
Charter Lottery Data Checklist

This document provides a checklist for collecting and processing admissions lottery
data from charter schools. It highlights the most common issues in cleaning lottery
data. It is not exhaustive, and there is no substitute for perusing the data and making
sure the code does what it’s supposed to.

Code Hygiene 2
Initial Data Processing Steps 3

Importing Datasets 3
Merging Datasets 3
Appending Datasets 3
Cleaning Student Names 4
Cleaning Dates 5
Coding Priority Groups 5
Coding Offer Variables 6
Tackling Invalid Applications 6
Tackling Duplicates 7
Making Sense of Lottery Numbers 7
Making Sense of the Lottery 9

Fuzzy Matching 9
Additional Resources 13

1



Code Hygiene

● Create a makefile (a code file to support codebase set up) that contains all the
necessary packages and sets file paths for the project.

● Add a descriptive header to the top of each code file that documents the
purpose of the code, which datasets are inputs, and which datasets are outputs.

● Set up an intuitive, structured folder system for code, intermediary datasets,
and output.

○ Create separate code files for each school and cleaning stage. Organize
the school’s data processing files into a subdirectory.

■ Use consistent naming practices in your code file names. Code that
covers the same cleaning step should be named similarly.

○ For the sake of replicability, create folders programmatically rather than
manually (e.g., using the mkdir command in Stata).

● Use main do-files
○ Consider creating a main code file for each school that contains switches

for each code file in the data processing pipeline. This way, you can easily
control which sections of the cleaning and matching process you would
like to run for a given school.

○ Consider creating an overarching main code file that contains switches for
each school-level code file. This way, you can run code for multiple
schools at the same time.

● Save an intermediate dataset at the end of each section turned on by switches.
This way, you can run individual sections without having to rerun all the
preceding sections.

● Label each dataset so that you know its purpose. It can be hard to infer from
the filename alone, especially when you may have more than a dozen
intermediate files with somewhat similar names.

○ We recommend including the school, years covered, and data processing
stage in each dataset’s name.

● Use assert commands frequently to check your work!
● Write programs for complicated and frequently-used processes, such as

geocoding.

2



Initial Data Processing Steps

Importing Datasets
● Always import the raw datasets with code (e.g., import excel or import

delimited in Stata). Avoid any manual steps for importing datasets.
● Import all columns as string variables to make merging and appending

easier. You can convert variables to numeric and date types in the cleaning
stage.

● Be careful when manipulating the original raw file. Never replace the
original file with a version with saved changes. Consider creating a backup raw
file.

● Label each file sensibly. One option is creating a variable denoting the file
name (i.e., gen year = `i’, if the file contains lottery data for year `i’) so that you
can label the files for different years programmatically.

Merging Datasets
Sometimes, you may need to merge different datasets together to get all the relevant
lottery information in one year.1 For example, with SchoolMint data, you may need to
merge an application report with a custom report containing every applicant’s lottery
number.

● Check that your merging variable uniquely identifies observations.
● Note how many observations are not found in both datasets and iterate with

your data providers to address missing data as necessary.

Appending Datasets
You will also need to append datasets to create one working lottery dataset. For
example, if each file is associated with a year of lottery data, you will want to append
these together to construct your full data set.

● Before appending yearly files, verify that variable names are consistent
across all files (e.g., The variable denoting the student’s first name might be

1 See the Charter Lottery Data Intake Form for more information on the lottery data required to conduct a
lottery-based evaluation of charter school effectiveness.

3

https://docs.google.com/document/d/1fxWeZSsQdVzrNj4g5fUO5uzA2lNfovmA/edit


called “First Name” in the 2016 file, but “first_name” in the 2017 file. The names
should be made consistent across years/files. Otherwise, you might end up with
missing values of the first name variable!)

● Label the appended file.

Cleaning Student Names
Cleaning student names consistently across years and schools is crucial because names
will be used in the fuzzy-matching process to match charter lottery applicants to their
enrollment records.

● Strip off:
○ Combining marks (“-” in Smith-Jones)
○ Accents (umlauts)
○ Special characters
○ Suffixes (e.g., Jr., II, III)
○ All beginning, trailing, and multiple consecutive spaces

● Convert the name variables either to all lowercase or all uppercase.
Whatever you do, be consistent across years and schools!

● Standardize how you flag students with no middle name. Typically we
replace other values indicating a missing middle name with “NMN.”

○ Some common indicators that a student does not have a middle name:
NA, NONE, NM, NO, NOMIDDLE, NOMIDDLENAME, NONAME,
NOTAPPLICABLE.

○ During the fuzzy matching process, you may run into many different
values that indicate a student has no middle name, causing students not
to match across datasets. For example, a student may be listed as “John
N/A Smith'' in one dataset and “John DOESNTHAVEAMIDDLENAME
Smith'' in another. You can manually mark these as matches in the fuzzy
matching step, but we suggest going back to the cleaning script and
adding to the list of values to replace with NMN.

4



Cleaning Dates
The lottery data will contain date variables, such as the date a student submitted their
application (“submission date”), the date a student received an offer from a charter
school (“offer date”), and the student’s birth date.

These dates are crucial for the analysis. Submission dates allow us to infer which
applications were submitted late and therefore were not included in the lottery. Offer
dates allow us to infer which students received an offer. Student birth dates are used to
match student application data to administrative student records.

● Remove any extraneous text (e.g., time zones EDT or EST) that may
prevent converting dates from strings to doubles.

● Detect different date formats across files and write code to handle them.
Sometimes date variables are formatted differently by the year of the lottery file.

● Add an `assert` command that checks that dates were cleaned properly and
no additional missing values were generated in the process.

○ To accomplish this, you could save the raw, uncleaned variables and
generate a cleaned version to compare.

Coding Priority Groups
Correctly coded priority groups allow us to control for every applicant’s “risk” (i.e.,
probability) of being offered a charter school seat. For example, an applicant whose
sibling attends the school they are applying to will have a different risk of an offer than
an applicant who just lives in the public school district. Some things to look out for
when coding the priority groups:

● Locate and refer to documentation confirming the priority group rules.
This information can usually be found on the school or CMO’s enrollment
website. You’ll want to keep a copy of the lottery rules in each year for your
records. To access previous versions of the enrollment website and extract the
priority group rules for previous years, use a tool like the Wayback machine.

● The lottery datasets usually have some string variables with text stating what
type of priority groups there are. Inspect all the possible values of this string
variable and determine how you will recode them to a numbered priority
group.

5



○ For example:
■ priority_group = 1 for siblings of current students
■ priority_group = 2 for in-zone applicants
■ priority_group = 3 for out-of-zone applicants

○ The `levelsof` command in Stata is helpful to determine the possible
values of the priority group string variable.

● Generate a binary variable for each priority group
○ In Stata, `strpos` is helpful here if your dataset has a string variable

containing all the possible priority groups.
■ Ex: gen byte sibling_attending = strpos(priorities_string, “Sibling

Attending”) > 0
● Verify that your categorizations of the string priority group variable to the

recoded priority group variable are mutually exclusive and collectively
exhaustive. In other words, you want to make sure that you are not overwriting
previously recoded applicants (mutually exclusive), and you also want to make
sure you’re recoding priority groups for all applicants (collectively exhaustive)!
This is a useful place to use assert commands.

Coding Offer Variables
● There are two strategies for coding initial offers:

○ Option 1: Use documentation from the school or from the Wayback
machine to find the lottery date. Students with that offered_date can be
coded as initial_offer == 1. You should try this option first.

○ Option 2: Tabulate the offered_date lottery and find the earliest
offered_date. Students with the earliest offered_date can be coded as
initial_offer == 1.

■ Sometimes, the earliest offered_date used in Option 2 differs from
the actual lottery date used in Option 1. In that case, you should
use Option 2.

● Use an `assert` command to check that ever_offer is only switched on when
initial_offer is switched on.

6



Tackling Invalid Applications
The lottery datasets often include observations (applications) that are considered
invalid for various reasons. Cases of invalid applications include:

● Late applications: students who submitted their applications after the
application deadline and are therefore not included in the lottery.

● Applications with either missing or invalid names or dates of birth.
● Applications with missing or implausible lottery numbers (e.g., negative values).
● Applications with implausible birthdates (e.g., birthdates outside the +/-3 range

of the mode).
● Applications with missing school, grade, or year variables.
● Canceled applications.

● Flag these invalid applications so that they can be identified easily in later
stages of the analysis.

● Consult with the lottery documentation or contacts at the charter schools
to determine which types of applications are considered invalid.

Tackling Duplicates
● Consider creating a unique ID variable before dropping any observations

(see the fuzzy matching section).
● Duplicate observations to drop: the same student who applied to the same

lottery (school-grade-year) and received the same lottery number.
● Genuine duplicates to flag: different students who applied to the same lottery

(school-grade-year) and received the same lottery number, the same student
who applied to the same lottery (school-grade-year) multiple times and received
multiple lottery numbers.

● For charter management organizations (CMOs) with multiple campuses, it
sometimes appears that students applied to multiple campuses. In reality, they
applied to the CMO as a whole, but the school adds another observation when
they get an offer to a specific campus. In these cases, offer variables should be
coded based on the second observation created.

7



Making Sense of Lottery Numbers
● Check whether the offered dates, lottery numbers, and priority groups are

consistent with each other through visual plots.

The most helpful versions plot initial_offer and offered_dates on the y-axis and lottery
numbers on the x-axis, with priority groups color-coding each observation. Examples of
these plots are given below. These plots can help you quickly determine if something
fishy is going on. A plot is created for every year-grade-school. For example:

● Are offers being given “out-of-order”? For example:
○ Students with priority group 3 are getting offers before students in

priority group 1.
● Are priority groups inconsistent with lottery numbers? I.e., as you go from

lottery number 1 to N, does the priority group progress from 1, to 2, to 3, or does
it jump back and forth inconsistently?

8



The best way to use these plots is to pick a year-grade-school where something is “off”
and then inspect the data directly to see what went wrong. Was it the coding of the
offer variable, priority groups, etc., that caused things to go wrong? Or is something
wrong with the raw data itself?

Making Sense of the Lottery
● Check that applicant characteristics are balanced across offered and

non-offered applicants.

Theoretically, the applicants offered a seat and those not offered a seat through the
lottery should share the same characteristics (on average). We check this by conducting
balance checks for applicant characteristics by offer status:

● These are conducted at the school and grade level (typically the major entry
grades: 5th or 6th grade and 9th grade) on the set of valid applications.

9



● Key demographics include gender, race, SPED status, FRPL status, age (in
months), in-district at baseline, and neighborhood characteristics, where
available.

● Relevant offer statuses include initial offer and ever offer.
● Regress each characteristic on offer status controlling for risk set (the likelihood

an applicant will receive an offer).

Imbalance at the school level need not cause concern. It’s likely that the pooled school
sample will be balanced even if some schools’ lottery winners and losers are
imbalanced. If desired, you can explore imbalance for a given school and grade further
by subsetting into risk sets to identify the risk set(s) where imbalance occurs.

Fuzzy Matching

● Matching lottery records to state administrative records may require fuzzy
matching. One great option is using the reclink2 command in Stata with name
(first, middle, and last) and date of birth as the merging criterion.2

● Make sure student names and birthdates are properly and consistently
cleaned and formatted!

○ Consider using phonetic algorithms such as Stata’s soundex or nysiis
commands.

● Use a timer to measure run times and document the output for future
reference and planning. Fuzzy matching commands tend to have long run
times.

● reclink2 requires a unique ID in the master dataframe (the lottery data)
and the using dataframe (administrative data). You will likely have to
generate this ID yourself.

○ Consider generating the unique ID before any applications are dropped so
the numbering is not sensitive to keep/drop coding decisions.

2 Several recent papers have merged on name and date of birth, including Rose et al. (2022), Norris et al.
(2021), and Baron et al. (2022).

10

https://journals.sagepub.com/doi/pdf/10.1177/1536867X1501500304
https://www.stata.com/manuals13/m-5soundex.pdf
http://fmwww.bc.edu/repec/bocode/n/nysiis.ado
https://www.stata.com/manuals/ptimer.pdf
https://ekrose.github.io/files/rss_teachers_cjc.pdf
https://www.aeaweb.org/articles?id=10.1257/aer.20190415
https://www.aeaweb.org/articles?id=10.1257/aer.20190415
https://www.nber.org/system/files/working_papers/w29855/w29855.pdf


○ Consider concatenating the year with an id_counter so the addition of
new/updated yearly data does not change the unique IDs of previous
observations.

○ Add checks to confirm that your unique ID is truly unique.
● Rerun the fuzzy matching code only when necessary. The matching process

is lengthy and can be tedious. It may be necessary to rerun when:
○ New lottery data is added (e.g., a new year of data is added or a new

version of the 2022 lottery data is added to replace the old).
○ New years of student administrative records become available.

● After running the fuzzy match algorithm, sort the observations by fuzzy
matching score and determine an arbitrary cut-off score at or above which
all observations will be automatically marked as matches. This cutoff will
vary by the data set. At Blueprint, we’ve used cutoffs between 0.7 and 0.85.

● Implement rules of thumb for observations below the cutoff to mark as
automatic matches to improve replicability and reduce the number of
observations that must be manually matched.

○ Some string variables that are helpful to create for this:
■ FirstName + MiddleName + LastName
■ MiddleName + LastName
■ FirstName + MiddleName

○ Some examples of these rules may include:
■ Master and Using have the same last name and same birthdate but

swapped first and middle names.
● Ex: JOSHUA JACK JOHNSON and JACK JOSHUA JOHNSON

■ Master and Using have the same first name and same birthdate but
combined middle name and last names.

● Ex: JOSHUA JACK JOHNSON and JOSHUA JACKJOHNSON
■ Master and Using have the same first name and birthdate but

swapped middle name and last name.
● Ex: JOSHUA JACK JOHNSON and JOSHUA JOHNSON JACK

■ Master and Using have the same last name and birthdate but
combined middle name and first name.

● Ex: JOSHUA JACK JOHNSON and JOSHUAJACK JOHNSON

11



■ Master and Using have the same first name, last name, and
birthdate, but middle name is missing from one dataset.

● Ex: JOSHUA JACK JOHNSON and JOSHUA JOHNSON
■ Master and Using have the same first name, last name, and

birthdate, but only a middle initial is used in one dataset.
● Ex: JOSHUA JACK JOHNSON and JOSHUA J JOHNSON

○ Keep an eye out for Hispanic naming conventions. Students may have
multiple last names listed in the administrative dataset and only one last
name listed in the lottery data.

■ Use `strpos` in Stata to identify these cases and mark them as
matches. Ex: strpos(using_last_name, master_last_name) > 0.

● When determining if a fuzzy match below the cutoff is a true match, it’s helpful
to compare the grade to which the student in the lottery data is applying and the
grade in which the student in the administrative data is currently enrolled.
Generally, grade_current + 1 should equal grade_applying.

○ For example, if a student is currently enrolled in grade 5, it’s unlikely that
they are applying for grade 3.

○ For cases in which the grade_current + 1 does not equal grade_applying,
employ more stringent rules when marking manual matches (i.e., names
have to be nearly identical).

● After running the fuzzy matching process using the criteria of both name (first,
middle, last) and date of birth, consider fuzzy matching just on name as a
second step.

○ There may be cases in which parents mistakenly enter the wrong
birthdate. Common instances of this include switched days and months
(i.e., 06/10/2004 and 10/06/2004), switched digits (i.e., 06/10/2004 and
06/01/2004), and wrong months (06/10/2004) and (07/10/2004).

○ Generating a numeric variable that captures the difference between the
two birth dates is helpful here. For example, we generally consider all
proposed matches in which the birthdates are more than 3 years apart to
be false matches.

12



■ This can also help identify the common instances of misinput
birthdays. For example, birth dates 30 or 365 days apart may be
more likely to be true matches.

○ When excluding date of birth as a fuzzy matching criterion, be less lenient
about the differences in names that you’ll consider matches. For example,
you may require names to match exactly or almost exactly.

Some additional notes on reclink2:
● Reclink2 creates duplicate observations when two or more observations in the

using dataset match to an observation in the master dataset with exactly the
same score. This normally happens with scores well below the cutoff that
separates "true" matches from "false" matches (more on this under "manual
review" below), but for the few cases where it happens above the cutoff, manual
review should help decide which match to keep. For the remaining duplicates,
use `duplicates drop` after each iteration of reclink2.

● Command options:
○ required: When using required(var1 var2) the variables var1 and var2

must match exactly for the observations to be considered a match. When
matching lottery data to enrollment files, it can help to match on year and
student date of birth.

○ exactstr: This option is useful when matching with a numerical variable
and that variable is not under the option required. Since reclink2 uses a
string comparator, the dob 7/28/2000 would be considered a closer match
to 7/28/2009 than the dob 7/28/1999, even though the latter is a more
reasonable match. This option overcomes this problem since the variable
is compared with a 0/1 agreement rather than with a degree of similarity
given by the string comparator.

○ uvarlist: Use this option if the master and using files have different
names for any of the matching variables. The using variable will still be
renamed to match the name in the master dataset, but it avoids the extra
step of having to rename the variables before being able to use reclink2.

○ manytoone: Use this option if there is any possibility that there are any
duplicates/multiple application applicants (either perfect or with

13



differences in spelling) in the master dataset. This way both (or more)
records for the same applicant are matched to one observation in the
using dataset. This doesn't avoid the issue that there shouldn't be any
duplicates in the using dataset. This option is not available in reclink,
hence we use reclink2.

○ npairs: This option allows you to keep multiple potential matches rather
than only the match with the highest score (default). In Blueprint
experience, when we tried using it to match lottery data to enrollment
data, there were no cases where observations had more than one
(reasonable) potential match (or if there was more than one, the match
with the highest score was always the correct one). So, in this case, it was
not necessary, but it may be useful if there is the possibility that there are
duplicates (with spelling differences) in the using dataset. This option is
not available in reclink.

Additional Resources

● Innovations for Poverty Action’s page on fuzzy matching
● Abramitzy et al.’s guidance on linking historical data and examples of different

algorithms that can be implemented
● NBER Reporter article on linking historical census data
● Working with date-time variables in Stata is tricky. These two documents (A and

B) give an overview of how to manipulate date-time data, like convert strings
containing date/time information into doubles with date/time formatting.

● Replication package for Cohodes et al. (2021) “Can Successful Schools
Replicate?”

● Replication package for Angrist et al. (2013) “Explaining Charter School
Effectiveness”

14

https://povertyaction.github.io/guides/cleaning/04%20Data%20Aggregation/02%20Fuzzy%20Merge/
https://www.nber.org/system/files/working_papers/w25825/revisions/w25825.rev0.pdf
https://www.nber.org/system/files/working_papers/w25825/revisions/w25825.rev0.pdf
https://www.nber.org/reporter/2022number2/promise-linked-historical-census-data
https://www.stata.com/manuals13/u24.pdf
https://www.stata.com/manuals/ddatetime.pdf
https://doi.org/10.3886/E118542V1
https://doi.org/10.3886/E118542V1
https://www.openicpsr.org/openicpsr/project/113867/version/V1/view
https://www.openicpsr.org/openicpsr/project/113867/version/V1/view

