their career:

– Normal Class (early career): Teachers receive 7 points per grade level, with a min-
imum of 21 points in total, i.e., a flat rate of 21 points for the first, second, and
third grades. See Figure A.12 for a correspondence between the number of years
of experience and grade level.

– Upper Class (mid-career): Teachers get 49 flat-rate points and 7 points per grade
level in the upper class. Aggregated teachers in the upper class at the sixth-grade
level can claim 98 points if they have two years of seniority at that level.

– Exceptional Class (end-of-career): Teachers get 77 flat-rate points and 7 points per
grade level in the exceptional class, up to a maximum of 98 points.

• Seniority in the current school. 10 points are awarded per year of service in the
current position as a tenured employee. An additional 25 points are awarded for each
four-year period of seniority in the position.

Figure A.12: Correspondence Between Experience and Grade Level

Notes: This figure shows, for each grade level, the number of years a teacher is expected to stay in the grade
level before moving to the following one.

Priorities defined by law

• Teachers requesting spousal reunification: 150.2 points are awarded for the spouse’s
region and neighboring regions. 100 points are granted for each dependent child un-
der the age of 20. Additional points are granted by years of separation: 190 points
are granted for the first year of separation, 325 points for two years of separation, 475
points for three years, and 600 points for four years or more.

• Disability: 1,000 points are awarded for the regions where the requested transfer will
improve the situation of the disabled person.

• Priority education (Affectation à caractère prioritaire justifiant une valorisation
(A.P.V.)): Teachers who spent several years in a school labeled as A.P.V receive 300
points for five to seven years or 400 points for eight years or more.

Priorities based on personal or administrative situation
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• Teachers in a replacement zone: Teachers in replacement zones (T.Z.R.) who re-
quested and obtained a permanent position in a school receive a bonus of 100 points
if they stay five years in the assigned school. This bonus cannot be combined with a
bonus granted under the A.P.V. (Priority Education Area) scheme.

• Trainees: A bonus of 0.1 point is awarded to candidates for their first assignment
when they request the academy where they completed their first-year training.

• Teachers re-entering teaching after a break: A bonus of 1,000 points is awarded for
the region where they were employed before their break.

• Simultaneous transfer between two teachers: A flat-rate bonus of 80 points is
awarded for the region entered as the first choice and the neighboring regions.

• Proximity to the child’s residence: In cases of shared custody, and to support housing
and visitation rights, a bonus of 150 points is awarded, applicable to the first choice
and neighboring regions. The first request must correspond to the region where the
child resides.

• High-level athletes temporarily assigned to the region where they have their sport-
ing interests: A bonus of 50 points is awarded for each successive year of temporary
assignment, for up to four years, and applies to all region requests made.

• Teachers assigned to French Guiana: Teachers assigned to French Guiana will, af-
ter five years in this oversees region, receive a bonus of 100 points on each of their
requested regions.

Priorities based on the expressed preference

• Preferential request: A bonus of 20 points per each consecutive year is granted start-
ing from the year when the teacher expresses the same first regional preference as the
one expressed the previous year.91

• Assignment in overseas departments (DOM) or Mayotte: A bonus of 1,000 points
is awarded for first-choice requests concerning the academies of Guadeloupe, French
Guiana, Martinique, Réunion, or the vice-rectorate of Mayotte, for teachers who can
justify the presence of their center of material and moral interests (CIMM) in that de-
partment.

• Single preference for the region of Corsica: Bonuses are awarded for the preference
“Corsica,” provided that the candidate has made this single request. The bonus for the
single ”Corsica” preference is progressive: 600 points for the first request, 800 points
for the second consecutive request, and 1,000 points for the third consecutive request

91Priorities based on teacher expressed preference make the current French mechanism non-strategy-
proof. Our analysis never assumes that the current mechanism is strategy-proof. In particular, when esti-
mating teacher preferences, to avoid the potential bias generated by teachers misreporting their preferences,
we estimate the preferences of teachers under a weaker stability assumption developed by Fack et al. (2019)
and applied to the teacher assignment by Combe et al. (2022).
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and beyond.

F.3 SI-CC*

Let SCVA denote the subset of regions including Créteil, Versailles, and Amiens, the
three youngest regions. Given a market P, type ranking profile ⊵, and a tiebreaker ⊢,
SI-CC* selects its outcome through the following steps.

Step 1: Pseudo Preference Profile Construction
We construct a pseudo preference profile P∗ from P as follows:
For each t /∈ N, P∗

t = Pt. For each t ∈ N:

• s P∗
t s′ for all s ∈ SCVA and s′ /∈ SCVA, and

• s P∗
t s′ if and only if s Pt s′ for all s, s′ ∈ SCVA (or s, s′ /∈ SCVA).

Step 2: Running SI-CC under Pseudo Preference Profile
The matching selected by SI-CC under P∗, ⊵, and ⊢ is the outcome of SI-CC*.
Now, we are ready to analyze the properties of SI-CC*.

Proposition A.5. For any type ranking profile ⊵, SI-CC* is strategy-proof and status-quo im-
proving for schools under ⊵. Moreover, it is individually rational if all new teachers rank regions
in SCVA over ∅.

Proof. Since the outcome of SI-CC* is found by running the SI-CC algorithm for any given
⊵ and the preference profile of the teachers does not affect whether the selected outcome
is status-quo improving for schools or not, Theorem 1 implies that SI-CC* is status-quo
improving for schools. Moreover, by Theorem 1, no teacher is assigned to a school ranked
below ∅ in pseudo preferences under the outcome of SI-CC*. Hence, by our construction
of pseudo preference under SI-CC*, if all new teachers rank regions in SCVA over ∅, then
the outcome of SI-CC* is individually rational.

Next, we show SI-CC* is strategy-proof. Fix a preference profile P. First of all, if
P∗

t = Pt, then Theorem 1 implies that teacher t cannot be better off by misreporting her
preference order under SI-CC*. Now consider a teacher t such that P∗

t ̸= Pt. By our
construction, t ∈ N. Recall that, the outcome of SI-CC* is found by running SI-CC under
P∗. By the definition of SI-CC, any new teacher is assigned through a chain, there exists
exactly one new teacher in any executed chain, and a chain is executed when there does
not exist a cycle. Hence, independent of the preference orders submitted by the new
teacher, SI-CC will execute the same set of cycles until no cycle exists to execute. Let k
be the first step of SI-CC under P∗ in which there is no cycle to execute. Without loss of
generality, let t be the new teacher with the highest tiebreaker under ⊢. By construction,
the regions in SVCA are ranked at the top of P∗

t . By definition, t will be assigned to the
region, possibly ∅, she points to in Step k. Suppose t points to s. By the construction of the
pseudo preference profile and the definition of SI-CC, t cannot point to a more preferred
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school than s in Step k of SI-CC* by misreporting her preferences. Hence, t cannot benefit
from misreporting.

Since teachers assigned in the latter steps cannot change the assignments done in the
first k steps, we can follow the same reasoning to show that no teacher can manipulate
SI-CC*.

Despite the properties satisfied by SI-CC*, it is not constrained efficient, as illustrated
in the following example.

Example A.7. Let S = {s, s′}, s ∈ SCVA, s′ /∈ SCVA, N = T = {t1, t2}, qs = qs′ = 1, and
τ(t1) = τ(t2) ⊵s̄ θ∅ for all s̄ ∈ S. The preferences of the teachers are

s Pt1 s′ Pt1 ∅

s′ Pt2 s Pt2 ∅

Suppose t2 ⊢ t1. Then, SI-CC* selects matching µ such that µ(t1) = s′ and µ(t2) = s. Matching
µ is Pareto dominated by another status-quo improving matching ν such that ν(t1) = s and
ν(t2) = s′.

G Empirical Analysis: Estimation of Teacher Preferences
The Estimation Model. We estimate the preferences of teachers over regions using the

following utility function:
ut,r = δr + Z′

t,rβ + εt,r (24)

Teacher t’s utility for region r is a function of region fixed effect δr, teacher-region-specific
observables Zt,r (with coefficient vector β) and a random shock εt,r which is i.i.d. over
t and r and follows a type-I extreme value distribution, Gumbel(0, 1). The region fixed
effect captures region characteristics such as the average socio-economic and academic
level of students, cultural activities, housing prices, facilities, etc. We estimate preferences
separately for tenured teachers and new teachers. This allows us to include a richer set
of variables for the former group. The vector Zt,r includes a dummy specifying whether
region r is the birth region of teacher t. If teacher t is tenured, it also includes a dummy
showing whether r is the status-quo region of teacher t and the distance between region r
and the status-quo region of teacher t. Vector Zt,r additionally includes interaction terms
between teacher t’s and region r school characteristics (that are presented in Panels A and
B of Table A.1). We apply standard scale and position normalization, setting the scale
parameter of the Gumbel distribution to 1 and the fixed effect of the Paris region to 0.

Identifying assumptions. To avoid the potential bias generated by teachers omitting
regions they consider as infeasible, we estimate the preferences of teachers under a weaker
stability assumption developed by Fack et al. (2019) and applied to the teacher assignment



Appendices: Page 59 of 65

by Combe et al. (2022).92

We start by defining the feasible set of each teacher as the set of regions with a cutoff—
that is, the lowest priority of the teacher assigned to a region—lower than her own priority.
These are the regions a teacher could be assigned to if she ranked the region first in her
preference list. The key identifying assumption is that, for each teacher, the region ob-
tained is her most preferred region among all regions that are in her feasible set.93 Hence,
we estimate a discrete choice model with personalized choice sets. Choice probabilities
have closed form solutions, and we estimate parameters using maximum likelihood.

Estimation results. Table A.5 reports preference estimates for tenured and new teach-
ers for a selected group of coefficients. We run the estimations in each of the eight subjects
separately and report results for Math and French teachers in the table. The first nine
rows report coefficients for a selected set of region fixed effects. They reveal an interesting
difference between the preferences of tenured and new teachers. While the Créteil and
Versailles regions are very unattractive for tenured teachers (as indicated by the negative
coefficient of their fixed effect relative to the Paris region), in each of the eight subjects we
consider (except Sports), these regions are more attractive for new teachers.94 The fact that
Créteil and Versailles are more attractive for new teachers, who often see a first position
in a priority education school as a stepping stone for better positions in the future, than
for tenured teachers surely contributes to the unequal distribution of teachers denounced
by policymakers.95 Yet, this is not the only explanation for teacher unequal distribution.
The counterfactual analysis we present in Section 5 shows that the assignment mecha-
nism also shapes the distribution of teachers in important ways. The fact that preferences
alone do not drive the unequal distribution is fundamental for our ability to improve both
teacher distribution and teacher welfare. Appendix J reports goodness of fit measures for
preference estimation.

Simulations. We use our estimates of utility coefficients to draw preferences of teach-
ers 1,000 times using Equation (24). After having drawn them, we keep the entire set of
regions without imposing any truncation for their simulated preference lists so that teach-

92Combe et al. (2022) provide an in-depth discussion of the two alternative identifying assumptions
(truthfulness versus stability), as well as statistical tests in favor of the latter. They mainly focus on esti-
mating the preferences of tenured teachers, and we use the same estimation in our analysis. In this paper,
we provide an additional detailed discussion on the estimation of the preferences of new teachers. For more
references on estimations that do not require truth-telling, see Akyol and Krishna (2017), Artemov et al.
(2019), Agarwal and Somaini (2018), and Calsamiglia et al. (2020).

93This assumption is theoretically founded: Artemov et al. (2019) show that, in a large market environ-
ment, any (regular) equilibrium outcome of a mechanism class that includes the Current French mechanism
must have this property.

94The 16 coefficients for the regions of Créteil and Versailles are always more negative for tenured teachers
than for new teachers (except in Sports). Still, the difference is not always statistically significant because of
sample sizes.

95As mentioned before, teachers who stay in a priority education school for at least five years benefit from
additional priority when they ask to change region or school.



Appendices: Page 60 of 65

Table A.5: Teacher Preference Estimates

Tenured Teachers New Teachers

French Math French Math

coef. s.e. coef. s.e. coef. s.e. coef. s.e.
(1) (2) (3) (4) (5) (6) (7) (8)

Region BESANCON -5.95∗∗∗ (1.09) 0.11 (0.69) -2.49∗∗ (0.81) 0.04 (1.12)
Region BORDEAUX -2.76∗∗ (1.06) 0.74 (0.58) 1.60∗ (0.72) 0.58 (0.95)
Region DIJON -6.44∗∗∗ (1.08) -3.57∗∗∗ (0.68) -2.70∗∗∗ (0.73) -2.97∗∗ (0.93)
Region LILLE -7.09∗∗∗ (1.07) -1.52 (0.79) -3.60∗∗∗ (0.75) -1.59 (1.00)
Region REIMS -7.80∗∗∗ (1.12) -3.77∗∗∗ (0.66) -4.54∗∗∗ (0.74) -4.23∗∗∗ (0.96)
Region AMIENS -7.99∗∗∗ (1.17) -3.06∗∗∗ (0.66) -4.31∗∗∗ (0.73) -3.57∗∗∗ (0.92)
Region ROUEN -7.38∗∗∗ (1.08) -3.08∗∗∗ (0.62) -3.94∗∗∗ (0.73) -1.92∗ (0.94)
Region CRÉTEIL -7.38∗∗∗ (1.10) -3.79∗∗∗ (0.67) -3.15∗∗∗ (0.74) -3.04∗∗∗ (0.88)
Region VERSAILLES -6.14∗∗∗ (1.01) -2.69∗∗∗ (0.57) -3.00∗∗∗ (0.69) -2.70∗∗ (0.86)
Status-quo region 1.88 (6.56) -26.25∗∗ (8.00)
Birth region 8.50∗∗ (3.19) 11.42∗∗∗ (3.32) 8.62∗∗ (2.75) 8.49∗∗ (3.01)
Dist. to status-quo region -17.98∗∗∗ (4.30) -23.03∗∗∗ (4.75)
% stud. urban

x Status-quo region -5.28∗∗∗ (0.83) -4.72∗∗∗ (1.06)

% stud. urban
x Teach. from CV 2.53∗∗∗ (0.69) 0.90 (0.62)

% stud. in priority ed.
x Married -5.26∗∗∗ (1.51) -1.71 (1.58) -0.55 (1.85) 3.42∗ (1.64)

% stud. in priority ed.
x Status-quo region 9.74∗∗∗ (2.78) 3.52 (3.58)

% stud. in private sch.
x Teach. in disadv. sch. -1.14 (1.84) 2.84 (1.76)

% teach. younger than 30
x Advanced qualif. 15.61∗∗∗ (3.54) -3.19 (3.04) 11.11∗ (4.37) -0.33 (2.66)

% teach. younger than 30
x Status-quo region 42.49∗∗∗ (4.90) 37.63∗∗∗ (5.76)

% teach. younger than 30
x Birth region -19.69∗∗∗ (3.53) -18.80∗∗∗ (4.77) -8.59∗∗ (3.02) -6.14∗ (2.81)

Region in South of France
x Teach. from CV -1.43∗∗∗ (0.37) 0.30 (0.34)

Number of teachers 859 605 786 958
Fit measure 0.654 0.601 0.625 0.604

Notes: This table reports selected coefficients from estimations of teacher preference for region characteris-
tics based on Equation 24. We set the fixed effect of the Paris region to 0. The last row reports our goodness
of fit measure that we compute by looking at the top two regions that a teacher has included in her sub-
mitted preference list. We measure, for each teacher, the probability of observing this particular preference
ordering in the preference list predicted with our estimations. We then average these probabilities across
teachers. Stars correspond to the following p-values: ∗ p< 0.05; ∗∗ p< 0.01; ∗∗∗ p< 0.001. Variable “Teach.
from CV” refers to whether the status-quo region of the teacher is Créteil or Versailles.

ers find all regions acceptable, while for the tenured teachers individual rationality of the
mechanisms implies being assigned to a region no worse than her status-quo region.96 In

96This implicit assumption about new teachers is in line with the policy of the Ministry. Teachers are
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each of the eight subjects and for each draw, we use these simulated preferences to run
the mechanisms. The results reported in Section 5 correspond to averages over these 1,000
draws, aggregated over eight subjects.

H Empirical Analysis: Alternative Inequality Indexes and
Statistics

The results presented so far use the T20/B20 ratio inequality index and the mean
teacher experience statistic in each region to identify high-type and low-type regions.
We show in this section that we reach similar conclusions on inequality reductions un-
der SI-CC when using three alternative combinations of indices and statistics to measure
inequality:

1. The T20/B20 ratio index based on the share of teachers that have more than four years
of experience (rather than the mean experience). Policymakers care about the share of
inexperienced teachers in each region because it can lead to achievement inequalities
among students (Bates et al., 2021, Chetty et al., 2014, and Rockoff, 2004), but also
because assigning many new teachers to undesirable regions contributes to the lack of
attractiveness of the profession (Cour des Comptes, 2013, 2017).

2. The maximin index (also known as the Atkinson-∞ index) based on teacher mean ex-
perience. The Atkinson-ε index Atkinson (1970) is based on a social welfare approach
and is a function of the society’s inequality aversion parameter ε ≥ 0. Given the statis-
tic vector z = (zs)s∈S, it is defined as the normalized ratio of the equally distributed
equivalent level of statistics to the (ws)s∈S-weighted mean of the actual statistic distri-

bution across regions as Aε(z) =1 − (∑s∈S wsz1−ε
s )

1
1−ε

∑s∈S wszs
. The index lies between zero and

one and increases with rising inequality. Varying the aversion to social inequality pa-
rameter ε can achieve a different index sensitivity to the lower tail of the distribution
of z. As ε increases, the social planner cares more about the inequality regarding the
lower tail. The varying aversion ε can be important in our teacher-assignment context
depending on the policymaker’s objectives. The limit ε → ∞ refers to the Rawlsian
inequality aversion, which aims at increasing the lowest region’s statistic as much as
possible (hence, the name maximin index follows for this particular case). In our ro-
bustness check, we use this index, which aligns with the aforementioned objectives of
the French Ministry of Education of decreasing the experience gap and is calculated
when ε → ∞ as A∞(z) = 1 − mins∈S zs

∑s∈S wszs
.

3. Maximin index based on the share of teachers that have more than four years of expe-
rience.

indeed not required to rank all regions when they submit their lists, but the Ministry fills the incomplete
lists of new teachers to make sure that all of them get an assignment; even those who ranked few regions.
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Table A.6: Alternative Inequality Indexes and Statistics

Main mech. Other mech.
Status

quo
SI-CC TTC* SI-CC* Current

French

(1) (2) (3) (4) (5)

T20/B20(Mean experience) 1.3588 1.3487 1.3691 1.3489 1.3829
% change compared to status-quo [-2.79%] [+2.87%] [-2.75%] [+6.72%]

T20/B20(Share > 4 years exp) 1.227 1.219 1.239 1.217 1.260
% change compared to status-quo [-3.75%] [+5.35%] [-4.18%] [+14.46%]

Maximin(Mean experience) 0.2345 0.2221 0.2376 0.2282 0.2487
% change compared to status-quo [-5.28%] [+1.32%] [-2.69%] [+6.05%]

Maximin(Share > 4 years exp) 0.1640 0.1532 0.1698 0.1586 0.1869
% change compared to status-quo [-6.54%] [+3.58%] [-3.29%] [+14.03%]

For each of these three alternative measures of inequalities, we replicate the entire pro-
cess of (1) defining high-type and low-type regions based on the sign of the derivative of
the inequality index, (2) customizing the regions’ teacher type rankings based on whether
they are in L (i.e., low-type) or in H (i.e., high-type), and finally (3) running counterfactu-
als using teacher preferences and type ranking profiles. We then compute the inequality
index for each mechanism.

We report the results in Table A.6.97 Two facts stand out. First, SI-CC reduces the in-
equality for all index-statistic combinations compared to the status quo. In contrast, the
Current French mechanism substantially worsens inequalities for all index-statistic combi-
nations. Second, the reduction of inequality (in percentage) between SI-CC and the status
quo is larger when considering the maximin index than when considering the T20/B20
ratio index. This interesting difference is because set L consists of only the lowest-statistic
region while all other regions are classified as H under the maximin index, and hence by
the opposing nature of the type rankings between these two sets, the lowest-statistic re-
gion gets a high inflow of experienced teachers. Under the T20/B20 ratio index, usually
at least two-three regions are in L (even if we classify all zero-derivative and positive-
derivative regions as H).

97As we did in the main text, for the T20/B20 index, we describe the change in the experience difference
ratio. For example, for the statistic share of teachers with more than four years of experience, the status-quo
experience difference ratio is 22.7%, and the Current French mechanism increases it to 26%. Then the change
in this ratio is about +14.5%.
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I Empirical Analysis: Robustness Checks for L and H Re-
gion Classifications under T20/B20 Ratio Index

This Appendix reports robustness checks in which we vary the definition of low-type
and high-type regions. As explained in Section 5.3, for our empirical analysis, in each
subject, regions are partitioned into two groups: H and L. The regions in H (or L) are re-
ferred to as high-type (or low-type). For this partition, we compute the T20/B20 ratio and its
partial derivative for each region at the status quo based on the experience of all teachers.
We then use the sign of the index partial derivative to create two groups: positive-partial
derivative regions are assigned to H, and negative-partial derivative regions are assigned
to L. The T20/B20 ratio index also has regions with zero-partial derivative. In the coun-
terfactual results presented in the paper, those regions are assigned to L if their mean
experience is below the median region’s and otherwise assigned to H.

In Table A.7, we simulated what happens if we assign the regions with zero-partial
derivative to L (column 2) or to H (column 3), respectively. These two alternative specifi-
cations provide very similar results in terms of overall mobility (4,910 under the baseline
classification used throughout the paper versus 4,888 under the low-type classification and
4,734 under the high-type classification). The high-type classification performs better than
our baseline specification in terms of overall inequality reductions. The T20/B20 ratio
of teacher experience is equal to 1.3487 with our baseline specification. It goes down to
1.3406 under the high-type classification. This good performance comes from the particu-
larly low number of new teachers with no experience who are assigned to the B20 regions
(155 under the high-type classification versus 665 under our baseline classification).

J Empirical Analysis: Variables Used for Teacher Prefer-
ence Estimations and Goodness of Fit Measures

Variables used for teacher preference estimation. The way they are abbreviated in
Table A.5 is written in parentheses.

We use the following region characteristics:

• Share of students classified as disadvantaged.
• Share of students living in an urban area as % (labeled as “% stud. urban”).
• Share of students who attend a school classified as priority education (labeled as “%

stud. in priority ed.”). Priority education is a label given to the most disadvantaged
schools in France.

• Share of students who attend a private school (labeled as “% stud. in private sch.”).
• Share of teachers who are younger than 30 (labeled as “% teach. younger than 30”)
• Region is in South of France (labeled as “Region in South of France”). The follow-
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Table A.7: SICC - Alternative Classifications for High-Type and Low-Type Regions

Zero index derivative classified as:

Baseline Low-type High-type

(1) (2) (3)

Panel A. Inequality Index
Ratio T20/B20
Value at status quo = 1.3588 1.3487 1.3505 1.3406

Panel B. Teacher mobility

Tenured teachers moved and new teachers assigned 4,910 4,888 4,734
Tenured teachers moved from the T20 regions 152 270 280
Tenured teachers moved from the B20 regions 172 148 180
Tenured teachers moved from all regions 986 964 810
New teachers assigned 3,924 3,924 3,924
New teachers unassigned 713 713 713
New teachers (0 exp) assigned to the B20 regions 665 777 155
New teachers (exp > 0) assigned to the B20 regions 445 321 887

ing 5 regions are classified as being in the South of France: Aix-Marseille, Bordeaux,
Montpellier, Toulouse, and Nice.

We use the following teacher characteristics:

• Current region of the teacher (labeled as “Status-quo region”). This is the region a
teacher is initially assigned to.

• Region where a teacher was born (labeled as “Birth region”).
• Distance between the region ranked and the status-quo region of a teacher (labeled as

“Distance to status-quo region”).
• Teacher’s current region is Créteil or Versailles, which are the two least attractive re-

gions (labeled as “Teach. from CV”). The attractiveness of a region is measured by the
ratio of the number of teachers who rank the region as their first choice divided by the
number of teachers who ask to leave the region.

• Teacher is married (labeled as “Married”).
• Teacher has spent at least 5 years in a school labelled as priority education (labeled as

“Teach. in priority education”).
• Teacher has an advanced teaching qualification (labeled as “Advanced qualif.”).

Goodness of fit measures. Our main fit measure (also reported in Table A.5) considers
the top two regions that a teacher has included in her submitted preference list. We then
compute the probability of observing this particular relative ordering in the preference list
predicted by our estimations. This fit measure based on relative ranking (instead of the
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characteristics of the school ranked first, for instance) is particularly suitable for our envi-
ronment in which some teachers might not rank regions that they consider as infeasible.98

In addition to the overall fit quality, we also compute fit measures for the tenured teachers
who are employed in the two least attractive regions, namely, Créteil and Versailles, at
the status quo. Inspecting the fit quality for this sub-group of teachers is particularly im-
portant because teachers from Créteil and Versailles represent a large share of the tenured
teachers who submit a transfer request every year and they are more likely to stay in their
positions. These two facts could affect the preference estimation for these teachers under
our fairness assumption. Across the 8 subjects, our fit measures range from 0.62 to 0.72
for tenured teachers and from 0.56 to 0.69 for new teachers, which compare favorably to
those obtained by Fack et al. (2019) (between 0.553 and 0.615).

98When teachers skip regions perceived as infeasible, the first region they report might not be their most
preferred region—and indeed, the tests we perform reject truth-telling—but conditional on ranking schools,
the order in which a teacher ranks the schools might correspond to teacher true relative preference. This is
why we prefer to use a fit measure that is based on relative ranking rather than on the characteristics of the
school ranked first.
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