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Abstract

School assignment in Boston and New York City came to national attention in the 1970s as

courts across the country tried to integrate schools. Today, district-wide choice allows Boston

and New York students to enroll far from home. Although 1970s desegregation efforts likely

benefited minority students, urban school transportation is increasingly costly and may not

generate the gains in learning and educational attainment seen decades ago. We estimate con-

temporary causal effects of non-neighborhood school attendance and school travel on racial

integration, achievement, and college enrollment using an identification strategy that exploits

partly-random assignment generated by the Boston and New York school matching algorithms.

Instrumental variables estimates suggest distance and travel boost integration for those who

choose to travel but have little or no effect on test scores. Travel reduces post-secondary attain-

ment and on-time high school graduation in New York. IV estimates show no human capital

gains from travel even for students who indicate a strong preference for non-neighborhood

schools. These findings are explained in part by the fact that the schools travelers travel to

differ little in value-added terms from schools nearby. Negative effects on college enrollment

in New York appear to arise from travel itself rather than diminished college value-added.JEL
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I Introduction

Bus transportation has been an integral part of the public education system for years,

and was perhaps the single most important factor in the transition from the one-room

schoolhouse to the consolidated school ... we find no basis for holding that the local

school authorities may not be required to employ bus transportation as one tool of

school desegregation. Desegregation cannot be limited to the walk-in school.

Swann v. Charlotte-Mecklenburg Board of Education, 402 U.S. 1, 1971

The question of who goes to school where is as contentious today as it was in 1954, when the

Supreme Court set out to integrate American schools. Neighborhood-based school assignment,

once common in cities and still the norm in suburban school districts, necessarily reflect patterns

of residential segregation. Non-neighborhood assignment schemes may mitigate the consequences

of residential segregation, perhaps facilitating an equitable allocation of high-quality seats. But

travel to non-neighborhood schools is costly. This is documented in Figure I, which plots average

annual per-pupil transportation expenditure in the 100 largest US school districts (by enrollment)

for 1991-2020. The Boston and New York City school districts are among the highest transportation

spenders, with recent annual costs of $1,500-$2,200 per student (in 2017 dollars). Boston and New

York transportation spending is also growing: the cost of getting kids to school in these bellwether

cities roughly doubled in the quarter century covered by the figure.

[insert figure I here]

High transportation costs reflect the fact that many large urban districts allow families to choose

schools district-wide, lengthening school commutes for many. District-wide choice is a feature of

school assignment in Boston, Chicago, Denver, Indianapolis, Newark, New Orleans, Tulsa, and

Washington, DC, to name a few. In choice districts, seats at over-subscribed schools are typically

allocated by algorithms that reflect family preferences and a limited set of school priorities. In the

1970s and 1980s, by contrast, non-neighborhood schooling in urban districts arose largely through

court action (or the threat of court action) meant to integrate segregated schools. Today’s voluntary

choice schemes evolved as courts withdrew from the school assignment arena. District-wide choice is

meant to afford all students a shot at more integrated and higher-quality schools, without imposing
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an allocation of seats.1

This paper asks whether school travel in the modern choice paradigm boosts integration and ed-

ucational outcomes as hoped, especially for minority students. Our investigation focuses on Boston

and New York, cities of special interest because of their high transportation costs and because

these cities’ schools are among the most segregated in the country. The latter fact is documented

in Figure II, Panel (a) of which plots minority exposure for minority students enrolled in the 100

largest districts. Minority exposure, defined as the proportion of a student’s schoolmates who are

Black or Hispanic, is plotted separately for Black and Hispanic students. Figure II shows minority

exposure to be especially high for both minority groups in Boston and New York. Moreover, as can

be seen in Panel (b) of the figure, Boston and New York minority exposure is among the highest

relative to cities with comparable levels of overall minority enrollment.

[insert figure II here]

Our analysis estimates causal effects of non-neighborhood school attendance and school travel

time on integration and education outcomes in the population of public school students for whom

travel is facilitated by district-wide school choice. As a descriptive matter, Boston and New York

students who opt for non-neighborhood schools have higher test scores and are more likely to go

to college than those who travel less. These differences, which come from ordinary least squares

(OLS) estimates with a few demographic controls, may reflect selection bias as much or more than

causal effects. Specifically, students from more motivated or better-off families may be more likely

to travel.

The problem of selection bias is solved here using the conditional random assignment gener-

ated by school matching algorithms. Students who list both neighborhood and non-neighborhood

schooling options, as many do, may be seated at a nearby school or at a school farther away. Condi-

tional on an applicant’s preferences and school priorities, modern choice algorithms randomize seat

assignment. This conditional random assignment manipulates distance and travel independently

of potential outcomes. Our instrumental variables (IV) estimation strategy exploits conditional

random assignment using an econometric framework that builds on the propensity-score-based

methods developed in Abdulkadiroğlu et al. (2017) and Abdulkadiroğlu et al. (2022). In a method-

1An extensive literature examines the design and impact of modern school choice systems. Empirical analyses
include Chubb and Moe (1990), Hoxby (2003), and Kahlenberg (2003); theoretical models of school choice are
developed in Avery and Pathak (2021), Barseghyan, Clark and Coate (2019), and Grigoryan (2021).
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ological contribution, these methods are extended here to IV models where the instrument depends

on a multinomial propensity score (similar to Imbens (2000) and Hirano and Imbens (2004)) and

on a vector of observed covariates. In addition to allowing for an ordered treatment, this extension

addresses the fact that non-neighborhood school assignment depends on an applicants’ residential

address as well as on their assigned school.

IV estimates using conditionally randomized school offers as instruments for school travel show

that minority applicants who travel farther indeed enroll in schools with fewer minority peers as

a result. Over a third of students in the samples analyzed here attend schools where the student

body is over 90% Black or Hispanic peers, a segregation measure termed minority isolation.2 Non-

neighborhood school enrollment reduces minority isolation markedly. For Black Boston students,

for instance, non-neighborhood attendance reduces the probability of attending a minority isolated

school by 22 percentage points.

The integrating effects of non-neighborhood enrollment notwithstanding, travel to more distant

schools does not appear to increase student achievement, high school graduation rates, or post-

secondary attainment. IV estimates of non-neighborhood and travel effects on achievement are

close to zero and estimated precisely enough to rule out modest positive effects, while IV estimates

of effects on high school graduation and college attendance by minority students are mostly neg-

ative. Although race-specific estimates of effects on graduation and college enrollment for Boston

students are noisy, pooled Boston graduation estimates are negative and marginally significantly

different from zero. The corresponding estimates for Hispanic New Yorkers show statistically sig-

nificant reductions in on-time graduation on the order of 2-3 percentage points. Estimated college

enrollment reductions for all New York applicants, also statistically significant, are roughly 2 points.

As with high school graduation effects, estimated college enrollment reductions are largest for His-

panic New Yorkers. This constellation of findings is reproduced in IV estimates that allow for

differential impacts according to preferences for distance and travel.

2Such measures have a long history in public discussion of segregated schools. The Morgan v. Hennigan 379 F.
Supp. 410 (D. Mass. 1974) decision, for example, discusses “racially identifiable schools,” noting that 84% of white
students attended schools that were more than 80% white, while 62% of Black students attended schools that were
more than 70% Black. Cohen (2021) likewise defines intensely segregated schools to be those with 90% students of
color, defined as all nonwhites. Similarly, Potter (2022) defines segregated schools as those where 90% of students are
of the same race. Descriptive evidence suggesting racial isolation is harmful to minorities has motivated integration
policy since at least United States Commission on Civil Rights (1967), a companion to the influential Coleman Report
(Coleman, 1966).
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Because busing is motivated by the belief that more distant schooling options are better for

minority applicants, school quality is a natural mediator of school distance and travel effects. To

make this mediation hypothesis concrete, we gauge school quality with value-added, a measure

meant to approximate the causal effect of attending a particular school. We then ask whether

negative effects of travel on graduation and college attendance can be explained by negative effects

on value-added. This analysis shows that travelers attend schools with value-added similar to

that of the neighborhood schools they would have attended had they not traveled. Moreover, an

econometric framework allowing for separate effects of travel and value-added, instrumented by

offered travel and offered value-added, suggests travel has direct negative effects. The upshot,

therefore, is that, while travel boosts integration, the schools travelers travel to are no better

than those nearby. At the same time, travel comes at the cost of reduced graduation and college

enrollment rates for many students, perhaps because important school resources are harder to access

when schools are farther from home.

Our study builds on a wide range of previous work. Recently, Cordes, Rick and Schwartz (2022)

concludes that long bus rides leave test scores unchanged while reducing attendance and increasing

chronic absenteeism among New York elementary school students (this study uses idiosyncratic

variation in bus routing to identify causal effects). Chingos and Monarrez (2020) surveys mostly

descriptive research on the link between school choice and segregation, while Monarrez (2020)

considers the extent to which race determines school attendance boundaries. Our work likewise

connects with extensive academic research considering the effects of school choice on students,

including Hastings and Weinstein (2008), Deming (2011), Deming et al. (2014), and Campos and

Kearns (2024). Other related research examines the consequences of attendance at various types of

schools or sectors, such as charter and pilot schools, exam schools, magnet schools, and schools with

high value added.3 These investigations largely ignore questions related to distance and travel.

We also build on research that considers integration effects directly, including Welch and Light

(1987), Hoxby (2000b), Rossell and Armor (1996), Rivkin and Welch (2006), and Hanushek, Kain

and Rivkin (2009). The end of de jure segregation appears to have yielded important economic gains

3A non-exhaustive list of relevant studies includes Cullen, Jacob and Levitt (2006); Abdulkadiroğlu et al. (2011);
Abdulkadiroğlu et al. (2017); Angrist et al. (2016); Lucas and Mbiti (2014); Ajayi (2014); Hoxby, Murarka and Kang
(2009); Dobbie and Fryer (2011, 2014); Abdulkadiroğlu et al. (2016). Chubb and Moe (1990) suggests that choice
engenders competition that may promote quality; research exploring these considerations includes Hoxby (2000a),
Hastings, Kane and Staiger (2009), and Campos and Kearns (2024).
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for Blacks (e.g., Smith and Welch (1989) and Card and Krueger (1992)). Guryan (2004), Johnson

(2019), and Anstreicher, Fletcher and Thompson (2022) likewise report estimates showing early

integration-induced education gains for Black students outside the South. But initial integration

efforts typically coincided with major changes in education inputs, especially school spending.

Evidence on integration effects from more recent periods is more mixed (see, e.g., Hoxby (2000b)

and Card and Rothstein (2007)). These divergent findings may reflect the fact that average per-

pupil spending today often increases with higher minority attendance (reflecting, for instance, extra

allocations for special needs and limited English proficiency students). It’s noteworthy, therefore,

that our econometric framework uses school assignment lotteries to isolate distance and travel

effects while implicitly holding district-level variables related to school spending fixed.

The next section sketches the history of desegregation efforts and school assignment schemes in

Boston and New York. Section III describes our data and presents descriptive statistics. Section

IV reports OLS estimates and details the econometric framework used to estimate causal effects of

school distance and travel. Section V reports the IV estimates this framework generates. Following

a discussion of effects on achievement and college attendance, this section presents a mediation

analysis based on school value-added. The paper concludes with a simulation characterizing the

integration consequences of a neighborhood-focused cost-saving centralized assignment plan. This

simulation highlights the trade-offs between lower transportation spending and reduced integration.

At the same time, while integration may be of intrinsic value, our estimates suggest that in urban

districts today, a return to neighborhood schools–such as is now being discussed in some large

urban districts–is unlikely to reduce human capital and may even generate some gains.

II Background

A A Tale of Two Cities: Court-Ordered and Voluntary Integration

A seemingly quotidian matter, transportation policy in many school districts is the legacy of decades

of racial strife. The debate over busing in the Boston Public Schools (BPS) came to national

attention in April 1976, when the front page of the Boston Herald American featured a photo

captioned “The Soiling of Old Glory” (Masur, 2008). Snapped on Boston’s City Hall Plaza, this

picture showed an angry white teen using the American flag to attack African American attorney

5



Ted Landsmark. The attacker was a participant in an unruly and sometimes violent anti-school-

busing protest, while the victim was a bystander destined to play an important role in Boston

school policy debates.

Massachusetts’ Racial Imbalance Act of 1965 laid the legal groundwork for school busing in

Boston. The Act defined racial imbalance in statistical terms and required that schools deemed

racially imbalanced desegregate or lose state funding. This legislation notwithstanding, until 1974,

Boston students attended schools in catchment areas designed to segregate by race. The elected

Boston School Committee of the 1960s failed to cooperate with state efforts to desegregate schools.

School committee defiance ultimately led to a 1974 Federal District Court ruling imposing the

state’s busing plan on the city. United States District Judge Arthur Garrity, the presiding judge

in the case, effectively managed Boston school assignment until 1983, with the state taking over

through 1988. Garrity oversaw a mandatory busing plan that divided Boston into 867 residential

geocodes (shown in Figure A1). Each geocode was paired with a particular school in an effort to

engineer racially-balanced enrollment. Only in 1989 did responsibility for school assignment revert

to the district.

Boston’s “controlled choice” assignment plan of the early 1990s, described in Willie and Alves

(1996) and Willie, Edwards and Alves (2002), initially targeted racial balance. In 1997, however,

the Boston desegregation case was officially closed. Two years later, the Boston School Commit-

tee voted to eliminate the use of race and ethnicity for purposes of school assignment. Since the

2000-2001 school year, Boston school assignment has ignored race. From 1999 to 2004, the nascent

Boston school match used the widely-criticized immediate acceptance algorithm (Abdulkadiroğlu

and Sönmez, 2003; Pathak and Sönmez, 2008). The Boston school match has since employed the

student-proposing deferred acceptance algorithm (DA) to assign seats at public schools other than

charter and exam schools. DA in Boston uses a random lottery number to distinguish otherwise

identical applicants. The Boston match relies on choice rather than court-ordered busing to facili-

tate school access across neighborhoods.4

[ insert figure III here]

Following the end of court-ordered busing in Boston, some measures of segregation of Black and

4The match includes traditional and pilot schools. Boston pilot schools, run by the district, are meant to be
a model halfway between the broad autonomy of state-authorized charter schools and traditional public schools.
Abdulkadiroğlu et al. (2011) estimates charter and pilot school effects on test scores.
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Hispanic students initially increased. Figure III details the evolution of school-level racial exposure

from 1988 to 2022, plotting the proportion of a student’s schoolmates who are Black or Hispanic,

as well as the proportion attending racially isolated schools, defined here as schools that are at

least 80% or at least 90% Black or Hispanic. Panel (a) of the figure shows that, in 1988, fewer than

15 percent of Boston’s Black students were enrolled in the most racially isolated schools. In 2003,

minority isolation peaked at around 50 percent.

Among Black students in Boston, exposure to other Black students has fallen since 2003, while

exposure to Hispanics has increased. The combination of falling Black exposure and rising Hispanic

exposure has generated relatively stable combined minority exposure over time. A measure of

minority isolation based on an 80% threshold likewise stabilized around 2003. As can be seen on

the right side of Panel (a) in the figure, the evolution of Hispanic exposure to minority peers in

Boston mostly mirrors that seen for Blacks. But the higher level and more steeply-sloping increase

in Boston Hispanic students’ peer share Hispanic is a noteworthy difference.5

Desegregation efforts in New York have been voluntary rather than a consequence of court

action. In the 1950s and 1960s, New York City school assignment was mostly neighborhood-based.

Unsurprisingly, segregated neighborhoods led to similarly segregated neighborhood schools. In the

1960s, critics of the city’s de facto segregation argued that schools attended by Black children were

overcrowded, run-down, and staffed by inexperienced teachers. Attempts both to mandate (and to

proscribe) cross-neighborhood busing nevertheless foundered (Delmont, 2016). Dissatisfaction with

educational opportunities for New York’s minority children came to a head in February 1964, with

a boycott in which nearly half a million mostly nonwhite students stayed home, one of the largest

protests in US history. The anti-segregation boycott was followed that year by a white-led counter-

boycott. In 2004, decentralized community control of schools gave way to city-wide administration

through the NYC Department of Education (Abdulkadiroğlu et al., 2005; Ravitch, 2011). Since

then, New Yorkers have debated the role of neighborhoods and geography in the city’s assignment

system. A 2021 reform proposal, for instance, aimed to remove neighborhood-determined priorities

from the centralized match (Veiga, 2021).

Contemporary discussions of New York school segregation often focus on the fact that white

5Data for Figures II and III (further detailed in Online Appendix B) are from the Common Core survey, docu-
mented in https://nces.ed.gov/ccd/pubschuniv.asp. Caetano and Maheshri (2023) notes the growing importance
of Hispanic enrollment for segregation trends nationwide.
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and upper-income families have many options that effectively bypass mostly-minority traditional

public schools.6 Alternatives include private schools, screened public schools that select applicants

according to a variety of criteria, and highly coveted seats at the city’s exam or specialized high

schools, including the renowned Stuyvesant, Brooklyn Tech, and Bronx Science. New York’s many

other selective “screened schools” came to prominence in the 1970s, when the city expanded the

use of selective admissions in the hope of encouraging mostly white and Asian middle-class families

to remain in city schools.

Measures of segregation in New York public schools have declined since the late 1990s, falling

from levels much above those initially seen in Boston. New York segregation trends are documented

in Panel (b) of Figure III. In 1988, over 70% of Black New York students attended the most

racially isolated schools (again, defined as those with over 90% minority enrollment). By 2022,

this proportion had fallen below 50%. Trends in minority isolation based on an 80% cutoff, as well

as overall minority exposure, slope more gently downward over this period than does the trend in

isolation based on a 90% cutoff. Still, minority isolation and minority exposure in New York show a

marked drop over the three decades spanned by Figure III. Like Boston, New York has seen steady

growth in the Hispanic enrollment share, a fact reflected in increasing exposure to Hispanic peers

and decreasing exposure to Black peers among both Black and Hispanic students.

Boston and New York segregation patterns have partly converged since the 1980s. While New

York segregation has trended lower for longer than in Boston, in both cities, minority exposure is

recently around 75%, while minority isolation has fallen since the turn of the century. Both cities

have also seen a remarkable reduction in exposure to Black peers for both Black and Hispanic stu-

dents, with a corresponding increase in Hispanic exposure. Motivated by these evolving patterns of

racial diversity, our investigation considers school distance and travel effects on Black and Hispanic

students separately as well as jointly.

B Busing and Choice

Since the early 2000s, Boston has assigned seats centrally in a match that takes as inputs school

priorities over students and student preferences over schools, which students submit in the form

of a rank-order list. From 2001-05, Boston assigned students using the immediate acceptance

6This viewpoint is reflected in the New York Times’ widely-heard 2020 podcast, Nice White Parents.
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algorithm. Since 2006, the Boston match has employed a version of DA, with priority given to

siblings of enrolled students and to students residing in a school’s designated walk zone. Appendix

Figure A1 maps Boston geocodes, originally defined in the Garrity era and used during our study

period. School-specific walk zones are determined by one-mile radius circles centered at each school;

residents of any geocode intersected by a school’s circle are said to reside in the school’s walk zone

(in what follows, we call these “Garrity walk zones”).7

The Boston match, which covers traditional and pilot schools, breaks ties using a single random

lottery number assigned to each student. Boston students may also attend publicly-funded charter

schools and one of three public selective-enrollment exam schools. Boston charter schools run

single-school lotteries, while Boston exam schools run two separate DA matches for 7th grade and

9th grade admissions, using weighted averages of elementary school GPA, middle school GPA and

an admissions exam score to rank applicants. Although Boston charter and exam school students

are eligible for transportation services, we focus on schools in the traditional sector since effects of

travel to schools outside the traditional sector are harder to interpret.8

New York’s centralized assignment scheme is also based on student preferences, school-specific

priorities, and a DA match. New York priorities depend on many factors, including geography and

attendance at an open house prior to the match. Within New York priority groups, tie-breaking

relies either on a random lottery number or on school-specific non-lottery criteria like test scores,

interviews, and auditions. Schools using non-lottery tie-breakers are known as “screened schools,”

while those using lottery tie-breaking are said to be “unscreened.” The New York high school

match excludes charter schools and a few highly selective exam schools such as Stuyvesant and

Bronx Science (these are called “specialized high schools” in New York vernacular). As in Boston,

New York exam schools run a separate match.

Sixth graders in Boston currently qualify for yellow school bus service if their home-school

walking distance exceeds 1.5 miles. All Boston students in grade 7 and higher qualify for passes

7See Dur et al. (2018) for more on Boston’s walk-zone policy. Motivated by high transportation costs, Boston
adopted a “Home-Based plan” in 2014 limiting the set of schools each applicant might rank, while still including at
least some with good outcomes (Shi, 2015; Pathak and Shi, 2021).

8Over our sample period from 2002 to 2017, Boston’s three exam schools admitted students solely based on their
composite score and a random tie-breaker. Abdulkadiroğlu, Angrist and Pathak (2014) uses the exam school match to
estimate causal effects of exam school attendance on educational outcomes in Boston and New York. Abdulkadiroğlu
et al. (2011) and Cohodes, Setren and Walters (2021) use single-school charter lotteries to estimate Boston charter
effects.
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granting free use of public city transport from September through June (BPS, 2021).9 In New York,

all high school students who live farther than 0.5 miles from school are eligible for MetroCards

granting free use of city subways and buses (NYC, 2021).10

III Data and Samples

We obtained BPS data on all applicants for 6th- and 9th-grade seats in the centralized middle and

high school matches for the school years beginning fall 2002-17. Match files include information

on applicants’ preferences over schools, school priorities, and lottery tie-breakers. Data on school

enrollment come from the Massachusetts Department of Elementary and Secondary Education

(DESE). DESE files contain school enrollment data, as well as demographic information including

race, subsidized lunch status, sex, special education status, and language proficiency status. We

also obtained DESE data from the Massachusetts Comprehensive Assessment System (MCAS), a

standardized assessment taken by all Massachusetts public school students. MCAS tests are taken

in Grades 3-10. MCAS outcomes examined here are Grade 6 Math scores and Grade 7 ELA scores

for Grade 6 applicants and Grade 10 scores for Grade 9 applicants. Baseline scores are from Grade

4 for middle school applicants and from Grades 7-8 for high school applicants.11 Test scores are

standardized by test-grade-year to have mean zero and unit variance within a subject-grade-year

among enrolled students in Boston in our sample who are tested in a given year. For concision, we

construct a single MCAS outcome from the mean of Math and ELA scores.

College outcomes for Boston high school students are measured using data from the National

Student Clearinghouse (NSC) database. NSC data were obtained by DESE, which aims to match

Massachusetts public school graduates to NSC every year and matches non-graduates every other

year. The NSC records supplied by DESE are used to code dummies for any college attendance

and for four-year college attendance.

The New York Department of Education (DOE) provided data on applicants to 9th grade

9Boston 7th and 8th graders were bused until 2014-15 (BPS, 2014).
10Until 2019, students in grades 7-12 living between 0.5 and 1.5 qualified for half-fare bus-only MetroCards

(Corcoran, 2018).
11The ELA baseline changes because MCAS testing expanded during our sample period. Grade 7 ELA scores are

used for applicants enrolled in Grade 9 in school years 2002-03 through 2005-06 and Grade 8 ELA scores are used
for applicants enrolled in Grade 9 in school years 2006-07 through 2013-2014.
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public high school programs from fall 2012 to fall 2016.12 New York application files include

the information used in the high school match. The DOE also provided information on student

assignment and enrollment, residential location, and demographic characteristics.

New York test score data come from two sorts of assessments. SAT scores, from tests taken

mostly in 11th grade, provide achievement outcomes. We construct a single SAT outcome score

from the mean of Math and reading standardized scores. Baseline test score data are from New

York State standardized Math and ELA assessments taken in 6th grade. For purposes of our

analysis, all scores are standardized to have mean zero and unit variance in the population of New

York charter, traditional public school, and exam school students, separately by subject, grade, and

year. Data on New York graduates’ college enrollment data come from the DOE’s annual match

of its graduates to the NSC and were also provided by the DOE.

Our analysis examines two busing-related treatments, the first determined by attendance at

a non-neighborhood school, and the second a measure of travel time. For Boston students, non-

neighborhood assignment and attendance are defined according to whether students live in a school’s

Garrity walk zone. For New York students, non-neighborhood schooling is defined according to

whether students are assigned or enroll at a school outside their district of residence (The DOE

partitions New York City into 32 districts). In both cities, travel time to school is given by public

transit travel time between a student’s residence and school, setting an arrival time of 8:00 am

on January 31st, 2022. Travel time is the shortest combination of walking, local and express

bus, and subway modes, estimated using the HERE Public Transit API. Residential addresses are

approximate (for Boston, this is the centroid of the geocode of residence; for New York, this is

the centroid of the census tract of residence). A set of online appendices further detail our data,

samples, and variable definitions.

Finally, as noted in the discussion of segregation trends, we focus on impacts on Black and His-

panic students as well as on students overall. This focus reflects public interest in school quality for

disadvantaged minorities and decades of scholarship documenting important changes in the quality

of the schools minority students attend (see, e.g., Welch and Light (1987); Card and Krueger (1992);

Rivkin and Welch (2006)). Moreover, as in many large urban districts that pay for transportation,

12Exam and charter schools do not participate in the centralized high school match. See Abdulkadiroğlu, Pathak
and Roth (2005) for a detailed description of New York’s exam-school match.
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the Boston and New York public school population is predominantly Black or Hispanic. Because

most busing is within-district, we leave study of relatively rare inter-district busing programs (such

as the Massachusetts Metco program) for future work (see Bruhn (2023) and Setren (2024)).

A Sample Characteristics

Table I describes the students in our analysis samples. Roughly three-quarters of Boston match

applicants rank a non-neighborhood school first, while a similar fraction enrolls outside their neigh-

borhood. The demand for non-neighborhood enrollment is almost as high in New York, where

roughly two-thirds of applicants rank a non-neighborhood option first with a similar proportion

enrolling out of neighborhood. Students in both districts travel an average of 33-38 minutes to

school each way; distance traveled averages around 4 miles.13 Seventy percent of Boston students

are eligible for busing; almost all New York students are busing-eligible.

[insert table I here]

Like many large urban school districts, New York and Boston public schools have high minority

and low-income enrollment. Boston enrollment is 77% Black or Hispanic, with 70% qualifying for

a subsidized lunch. The corresponding figures for New York are 69% and 75%, respectively. Both

districts enroll substantial numbers of limited English proficiency and special education students.

The IV strategy used to estimate causal effects looks at match participants only, a group referred

to here as applicants. Applicant characteristics appear in columns 2 and 6 of Table I.14 Non-

applicants in Boston are mostly continuing 6th graders enrolled in K-8 schools or those applying

to charter and exam schools only. The New York applicant sample excludes high-needs special

education students, assigned outside the match, as well as students who enroll in the city’s public

schools after the match.15

With a few exceptions, applicants have demographic characteristics broadly similar to those

of the enrolled sample. In particular, Boston applicants are a little more likely to be low income:

column 2 shows that 77% of applicants qualify for a subsidized lunch, while 70% of enrolled students

13Elementary school students travel less. Focusing on Grades 3-6 in New York and using data from the NYC Office
of Pupil Transportation, Cordes, Rick and Schwartz (2022) reports that the average home-to-school travel time is
21.1 minutes.

14Appendix Table A1 details the sample selection rules used to define each sample.
15Students whose individualized education program (IEP) places them in a designated special needs category are

assigned outside the match (NYC Match, 2021). Student who arrive over the summer are seated administratively.
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do so. The most noteworthy difference between the enrolled and applicant Boston samples is lower

baseline scores in the latter. This partly reflects attendance in charter and exam schools, which

are not part of the match, by students who applied exclusively to these schools. Exam schools in

particular tend to enroll higher achievers (Abdulkadiroğlu, Angrist and Pathak, 2014).

The New York applicant and enrolled student samples likewise appear demographically similar.

At the same time, mean baseline scores for New York applicants exceed mean baseline scores in

the New York enrolled sample. This reflects the exclusion of many special education students from

the former. Note also that while our applicant samples exclude those who apply to charter and

exam schools only, they include match participants ultimately seated in a charter or exam school.

It’s noteworthy, therefore, that the instrumental variables used to identify causal effects of distance

and travel are uncorrelated with charter and exam-school attendance in the sample used for causal

analysis (this is shown in Appendix Table A2).

The samples used for causal inference, described in columns 3 and 4 for Boston and 7 and 8

for New York, consist of the set of applicants for whom non-neighborhood enrollment or travel is

randomized. These experimental samples consist of applicants whose assignments can be changed

by redrawing tie-breakers. Just over one-quarter of New York applicants and roughly 37% of Boston

applicants are subject to a tie-breaking experiment. In data from both cities, minority and low

income (defined by free or reduced-price lunch eligibility) applicants are disproportionately likely

to be subject to experimental variation in assignment. Baseline test scores for the experimental

samples are also lower than among all applicants, especially in New York. Lower baseline scores in

the New York experimental sample reflect New York’s many screened schools: as we explain below,

screened school tie-breaking generates experimental variation local to screened school admissions

cutoffs. Students with high baseline scores are therefore more likely to be sure of obtaining a

screened-school seat.

IV Econometric Framework

A OLS Estimates

We are interested in the causal effects of school distance and travel on the school environment

and academic outcomes. Ordinary least squares (OLS) estimates of the relationship between non-
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neighborhood attendance and academic achievement provide a natural benchmark for the IV esti-

mates that follow. OLS estimates are generated by fitting a model that can be written:

Yi = αGi +X ′iΓ + ηi, (1)

where Gi indicates non-neighborhood school attendance, Xi is a vector of controls, and ηi is a re-

gression residual. Coefficient α is the parameter of interest. In Boston data, Gi indicates attendance

at a school outside a student’s Garrity walk zone. In New York data, Gi indicates out-of-district

attendance.

Equation (1) is estimated on the sample of enrolled students (a subset of the enrolled sample

described in the first and fifth columns of Table I, limited to students with outcome data). Covariate

vector Xi includes dummies for race, gender, special needs status, free or reduced-price lunch

eligibility, and English proficiency status; along with grade and year dummies. To control for

differences across neighborhoods, equation (1) includes fixed effects for each walk zone in Boston

and for each district in New York (these are determined by students’ residential address). Given

our focus on traditional public schools, OLS estimates come from models that include dummies

for exam and charter sector attendance, and a dummy for match participation. Models for New

York add dummies for attendance in District 75 or 79, district codes allocated to high-needs special

education students and students with other unique needs (e.g., incarcerated youth or those pursuing

a GED). The dependent variable, Yi, is a test score or a measure of high school graduation or college

attendance. Boston test scores are from the MCAS (sum of 6th grade Math and 7th grade ELA

for middle school, sum of 10th grade Math and ELA for high school). New York test scores are

from the SAT, taken by approximately 70% of students. We measure high school graduation with

a dummy indicating whether students ‘graduate on-time’, meaning within four years of enrolling

in 9th grade.16

Boston students who enroll out-of-neighborhood tend to have higher average test scores and are

more likely to go to college than students who attend schools closer to home. This is documented

in the first three columns in Panel A of Table II, which reports estimates of α in equation (1)

separately for all, Black, and Hispanic students. Specifically, Table II shows that Boston students

16Graduation for students who transfer to a different district during high school is coded as missing.
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who enroll beyond their neighborhood score about 0.03σ higher on MCAS tests. Boston students

who enroll in non-neighborhood schools are also 1.7 percentage points more likely to enroll in

college. Estimates for subsamples of Black and Hispanic students are similar. In contrast, non-

neighborhood attendance does not significantly affect four-year college enrollment rates and has a

small, but statistically significant, negative effect on the rate of on-time high school graduation.

[insert table II]

OLS estimates for New York also show a strong association between achievement and non-

neighborhood attendance. New York students attending non-neighborhood schools score roughly

0.08σ higher on the SAT, results reported in column 1 of Panel B in Table II. The corresponding

estimated achievement gains for minority New Yorkers at non-neighborhood schools are a little

smaller, though still substantial. Non-neighborhood attendance in New York is also associated

with higher rates of college-going, mostly driven by 4-year college attendance which is increased by

1.5 points.17 Similar to Boston, non-neighborhood attendance has a small negative effect on the

likelihood of graduating high school on time.

The non-neighborhood schooling treatment is defined by arbitrary neighborhood boundaries.

We therefore explore causal effects of travel time as well. Travel effects are scaled in twenty-minute

increments, a scaling motivated by Figure IV, which plots the distribution of travel time for non-

neighborhood attendance compliers. Among applicants induced to enroll out-of-neighborhood by

virtue of being offered a non-neighborhood seat in the match, travel times average 16-19 minutes

longer than they would have been in the absence of such an offer. This figure also highlights the

skewness of non-neighborhood commute times relative to the compressed distribution for those

enrolling close to home. The model is estimated by replacing the dummy for non-neighborhood

attendance by the continuous measure of travel time to the enrolled school. Estimated travel-time

effects reflect outcomes for students who ride an hour or more to school as well as outcomes for

students whose commute is far shorter.

[insert figure IV]

OLS estimates for travel time effects, reported in columns 4 to 6 of Table II, show positive effects

of travel on test scores and college enrollment, comparable to those estimated for non-neighborhood

17Blagg, Rosenboom and Chingos (2018) documents a similar association between travel time and test scores in
Washington, DC.

15



attendance. Notably, travel time effects are more precisely estimated than non-neighborhood atten-

dance effects, with standard errors twice smaller. In Boston, an additional 20 minutes of travel is

associated with 0.02σ higher MCAS scores and 1.3 points higher college attendance rate. In NYC,

travel time effects are somewhat smaller than non-neighborhood attendance effects: attending a

school 20 minutes further increases SAT scores by 0.05σ and 4-year college enrollment rates by 1.1

points. Travel time in New York is also associated with higher graduation rates, though the gains

are small. It remains to be seen, however, whether the association between school distance and

travel and educational outcomes documented in Table II reflects causal effects or selection bias.

B Identification and Estimation of Causal Effects

Tie-breaking in the Boston and New York school assignment algorithms generates a research design

that identifies causal effects. In both cities, applicants submit rank-order lists of preferences for

school programs and are granted priorities by each program (many New York schools run multiple

programs, each admitting separately). We refer to an applicant’s preferences and priorities their

type, denoted θi for applicant i. School assignment differences for students with the same value of

θ are due solely to the tie-breaking embedded in the match.

Boston uses a single randomly drawn lottery number as tie-breaker for all schools. To see how

lottery tie-breaking can be used to identify causal effects of school distance and travel, consider

a constant-effects model of the effects of non-neighborhood attendance, indicated by dummy Gi

as before. Potential outcomes {Y0i, Y1i} are indexed against this. The constant causal effect of

interest, β = Y1i − Y0i, is identified by an IV estimand that uses non-neighborhood assignment,

Zi, as an instrument for Gi in a two-stage least squares (2SLS) procedure incorporating a control

function derived from our understanding of the Boston and New York matches.

The details behind this argument are fleshed out as follows. LetDi(s) indicate whether applicant

i is offered a seat at school s ∈ S, where S denotes the set of schools in the match. Although Zi is

not randomly assigned, it’s a function of the set of conditionally randomized offers, {Di(s)}, and a

vector of covariates, gi. Specifically,

Zi =
∑
s

Di(s)gi(s), (2)
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where gi(s) indicates whether s is a non-neighborhood school for i. Collect the set of gi(s) for

applicant i in vector gi. With lottery tie-breaking, identification is a consequence of the following

conditional independence property:

E[Y0i|θi, gi, Zi] = E(E[Y0i|θi, gi, {Di(s)}]|θi, gi, Zi) = E[Y0i|θi, gi]. (3)

The first equals sign uses (2); the second uses lottery tie-breaking, which implies that, conditional

on type, offers of a seat at s are determined by lottery and therefore ignorable in the sense of

being independent of potential outcomes. Conditioning on gi is irrelevant for the ignorability of

school-specific offers, Di(s), but necessary for ignorability of Zi.

This conditional independence property leads to the following identification result:

Proposition 1. Suppose the effect of Bernoulli treatment Gi is constant and given by β = Y1i−Y0i.

Given instrumental variable Zi, defined in (2) and satisfying (3), we have that:

β =
E[(Zi − µi)Yi]
E[(Zi − µi)Gi]

, (4)

where µi ≡ E[Zi|θi, gi] and the denominator is presumed to be non-zero. Moreover,

µi =
∑
s

ψs(θi)gi(s), (5)

where

ψs(θi) = E[Di(s)|θi] = P [Di(s) = 1|θi]

is the DA propensity score derived in Abdulkadiroğlu et al. (2017).

Proposition 1 is a consequence of the fact that, by virtue of the conditional independence

characterized by (3), we can write

Yi = βIVGi + h(θi, gi) + εi, (6)
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where

h(θi, gi) ≡ E[Y0i|θi, gi], (7)

εi ≡ Y0i − h(θi, gi), (8)

and these two terms are mean-independent of the centered instrument Zi−µi. Mean-independence

of Zi − µi and h(θi, gi) + εi is the orthogonality condition yielding (4).

As in the original Rosenbaum and Rubin (1983) propensity score framework (and extensions to

ordered and continuous treatments as in Imbens (2000); Hirano and Imbens (2004)), the dimension

reduction implied by (5) is also useful. Control function µi depends on θi solely via the the profile of

assignment risk, {ψs(θi)}. Although θi has many points of support (there are almost as many types

of applicants as there are applicants), DA propensity scores depend on only a few characteristics of

an applicant’s rank-order list and the associated school-specific (but not applicant-specific) cutoffs

determined by the match. Abdulkadiroğlu et al. (2017) uses a large-market approximation to derive

this result, giving a formula for ψs(θi) that’s employed here to estimate µi for each applicant.18

Let µ̂i denote consistent estimates of µi computed from large-market estimates of the profile of

assignment risk. Plugging these into the sample analog of (4) gives an estimator,

β̂IV =

∑
s(Zi − µ̂i)Yi∑
s(Zi − µ̂i)Gi

,

that converges to β by the continuous mapping theorem. β is also estimated consistently (and

conveniently) via 2SLS with first and second stages:

Gi = γZi + κ1µi + ξ1i, (9)

Yi = βGi + κ2µi + ξ2i. (10)

To see why, suppose first that µi is known and recall that a just-identified 2SLS estimand with

covariate µi can be written as IV using instrument Z̃∗i , defined as the residual from a regression of

Zi on µi (see, e.g., Angrist and Pischke (2009)). Here, µi = E[Zi|θi, gi], so E[Zi|µi] = µi, a linear

18Since we focus on students who are assigned seats in the match, the relevant DA propensity score is normalized
by match participants’ probability of being assigned any school in the match.
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function of µi. The population regression of Zi on µi therefore yields the CEF residual,

Z̃∗i = Zi − E[Zi|θi] = Zi − µi.

In practice, µi must be estimated, but 2SLS estimates controlling for µ̂i (denoted β̂2SLS), are

likewise consistent for β as long as µ̂i converges to µi.
19

Our 2SLS estimates incorporate two extensions to this framework. The first, relevant for both

Boston and New York, covers ordered treatments like travel time, Ti, rather than Bernoulli Gi.

Swapping Ti for Gi in (9) and (10), the instrument for Ti is an applicant’s travel time to the school

they’re offered in the match. Formally, let ti(s) denote the time it takes applicant i to travel to

school s and collect school-specific travel times for applicant i in vector ti. The offered travel

instrument can then be written:

ZTi =
∑
s

Di(s)ti(s), (11)

with control function µTi = E[ZTi |θi, ti] where Di(s) is a school-specific offer dummy as before. The

extension of Proposition 1 to this case solves the problem of causal identification with an ordered

treatment tackled previously by Imbens (2000). In particular, inclusion of the control function

for an ordered treatment obviates the need to condition on multiple conditional probabilities as in

earlier work.

Second, because New York’s high school match employs a mix of lottery and non-lottery tie-

breaking, the control function for New York uses the more elaborate characterization of assignment

risk derived in Abdulkadiroğlu et al. (2022). This local DA propensity score relies on the fact

that, in a shrinking bandwidth around DA admissions cutoffs, non-lottery tie-breakers behave like

lottery numbers. The local DA propensity score, written ψs(θi, τi(δN )), depends on a collection of

indicators for cutoff proximity, denoted τi(δN ) and determined in part by a data-driven bandwidth,

δN . The conditioning variables that define non-neighborhood control function µi for New York

19Appendix B derives the limiting distribution of β̂2SLS assuming match applicants constitute a random sample
from the population of interest. The estimation error in empirical propensity scores originates in the randomness of
lottery draws rather than sampling variance. Even so, sampling experiments discussed in Appendix A.7 of Abdulka-
diroğlu et al. (2017) suggest that conventional robust-standard-error-based p-values for score-controlled reduced-form
estimates match the corresponding randomization-based p-values closely. Angrist et al. (2024) uses a similar 2SLS
estimator based on centralized assignment to estimate individual school value-added. Borusyak and Hull (2023)
develops an IV strategy that uses simulation methods to compute terms like µi.
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applicants include τi(δN ) as well as applicant type and the vector of non-neighborhood indicators,

gi. The control function for non-neighborhood offers in New York can therefore be written:

µi = E[Zi|θi, gi, τi(δN )] ≈
∑
s

ψs(θi, τi(δN ))gi(s),

where the assignment risk profile, {ψs(θi, τi(δN ))}, allows for both lottery and non-lottery tie-

breakers (this risk profile is approximate, characterizing offer rates as δN → 0). 2SLS estimates

of non-neighborhood attendance effects for New York are computed using versions of (9) and (10)

that add design controls in the form of local-linear functions of screened-school tie-breakers; these

functions employ the bandwidth used to define τi(δN ).20

The 2SLS estimator characterized by (9) and (10) is derived here under constant effects. In

practice, treatment effects may be heterogeneous. Extending results in Angrist and Imbens (1995)

and Angrist, Graddy and Imbens (2000), Borusyak and Hull (2023) shows that a centered IV esti-

mand of the form described by (4) can be written as a weighted average of covariate-specific causal

effects. With a dummy treatment and a dummy instrument, as in the non-neighborhood school-

ing model, the IV-estimand is a weighted average of conditional-on-covariates treatment effects for

covariate-specific compliant subpopulations defined by the response of Gi to Zi. Characteristics

of the set of non-neighborhood compliers, defined as applicants who enroll in a non-neighborhood

seat when offered but not otherwise, match those of applicants with non-neighborhood assignment

risk (the latter reported in columns 3 and 7 in Table I).

Appendix Table A2 reports a set of results meant to validate our research design. Even when

instruments are randomly assigned, differential attrition may lead to selection bias. Roughly 80%

of Boston match applicants have an MCAS Math or ELA outcome. Table A2 shows that the

likelihood of observing these outcomes is unrelated to both non-neighborhood-offer and offered-

travel instruments. Roughly 70% of New York students take the SAT. New York students who travel

are slightly less likely to have SAT scores. College outcomes – which come from administrative data

from the National Student Clearinghouse – are unlikely to be compromised by instrument-related

20The bandwidths used here are estimated as suggested by Calonico, Cattaneo and Titiunik (2014). Bandwidths
are computed separately for each test score variable; we use the smallest of these for each program. We set δN = 0
for screened programs with fewer than 5 applicants in the bandwidth who are either below or above the tie-breaker
cutoff. Design controls are as specified in equation (12) of Abdulkadiroğlu et al. (2022). These include dummies
indicating applicants who applied to each program and dummies indicating applicants in each bandwidth.
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differences in follow-up.

A second set of diagnostics evaluates covariate balance. Appendix Table A2 also reports coef-

ficients from regressions of baseline covariates on instruments, controlling for estimated µi. Bal-

ance regressions for Boston show no statistically significant relationship between instruments and

baseline covariates. This highlights the balancing property that motivates our µi-controlled 2SLS

strategy. Balance estimates for New York applicants show a few small, marginally significant dif-

ferences, but the magnitudes of these seem unlikely to lead to substantial omitted variables bias. In

any case, the 2SLS estimates discussed below are from models that include the baseline covariates

as controls. Control for covariates changes the 2SLS estimates little while improving precision.

Beyond the usual concerns with differential attrition and covariate balance, research designs

exploiting centralized school assignment may be compromised by spillover effects that lead to

violations of the IV exclusion restriction supporting a causal interpretation of 2SLS estimates.

When one applicant is offered a non-neighborhood seat, another may be offered the neighborhood

seat not taken. This in turn may change neighborhood peer composition even for those who don’t

travel. Spillovers of this sort can be seen as a violation of the non-interference or stable unit

treatment values (SUTVA) assumption that typically underpins causal inference (see, e.g., Imbens

and Rubin (2015)). In the large-market framework used to construct µi, however, an individual

applicant’s school assignment is determined solely by their own tie-breakers and type. Offers are

therefore theoretically uncorrelated across applicants. Our empirical exploration of possible SUTVA

violations (not reported) suggests spillover effects are indeed negligible.

V IV Estimates

A Integration Consequences of School Distance and Travel

Minority students who enroll in non-neighborhood schools have fewer minority classmates as a

result. This is documented in Table III, which reports 2SLS estimates of non-neighborhood atten-

dance effects on peer composition, separately by city. The table shows estimates for all applicants

with experimental variation in neighborhood attendance or travel time and for two subgroups de-

fined by race. The associated first-stage estimates for all applicants (not shown in the table) imply

that a non-neighborhood offer increases rates of non-neighborhood attendance by 0.38 in Boston
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and 0.56 in New York. Estimated first stages for Black and Hispanic applicants are similar.

[insert table III here]

In all-applicant samples, the impact of both non-neighborhood schooling and an additional

twenty minutes of travel on the proportion of a student’s classmates who are Black or Hispanic is

modest. Disaggregating by race, however, effects on Black applicants’ minority exposure (defined as

the proportion of a student’s schoolmates who are Black or Hispanic in 6th and 9th grades in Boston

and 9th grade in New York) are substantial. Non-neighborhood attendance in Boston causes Black

students to attend schools with 7.8 percentage points fewer Black peers and 5.8 percentage points

more Hispanic peers, resulting in a decrease in overall minority exposure of 2 percentage points.

Non-neighborhood school attendance also reduces minority isolation for Black Boston applicants

sharply, a fall of 22 percentage points compared to a mean of about 48 points. We focus on

minority isolation defined by a 90% rather than an 80% cutoff since the higher threshold features

in contemporary discussions of segregation (e.g., Cohen (2021) and Potter (2022)).

Among Black New York applicants, non-neighborhood school attendance results in a roughly

8.5 percentage point reduction in Black peers and a 4.8-point increase in Hispanic peers. Overall

minority (Black or Hispanic) exposure falls by 3.6 percentage points for Black New Yorkers who

attend non-neighborhood schools. Non-neighborhood attendance also reduces minority isolation

by around 3.4 points.

Non-neighborhood school attendance places Boston’s Hispanic applicants in a more integrated

environment, though to a far lesser degree than for Black applicants. Specifically, non-neighborhood

attendance reduces Hispanic applicants’ peer share Hispanic and peer share Black, but neither of

these effects (on the order of 1 point) are significantly different from zero. Non-neighborhood school

attendance reduces Hispanic minority isolation by over 10 points. Estimated integration effects for

New York’s Hispanic students are larger than for those in Boston. These estimates suggest that

non-neighborhood attendance decreases peer share Hispanic by 5.9 percentage points while boosting

peer share Black by 1 percentage point. Non-neighborhood attendance reduces Hispanic New York

applicants’ minority isolation by almost 9 percent, larger than the impact for Black applicants.

The pattern of estimated effects of school travel time on peer race and minority isolation mostly

parallels that seen in estimates of effects of non-neighborhood attendance. For Black students, for

example, twenty minutes of travel reduces minority exposure by about 3.8 points in Boston and by
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4.7 points in New York. Travel effects are also consistently negative across racial groups.

On balance, the estimates in Table III suggest that non-neighborhood attendance has substantial

integrating effects, especially for Black applicants. Non-neighborhood attendance reduces same-race

exposure more for Hispanic New Yorkers than for Hispanics in Boston. Effects on peer share Black

and Hispanic students tend to be offsetting, however, so that changes in overall minority exposure

due to non-neighborhood schooling are well below the corresponding changes in same-race exposure.

Estimates of the effects of twenty minutes of travel on integration are broadly similar to, but more

precise than, estimated effects of non-neighborhood attendance.

B Effects on Achievement and College Attendance

Non-neighborhood attendance and lengthier school travel times reduce minority applicants’ same-

race exposure and cut minority isolation sharply. In addition to these integration effects, we

might expect non-neighborhood schooling and travel to increase learning and college attendance

as well. The 2SLS estimates reported in Tables IV, however, show little evidence of positive non-

neighborhood schooling or travel effects on achievement, high school graduation rates, and college

enrollment.

[insert table IV here]

As can be seen in the first three columns of Table IV, Boston students who enroll out-of-

neighborhood have test scores and college attendance rates comparable to those of students who

stay in-neighborhood. Among Black Boston applicants, for example, non-neighborhood attendance

generates an estimated 0.03σ (se=0.06) improvement in MCAS scores. In the Boston sample, non-

neighborhood school attendance is estimated to reduce the likelihood of on-time high school grad-

uation by 10.3 percentage points, though this significant impact is imprecisely estimated (se=5.0).

2SLS estimates of the effects of twenty minutes of additional travel are more precise than the

corresponding estimates of non-neighborhood effects. For example, the estimated effect of travel

on MCAS scores for Black applicants in Boston is 0.019σ with an estimated standard error of

0.032. By contrast, the standard error of the corresponding non-neighborhood effect is about twice

as big. It’s therefore noteworthy that most of the relatively precise estimated effects of twenty-

minute travel time on test scores, on-time high school graduation, and college enrollment are not
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significantly different from zero.21 In this context, the only (marginally) statistically significant

estimated travel effect for Boston students is a 5.5 percentage point decrease in the likelihood of

any college attendance for Blacks.

Most of the 2SLS estimates of the impact of non-neighborhood schooling on Boston students’

test scores, high school graduation rates, and college attendance rates are smaller than the cor-

responding OLS estimates. At the same time, few of the 2SLS estimates for non-neighborhood

attendance in Boston are estimated precisely enough to be statistically distinct from the corre-

sponding OLS estimates. But 2SLS estimates for New York are considerably more precise than

those for Boston. With estimated standard errors of around 0.02 − 0.03, 2SLS estimates for New

York provide sharp evidence of null effects of non-neighborhood enrollment and travel time on

academic achievement.

Statistically significant negative estimates for college enrollment and high school graduation in

Panel B of Table IV suggest extra travel may be harmful in New York, at least for some. These

negative effects are largest among Hispanic students. Estimates for this group, reported in column

6, suggest twenty minutes of additional travel reduces on-time high school graduation rates by 2.5

points, college-going by 5.0 points, and four-year college attendance by 3.5 points. Estimated travel

effects on Black college-going are also negative, but not statistically distinguishable from zero.22

Perhaps gains from travel are diluted by the fact that some travelers are reluctant. This

possibility is examined by estimating a model that interacts travel time with an indicator for

applicants whose first choice is a neighborhood school. Roughly a quarter of Boston and a third of

New York match participants place a neighborhood school at the top of their rank-order list. The

interacted model is estimated using offered travel and an interaction between offered travel and an

indicator for in-neighborhood first choice as instruments, controlling for the offered travel control

function and the interaction of this function with the in-neighborhood first-choice indicator.

[insert table V here]

Results from this interacted model, reported in Table V, show no evidence of travel benefits

21Estimates allowing for nonlinear travel time effects, reported in Appendix Table A3, suggest nonlinearity here
is unimportant.

22Distance and travel have little effect on absences, suspensions, or a composite disciplinary index in Boston.
Estimates for New York suggest twenty minutes of extra travel increases days absent by 0.8, but the corresponding
estimated non-neighborhood effect is not significantly different from zero. Estimates of travel effects on behavioral
outcomes are reported in Appendix Table A4.

24



for students who prefer non-neighborhood enrollment. Effects on students who did not rank a

neighborhood school first are given by the main travel effect in this model. These estimates,

reported in the first row of each panel in Table V show a pattern of zeros for test scores and

negative effects on high school graduation and college similar to that seen in Table IV. Estimated

interactions with preferences are noisy for Boston but reasonably precise for New York. Across

both cities and demographic groups, 2SLS estimates of coefficients on terms interacting travel time

with neighborhood first choice are not statistically different from zero. On balance, these results

suggest that even among students who wish to travel, the gains from travel are illusive.

C Mediation Analysis

The integration gains afforded by school travel fail to boost achievement, high school gradua-

tion rates, or college enrollment. Contrasting findings for integration and education outcomes are

reconciled here using a model of travel and other mediators of school effectiveness. Following a

preliminary analysis of offered travel on school quality, we focus on New York since the New York

sample is large enough for our random assignment research design to distinguish multiple causal

forces. The resulting estimates suggest travel improves school quality little. At the same time,

holding school quality fixed, travel decreases on-time high school graduation rates and college en-

rollment. This may be explained by the fact that longer commute times come at the expense of

study and sleep time (a hypothesis examined in Carrell, Maghakian and West (2011) and Cordes,

Rick and Schwartz (2022)). Alternately, teachers and school guidance counselors may better serve

students who reside close to school.23

School value-added provides a parsimonious summary of school effectiveness that should reflect

the impact of education inputs like class size, teacher skills, and peers on student achievement.24 Let

ν(s) denote the value added by school s, a quantity defined separately for achievement, graduation,

and college enrollment, but assumed to be the same for all students. The casual value added

23The US Department of Transportation’s Safe Routes to School Program cites a number of potential benefits of
short school commutes (USDOT, 2021).

24Appendix Table A5 reports estimates of the effect of distance and travel on student-teacher ratios and two
measures of teacher qualifications. Although non-neighborhood schooling and school travel appear to increase average
class size, these changes are likely too small to have measurable downstream consequences. (Krueger (1999) estimates
a 0.2σ increase in achievement from a 10-student reduction in class size, while the class size consequences estimated
here amount to a change of less than one student.) Effects on teacher qualifications are even smaller.
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experienced by student i is

Vi =
∑
i

Ai(s)ν(s),

where Ai(s) is a dummy indicating whether i attends school s.

We’re interested in a model of achievement in which achievement depends both on causal value

added and travel time. This is captured by assuming

Yi =
∑
s

Ai(s){λν(s) + βti(s)}+ h(θi) + εi

= λVi + βTi + h(θi) + εi, (12)

where Ti is travel time to the school i attends, E[Y0i|θi] = h(θi) is the conditional mean reference-

level potential outcome Y0i for an applicant of type θi, and εi is the random part of Y0i. Parameters

λ and β in this two-endogenous-variables model are identified by using a full set of school offer

dummies, {Di(s)}, as well as offered travel, ZTi , as instruments for Vi and Ti. Were ν(s) perfectly

measured, we expect IV estimates of λ to be close to 1, with discrepancies due to the fact that

value-added estimates are model- and sample-dependent.

In practice, causal value added is unobserved. Suppose, however, that ν(s) is predicted by an

observed value-added estimate denoted by Ms according to

ν(s) = M ′sϕ+ ηs, (13)

where ηs is a regression residual. We can then write

Vi = M ′s(i)ϕ+ ηs(i), (14)

where s(i) is the school that applicant i attends. As in Angrist et al. (2024), we use risk-controlled

(RC) VAM to predict ν(s) in equation (14). RC VAM is constructed by regressing outcomes on

attendance dummies and school assignment propensity scores, ψs(θi). Assuming school choice is

independent of potential outcomes conditional on risk controls, RC VAM identifies causal school

effects for all schools, including those that are undersubscribed (for which lotteries yield no first

stage). Angrist et al. (2024) shows the resulting estimates are a good guide to math value-added
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for New York schools.

Using (14) to substitute for Vi in (12) yields an equation with observed treatments on the

right-hand side. We have:

Yi = π′Ms(i) + βTi + h(θi) + [εi + ϕηs(i)], (15)

where π = ϕλ. This equation is identified using the set of school-offer dummies plus offered-travel

as instruments for Ms(i) and Ti, provided these instruments are uncorrelated with the compound

error term in brackets.

Causal value-added ν(s) is a measure of school quality unrelated to travel. But RC VAM may

reflect the average travel of students that enroll in school s. This is a consequence of the fact that RC

VAM is constructed by regressing outcomes on the set of attendance dummies, {Ai(s)}. Ignoring

control functions (which differ for RC VAM and travel), equation (14) implies that this regression

estimates λν(s) + βE[ti(s)|Ai(s) = 1] plus omitted variables bias arising from Cov(Ai(s), εi). Pre-

dictive residual ηs(i) is therefore likely correlated with offered travel, effectively a violation of the

IV exclusion restriction used to identify (15). If, for instance, travel reduces achievement, schools

attended by students with longer average commutes have lower RC VAM for a given ν(s). This

exclusion problem is addressed by adding average travel time for students enrolled at s as an ad-

ditional mediator in Ms. Specifically, Ms includes E[ti(s)|Ai(s) = 1] as well as RC VAM for s(i).

Equation (15) then has three variables to be instrumented: two school-level mediators in Ms(i) plus

individual travel, Ti. This is identified by using school-specific offer dummies plus offered travel as

instruments. As when estimating (9) and (10), 2SLS estimates here include control functions for

each instrument.25

Our mediation analysis begins with effects of offered travel, ZTi , on school quality as measured

by RC VAM. These estimates, reported for both Boston and New York, reveal the extent to which

students travel to schools with higher or lower RC VAM. As can be seen in Table VI, estimates of the

effect of 20 minutes of offered travel on test score value-added show small but statistically significant

increases in test scores around 0.01σ in both Boston and New York (effects on tests scores for Boston

Hispanics are not significantly different from zero. Although positive, this increase in school quality

25For offered travel, this is µT
i based on equation (11), while for school offer-dummy instruments these are school

offer propensity scores, ψs(θi).
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is likely too small for travel to generate detectable travel effects on individual students.

[insert table VI here]

The value-added measures used to compute the estimates in each row of Table VI are outcome-

specific. Offered travel effects on high school graduation and college value-added, reported in the

second and third rows of the table, are small and not significantly different from zero. For all

applicants, for instance, offered travel changes realized college RC VAM by only about 0.0025 and

−0.001 standard deviations in Boston and NYC, respectively. On balance, the weak effects of

offered travel on RC VAM suggests that changing school quality is unlikely to be an important

mediator of travel effects. But travel may have direct effects, a possibility model (15) allows for.

As can be seen in Table VII, 2SLS estimates of equation (15) suggest travel has little direct

impact on achievement beyond effects mediated by changing school quality. Importantly, however,

in the all-applicant sample, an additional 20-minutes of travel time is estimated to reduce on-time

graduation by 1.6 percentage points and to reduce college enrollment by 2.3 percentage points.

This losses are driven mostly by by Hispanic students, for whom travel lowers graduation rates by

2.7 points and college attendance by 4.3 points. Estimates for Black students are also negative but

smaller and not significantly different from zero.

[insert table VII here]

The estimates in Table VII also show RC VAM to be a good predictor of education outcomes,

while average travel time does not seem to be very important. 2SLS estimates for Boston, analogous

to those for New York, appear in Appendix Table A6. These estimates are relatively imprecise but,

like the corresponding estimates for New York, show negative direct effects of travel on high-school

graduation and college attendance. The overall picture here is easily summarized: travel changes

school quality little, while having negative effects on graduation rates and college enrollment that

are not mediated by changes in school quality.

VI Conclusion: Busing Trade-Offs

We can no longer afford to spend millions a year to bus children across Boston to schools

that are not demonstrably better than schools near their homes.

Theodore Landsmark, The Boston Globe, January 2009
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The estimates reported here align with Boston attorney Ted Landsmark’s contention that busing

today contributes little to the education of children who are bused. Our estimates suggest that, for

some students, longer school commutes may even reduce graduation rates and college enrollment.

At the same time, a shift to proximity-based “neighborhood” assignment may increase segregation.

By how much? We gauge this by simulating a match in which both students and schools rank one

another by distance. This imagined neighborhood assignment scenario uses information on student

addresses (geocode in Boston, census tract in New York), school addresses, and school capacities.

Because neighborhood schools are typically expected to accommodate all neighboring families, the

simulation sets each school’s capacity to the maximum enrolled there in the years for which we

have data.

The simulation compares the enrollment distribution observed in our data with enrollment under

binding neighborhood assignment for all students enrolled in match-participating schools (not just

students participating in the match) in 2006-2013 for Boston and 2012-2016 for New York. The

first four columns of Table VIII show empirical student-weighted average travel time, the share

of students eligible for publicly funded school transportation (“busing eligibility”), and measures

of segregation, while remaining columns show predicted changes under neighborhood assignment.

Neighborhood assignment reduces travel time by about 13 minutes for Boston middle and high

school students and by as much as 17 minutes for Black New York high school students. The share

eligible for school transportation falls sharply in Boston, a decline of about 50 percentage points,

with more modest though still substantial declines in New York.26

[insert table VIII here]

Black New York 9th graders are estimated to see the largest increase in same-race exposure from

the shift to neighborhood schools, a change of 5.4 points. And minority isolation (that is, attendance

in a school with a student body 90 or more percent minority) is predicted to jump sharply for

Black students in Boston. For others, neighborhood assignment affects integration much less.

Remarkably, the simulation predicts little change in segregation for Hispanics. Consequently, under

neighborhood assignment, minority students as a group enroll in schools with shares of same-race

peers close to those experienced today. These patterns reflect the fact that our reassignment scenario

puts every student in play: when students who used to travel are pulled back to neighborhood

26For simulation purposes, Boston busing eligibility criteria are those used for 6th graders.
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schools, some now attending these schools are displaced.

Sharp drops in busing eligibility should reduce school transportation costs, though precise sav-

ings for specific grades are hard to pin down. We can get a rough idea of possible savings, however,

by using average yellow-bus transportation costs for Boston 6th graders and the value of public

transportation passes for high school students in Boston and New York. Boston public school stu-

dent M7 MBTA cost $30 per month (in 2022) and are issued for 12 months. Averaging yellow-bus

costs for 6th graders with this amount (estimated at around $3,158 per rider as of February 2020)

results in an average annual savings of around $3268 (in 2022 dollars) per formerly-transported-

student in Boston (BPS, 2020; MBTA, 2024).27 New York MetroCards cost $127 a month in 2022

and are valid only on days when school is in session, implying an annual savings of roughly $1,300

per formerly-transported student in New York (NYCDOE, 2022).28

Transportation cost savings might be used to improve school quality. The Jackson and Mack-

evicius (2024) meta-analysis of research on school spending suggests that, over the course of four

years, $1,000 of additional annual spending can be expected to boost test scores by about 0.0316σ

and increase college attendance rates by approximately 2.8 percentage points. In practice, we can’t

say how transportation savings might be used. But the possibility of considerable savings highlights

the value of a fresh look at busing-resource trade-offs, especially as we’ve recently marked the 50th

anniversary of the Garrity decision. Our findings are also noteworthy in light of an ongoing discus-

sion of substantial travel-reducing revisions to the Chicago choice plan (see Harrington (2023) and

Jackson (2023)).

A complete analysis of busing trade-offs should include the effect of neighborhood school as-

signment on overall district attendance. Some families may be attracted by neighborhood schools,

but others may leave in response to limits on choice (Epple et al. (2014) explores these issues).

Neighborhood assignment might also dilute incentives for school effectiveness, a possibility consid-

ered in, e.g., Card, Dooley and Payne (2010) and Campos and Kearns (2024). Investigations of

these issues are natural directions for further work.

27Costs are adjusted to May 2022 dollars using the Consumer Price Index (Series ID = CUUR0000SA0). Student
M7 MBTA pass’ costs have been steady at $30 per month since 2019, according to the Internet Archive.

28These calculations differ from the sums reported in Figure 1, which include fixed costs and costs for elementary
school students.
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Figure I:
Per-Pupil Annual Expenditures on Student Transportation

Top 100 School Districts by Enrollment
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Notes: Transportation expenditure corresponds to the amount spent on the transportation of public school students,
including vehicle operation, monitoring riders, and vehicle servicing and maintenance. Per-capita amounts are com-
puted by dividing total costs by total district enrollment. Enrollment data used for the denominator are from the
NCES and count the number of students for which the district is financially responsible. Fiscal year t is defined
as the school year ending in t. Expenditure data is adjusted to June 2017 dollars using the Consumer Price Index
(Series ID = CUUR0000SA0). The sample used here consists of schools in the 100 largest districts by enrollment.
The set of districts meeting these criteria varies by year.
Source: National Center for Education Statistics (NCES) Common Core of Data.
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Figure II:
Minority Exposure

(a) Top 100 School Districts by Enrollment
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(b) Top 100 School Districts by Enrollment with 60-80% Minority, School Year 1988-2022
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Notes: The sample of top 100 districts are as described in Figure I. Minority exposure is defined as the proportion of
a student’s classmates that are Black or Hispanic. Year t on the x-axis marks the school year starting in t. Schools
with missing race data are omitted. New York Public Schools consist of schools in the aggregated New York City
district code and the New York City community districts. Virtual, future, closed, or inactive schools are not included
in the sample. The sample includes all grades, but does not include students in adult education. Black peers those
categorized as “non-Hispanic, Black” in the Common Core.
Source: Common Core Public Elementary and Secondary School Universe Survey, documented in https://nces.ed.

gov/ccd/pubschuniv.asp.
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Figure III:
Racial Exposure in Boston and New York Public Schools, 1988-2022

(a) Boston Public Schools
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(b) New York Public Schools
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Notes: Solid lines plot the proportion of a student’s peers falling into various race groups. Minority exposure is as
defined in Figure II. Dotted and dashed lines plot the proportion of students enrolled at schools with a student body
that’s either over 80% or over 90% Black or Hispanic. Variable definitions and sample restrictions are as for Figure
II.
Source: Common Core Public Elementary and Secondary School Universe Survey, documented in https://nces.ed.

gov/ccd/pubschuniv.asp.
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Figure IV:
Travel Time Distributions for Non-Neighborhood Compliers

Difference in means = 19.4 (0.7)
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Notes: This figure plots the distributions of travel time (in minutes) for Boston and New York non-neighborhood compliers. Densities for non-neighborhood
compliers are estimated using 2SLS, controlling for student demographics, baseline achievement, and offer risk. Densities for non-offered compliers are estimated
by replacing attendance with one minus attendance in this 2SLS procedure. The model uses a Gaussian kernel and the Silverman (1986) rule of thumb bandwidth.
Vertical dashed lines indicate mean potential outcomes.

41



Table I:
Boston and New York Analysis Samples

(1) (2) (3) (4) (5) (6) (7) (8) 

Ranked a non-nbhd school first 0.73 0.73 0.58 0.79 0.67 0.66 0.62 0.73
Enrolled in a non-nbhd school 0.74 0.70 0.55 0.77 0.64 0.65 0.54 0.70
Enrolled travel time 32.83 33.15 28.41 35.53 36.41 37.46 33.87 38.49
Enrolled distance 3.62 3.66 2.91 4.05 4.48 4.70 3.82 4.80
Eligible for busing 0.71 0.71 0.57 0.77 0.96 0.96 0.96 0.97

Black 0.41 0.42 0.41 0.46 0.29 0.27 0.26 0.30
Hispanic 0.36 0.39 0.42 0.39 0.40 0.39 0.46 0.44
White or Asian 0.21 0.18 0.16 0.13 0.29 0.33 0.28 0.25

Free and reduced-price lunch 0.70 0.77 0.79 0.79 0.75 0.73 0.77 0.78
Female 0.49 0.50 0.49 0.50 0.49 0.51 0.50 0.52
Special education 0.19 0.17 0.19 0.18 0.18 0.07 0.08 0.08
Limited English proficiency 0.18 0.15 0.14 0.13 0.14 0.09 0.05 0.05
Baseline math 0.01 -0.10 -0.10 -0.15 -0.01 0.18 0.07 0.05
Baseline English 0.01 -0.08 -0.11 -0.12 -0.02 0.18 0.04 0.04

Enrolled in charter 0.17 0.10 0.10 0.11 0.05 0.04 0.04 0.04
Enrolled in exam 0.10 0.04 0.03 0.04 0.06 0.07 0.05 0.05

N 132,607 79,659 11,053 28,791 389,284 297,734 25,463 72,146

Boston (6th and 9th grade) New York (9th grade)

Other covariates

Enrolled 
sample

Applicant 
sample

Non-nbhd 
experimental 

sample

Travel 
experimental 

sample

Travel

Race

Enrolled 
sample

Applicant 
sample

Non-nbhd 
experimental 

sample

Travel 
experimental 

sample

School sectors

Notes: Statistics for Boston use data on middle school students enrolled in 6th grade and high school students enrolled in 9th grade in 2002-03 to 2017-18. Statistics for New
York use data on high school students enrolled in 9th grade in 2012-13 to 2016-17. Columns 1 and 5 report descriptive statistics for the sample of enrolled students who have
demographic information. Columns 2 and 6 report statistics for the sample of match applicants who have demographic information. The experimental samples in columns 3,
4, 7, and 8 restrict the applicant sample to offered students who have (i) non-degenerate risk of school assignment, (ii) non-missing baseline test scores, and (iii) non-missing
geographic information (residential geocodes in Boston and census tracts or districts in New York). Columns 3 and 7 further subset to students with non-neighborhood
school assignment risk, while columns 4 and 9 subset to students with travel risk. Boston baseline test scores are from the MCAS (4th grade Math and ELA for middle
school, 8th grade Math and 7th/8th grade ELA for high school); New York baseline scores are 6th grade scores from the NY state standardized assessments. Charter and
exam schools are considered to lie outside of a student’s neighborhood. Travel time and distance are by public transit; units are in minutes and miles, respectively. Busing
eligibility is defined as being enrolled at a school that has a driving distance of more than 1.5 miles in Boston and more than 0.5 miles in New York.
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Table II:
OLS Estimates of Travel Effects

(1) (2) (3) (4) (5) (6) 

0.0275 0.0463 0.0365 0.0249 0.0529 0.0148
(0.0059) (0.0094) (0.0094) (0.0030) (0.0046) (0.0050)

N 107,468 42,938 37,989 106,924 42,609 37,813

-0.0148 -0.0193 -0.0124 0.0007 0.0088 -0.0060
(0.0061) (0.0100) (0.0094) (0.0023) (0.0037) (0.0038)

N 55,979 22,583 20,201 55,654 22,370 20,110

0.0169 0.0151 0.0210 0.0132 0.0200 0.0117
(0.0057) (0.0093) (0.0087) (0.0023) (0.0035) (0.0036)

0.0091 0.0004 0.0093 0.0105 0.0159 0.0087
college (0.0051) (0.0081) (0.0076) (0.0020) (0.0031) (0.0032)

N 55,745 22,441 20,125 55,421 22,228 20,035

0.0837 0.0585 0.0656 0.0506 0.0486 0.0610
(0.0032) (0.0062) (0.0047) (0.0016) (0.0028) (0.0027)

N 259,218 67,277 94,741 256,817 66,557 93,885

-0.0029 -0.0060 -0.0091 0.0026 0.0069 -0.0024
(0.0016) (0.0033) (0.0026) (0.0008) (0.0015) (0.0014)

N 337,019 92,547 132,918 326,345 88,646 128,529

0.0078 0.0073 0.0023 0.0072 0.0124 0.0033
(0.0018) (0.0037) (0.0029) (0.0009) (0.0016) (0.0015)

0.0149 0.0099 0.0108 0.0114 0.0092 0.0117
college (0.0018) (0.0035) (0.0026) (0.0009) (0.0016) (0.0015)

N 353,706 100,576 140,397 342,922 96,631 135,987

Four-year 

Four-year 

B. New York

SAT (Math & Verbal)

Graduate on time

Any college

A. Boston

MCAS (Math & ELA)

Graduate on time

Any college

Hispanic 
applicants

Non-neighborhood Attendance Travel Time (20 minutes)

All 
applicants

Black 
applicants

Hispanic 
applicants

All 
applicants

Black 
applicants

Notes: This table reports OLS estimates of the relationship between non-neighborhood attendance or travel time
and achievement, on time high school graduation, and college-going. The Boston sample includes students enrolled
in the 2002-17 school years; the New York sample cover the population enrolled in the 2012-16 school years. All
models control for student demographic characteristics, match participation, charter school attendance, and exam
school attendance. Boston test scores are from the MCAS (6th grade Math and 7th grade ELA for middle school,
10th grade Math and ELA for high school); New York test scores are from the SAT. Approximately 70% of New
York students take the SAT.
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Table III:
2SLS Estimates of School Travel Effects on Peer Race

(1) (2) (3) (4) (5) (6) 

-0.0283 -0.0778 -0.0078 -0.0266 -0.0612 0.0051
(0.0098) (0.0156) (0.0153) (0.0056) (0.0075) (0.0089)

0.0205 0.0578 -0.0085 0.0016 0.0232 -0.0223
(0.0092) (0.0134) (0.0146) (0.0050) (0.0064) (0.0085)

-0.0078 -0.0200 -0.0163 -0.0250 -0.0380 -0.0173
or Hispanic (0.0081) (0.0115) (0.0114) (0.0043) (0.0059) (0.0062)

-0.1426 -0.2221 -0.1086 -0.1371 -0.1950 -0.1010
(0.0276) (0.0475) (0.0431) (0.0161) (0.0235) (0.0262)

N 11,053 4,479 4,587 28,682 13,219 11,062

-0.0089 -0.0845 0.0105 -0.0132 -0.0683 0.0162
(0.0040) (0.0134) (0.0051) (0.0028) (0.0064) (0.0038)

-0.0235 0.0482 -0.0585 -0.0170 0.0212 -0.0486
(0.0040) (0.0105) (0.0058) (0.0026) (0.0050) (0.0040)

-0.0324 -0.0363 -0.0480 -0.0301 -0.0471 -0.0324
or Hispanic (0.0043) (0.0098) (0.0058) (0.0028) (0.0048) (0.0041)

-0.0508 -0.0341 -0.0883 -0.0597 -0.0950 -0.0769
(0.0090) (0.0272) (0.0141) (0.0060) (0.0127) (0.0100)

N 25,463 6,512 11,670 71,423 21,747 31,327

Non-neighborhood Attendance Travel Time (20 minutes)

All 
applicants

Black 
applicants

Hispanic 
applicants

All 
applicants

Hispanic 
applicants

Black 
applicants

A. Boston

Peer share Black

Peer share Hispanic

Peer share Black

Minority isolation

B. New York

Peer share Black

Peer share Hispanic

Peer share Black

Minority isolation

Notes: This table reports 2SLS estimates of non-neighborhood attendance and travel time effects on peer racial
composition, computed in samples of Boston and New York experimental samples. In columns 1-3, the instrument
is non-neighborhood assignment. The endogenous variable is 6th or 9th grade non-neighborhood attendance. The
non-neighborhood first stages are approximately 0.44 for Boston and 0.66 for New York; race-specific first stages are
similar. In columns 4-6, the instrument is travel time offered. The endogenous variable is 6th or 9th grade enrolled
travel time. Travel time effects are per 20 minutes of travel. Travel time first stages are around 0.38 for Boston
and 0.56 for New York. Models include control function µi, defined in Equation 5, as well as student demographic
variables and baseline achievement. School peer shares are computed using samples of all enrolled students in 6th
or 9th grade. Minority isolation is defined as enrolled at a school where the proportion of Black or Hispanic exceeds
90%.
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Table IV:
2SLS Estimates of School Travel Effects on Achievement

(1) (2) (3) (4) (5) (6) 

-0.0076 0.0312 -0.0680 0.0094 0.0185 -0.0259
(0.0363) (0.0581) (0.0554) (0.0217) (0.0319) (0.0339)

N 9,353 3,847 3,851 23,798 11,089 9,046

-0.1025 -0.0906 -0.1289 -0.0373 -0.0501 -0.0466
(0.0494) (0.0886) (0.0666) (0.0215) (0.0308) (0.0336)

N 5,049 1,757 2,409 17,518 7,948 7,122

0.0169 -0.0977 0.0155 -0.0142 -0.0556 -0.0096
(0.0458) (0.0836) (0.0604) (0.0207) (0.0296) (0.0318)

0.0334 -0.0331 0.0298 -0.0048 -0.0286 0.0000
college (0.0407) (0.0719) (0.0523) (0.0182) (0.0258) (0.0279)

N 5,018 1,740 2,400 17,410 7,887 7,089

0.0017 0.0360 0.0239 0.0053 -0.0003 0.0155
(0.0145) (0.0351) (0.0205) (0.0089) (0.0156) (0.0137)

N 19,079 4,496 8,315 52,506 14,709 21,920

-0.0169 -0.0164 -0.0338 -0.0131 -0.0055 -0.0245
(0.0089) (0.0242) (0.0147) (0.0056) (0.0114) (0.0097)

N 22,696 5,562 10,299 63,476 18,562 27,637

-0.0221 -0.0473 -0.0443 -0.0267 -0.0198 -0.0493
(0.0115) (0.0294) (0.0180) (0.0072) (0.0136) (0.0120)

-0.0145 -0.0205 -0.0299 -0.0204 -0.0100 -0.0347
college (0.0114) (0.0287) (0.0170) (0.0071) (0.0132) (0.0112)

N 23,583 5,942 10,771 66,171 19,813 28,956

All 
applicants

Black 
applicants

Hispanic 
applicants

All 
applicants

Black 
applicants

Non-neighborhood Attendance Travel Time (20 minutes)

Hispanic 
applicants

A. Boston

MCAS (Math & ELA)

Graduate on time

Any college

Four-year 

B. New York

SAT (Math & Verbal)

Graduate on time

Any college

Four-year 

Notes: This table reports 2SLS estimates of non-neighborhood attendance and travel time effects on student achieve-
ment, on time high school graduation, and college attendance, computed in Boston and New York experimental
samples. The sample, instrument, endogenous variable, and controls are as described in Table III.
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Table V:
2SLS Estimates of School Travel Effects by Desired Travel

(1) (2) (3) (4) (5) (6) (7) (8) 

0.0106 0.0091 -0.0322 -0.0408 -0.0094 -0.0291 -0.0006 -0.0099
(0.0251) (0.0268) (0.0231) (0.0245) (0.0225) (0.0236) (0.0200) (0.0208)

-0.0537 -0.0340 -0.0135 -0.0136 -0.0073 -0.0075 -0.0164 -0.0133
(0.0297) (0.0327) (0.0376) (0.0399) (0.0349) (0.0365) (0.0300) (0.0305)

-0.0100 -0.0390 -0.0480 -0.0543 -0.0459 -0.0499 -0.0419 -0.0484
neighborhood (0.0518) (0.0553) (0.0662) (0.0683) (0.0585) (0.0586) (0.0485) (0.0465)

N 23,798 20,135 17,518 15,070 17,410 14,976 17,410 14,976

0.0098 0.0165 -0.0092 -0.0097 -0.0263 -0.0352 -0.0159 -0.0221
(0.0103) (0.0113) (0.0066) (0.0082) (0.0084) (0.0099) (0.0082) (0.0094)

0.0332 0.0550 0.0159 0.0190 0.0091 0.0087 0.0126 0.0122
(0.0156) (0.0176) (0.0099) (0.0127) (0.0125) (0.0152) (0.0122) (0.0144)

-0.0141 -0.0326 -0.0128 -0.0202 0.0001 0.0046 -0.0142 -0.0034
neighborhood (0.0203) (0.0244) (0.0124) (0.0168) (0.0162) (0.0207) (0.0162) (0.0201)

N 52,506 36,629 63,476 46,199 66,171 48,769 66,171 48,769

First choice in neighborhood

Travel time* First choice in  

A. Boston

Travel time

First choice in neighborhood

Travel time* First choice in  

B. New York

Travel time

All 
applicants

Black or 
Hispanic

All 
applicants

Black or 
Hispanic

All 
applicants

Black or 
Hispanic

MCAS (Math & ELA) / 
SAT (Math & Verbal)

Graduate on time Any college Four-year college

All 
applicants

Black or 
Hispanic

Notes: This table reports 2SLS estimates of travel time effects on student achievement, on time high school graduation, and college attendance separately for
students whose first choice is in neighborhood and those whose first choice is out of neighborhood. The sample, instrument, endogenous variable, and controls
are as described in Table III.

46



Table VI:
Effects of Offered Travel on RC VAM for Education Outcomes

All 
applicants

Black 
applicants

Hispanic 
applicants

All 
applicants

Black 
applicants

Hispanic 
applicants

(1) (2) (3) (4) (5) (6) 

0.0075 0.0112 0.0051 0.0107 0.0122 0.0079
SAT (Math and Verbal) (0.0025) (0.0036) (0.0039) (0.0016) (0.0025) (0.0021)

N 24,016 6,535 5,650 52,815 14,792 22,034

-0.0017 -0.0046 0.0008 -0.0014 0.0016 -0.0028
(0.0010) (0.0015) (0.0016) (0.0007) (0.0015) (0.0012)

N 17,711 8,063 7,187 63,900 18,695 27,791

0.0025 0.0016 0.0030 -0.0007 0.0030 -0.0029
(0.0011) (0.0016) (0.0018) (0.0007) (0.0014) (0.0012)

N 17,601 8,001 7,153 66,625 19,935 29,144

Any college 

MCAS (Math and ELA) / 

Graduation on time 

Boston New York

Notes: This table reports first-stage effects of offered travel time on enrolled value-added for Boston middle and high school applicants and New York high school
applicants. The sample is as described in Table III. Models include control functions µi, as defined in Equation 5, as well as student demographic variables and
baseline achievement. The risk-controlled value-added computation follows that in Angrist et al. (2024).
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Table VII:
School Value-Added and Travel Effects in New York

(1) (2) (3) 

-0.0097 -0.0309 0.0068
(0.0091) (0.0156) (0.0143)

0.7673 0.9810 0.7444
(0.0511) (0.1003) (0.0720)

0.0235 0.0666 0.0065
(0.0178) (0.0352) (0.0253)

N 52,443 14,669 21,890

-0.0155 -0.0088 -0.0265
(0.0059) (0.0114) (0.0102)

0.5821 0.6504 0.6171
(0.0502) (0.0983) (0.0737)

0.0039 -0.0027 0.0019
(0.0115) (0.0244) (0.0179)

N 63,351 18,478 27,588

-0.0233 -0.0204 -0.0433
(0.0076) (0.0137) (0.0126)

0.8278 0.8627 0.7464
(0.0548) (0.1029) (0.0792)

-0.0143 -0.0001 -0.0066
(0.0150) (0.0300) (0.0226)

N 65,955 19,679 28,865

Travel time

Value-added

Average travel time

C. Any College

A. SAT (Math & Verbal)
Travel time

Value-added

Average travel time

B. On-time Graduation
Travel time

Value-added

Average travel time

All applicants Black applicants Hispanic applicants

Notes: This table reports 2SLS estimates of the effects of travel time and value-added on student achievement,
on time high school graduation, and college attendance for New York high school applicants. The estimates come
from an over-identified model that instruments enrolled travel time, enrolled value-added, and average travel time
to enrolled school with individual school offer dummies and offered travel time, scaled in 20 minute increments.
The sample is as described in Table III. Models include control functions µi, as defined in Equation 5, as well as
school-level propensity scores, running variable controls, student demographic variables, and baseline achievement.
The risk-controlled value-added computation follows that in Angrist et al. (2024).
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Table VIII:
Neighborhood Reassignment

Time
Busing 

eligibility
Same-race 
exposure

Minority 
isolation Time

Busing 
eligibility

Same-race 
exposure

Minority 
isolation

(1) (2) (3) (4) (5) (6) (7) (8)

Black students 34.1 0.74 0.494 0.444 -12.9 -0.48 0.015 0.061

Hispanic students 31.2 0.66 0.480 0.371 -13.2 -0.47 -0.016 -0.022

Black or Hispanic students 32.6 0.70 0.837 0.408 -13.1 -0.47 0.001 0.019

Black students 39.8 0.97 0.468 0.493 -17.0 -0.23 0.054 0.040

Hispanic students 33.7 0.95 0.532 0.406 -13.6 -0.23 0.012 0.000

Black or Hispanic students 36.2 0.96 0.790 0.442 -15.0 -0.23 0.006 0.016

Observed Enrollment Simulated Changes

A: Boston (6th and 9th grade)

B: New York (9th grade)

Notes: The Boston sample includes students enrolled in the 2006-13 school years; the New York sample includes students enrolled in the 2012-16 school years.
The baseline scenario reflects student-weighted average enrolled school characteristics among the sample of students who: (i) participate in the match and enroll
in a match school, or (ii) do not participate in the match but enroll in a match school and have non-missing geographic information. Columns 1-4 report these
baseline statistics. Columns 5-8 characterize simulated alternative assignments generated by a match in which students and schools rank each other by proximity
(where proximity is defined in terms of driving distance). School capacities in this simulation are set to equal maximum observed enrollment (in 2001-2016 for
Boston and in 2009-2019 for New York). The statistics in columns 5-8 are changes relative to columns 1-4. Travel time is by public transit. Same-race exposure is
defined as the proportion same-race in the assigned school (in the same grade). Minority isolation is defined as in Table III. Students are deemed busing-eligible
when their driving distance is at least 1.5 miles in Boston and at least 0.5 miles in New York.

49



A Appendix

A Additional Figures and Tables

Figure A1: Boston Geocodes and Walk Zones

Fenway High School

New Mission High School

TechBoston Academy

West Roxbury Academy

0 1 2mi

size

a 5

Boston 2013 Middle and High Schools

Notes: Lines mark geocode boundaries. Blue shading marks a few school walk zones. Blue dots mark Boston high
schools in 2013. Red dots mark Boston middle schools in 2013.
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Table A1: OLS and 2SLS Sample Construction

New York Sample

6th grade 9th grade 9th grade
(1) (2) (3) (4)

76,543 84,073 394,777
63,475 69,132 389,284 Enrolled sample

36,500 43,198 298,840
36,490 43,169 297,734 Applicant sample
30,519 38,426 269,734
16,971 26,927 172,035
14,284 22,354 101,939
12,926 20,672 90,012
12,501 19,800 83,952
11,326 18,087 75,672

Have non-neighborhood assignment risk 6,004 5,049 25,463 Non-nbhd experimental sample
Have travel assignment risk 11,168 17,623 72,146 Travel experimental sample

With geographic information

Boston

A: OLS

All enrolled students with demographic information
With geographic information 

B: 2SLS

Applicants in the match with demographic information

Ranked at least two programs, the first over-subscribed
Doesn't clear marginal priority at first choice 
Has non-degenerate risk of school assignment
Who are offered a seat 
Enroll in a school
With baseline scores

Notes: This table illustrates the construction of the OLS and 2SLS samples. The OLS sample starts from the sample
of all enrolled students with demographic information and excludes students with missing geographic information
(geocodes in Boston and residential districts in New York). The 2SLS sample starts with the subset of all match
applicants with demographic information and after following the sample restrictions described in the rows of the
table, splits into two experimental samples.
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Table A2: Attrition and Covariate Balance

Mean
Non-nbhd 
assignment Travel time Mean

Non-nbhd 
assignment Travel time 

(1) (2) (3) (4) (5) (6) 

Has outcome MCAS (Math & ELA) / 0.828 0.0020 0.0002 0.695 -0.0143 -0.0084
SAT (Math & Verbal) (0.0092) (0.0051) (0.0067) (0.0037)

N 12,635 32,967 30,579 85,185

Charter enrolled 0.095 -0.0002 0.0056 0.04 0.0014 0.0030
(0.0071) (0.0038) (0.0029) (0.0017)

N 12,171 31,618 28,477 79,512

Exam enrolled 0.074 0.0019 0.0025 0.048 -0.0020 -0.0021
(0.0096) (0.0039) (0.0032) (0.0017)

N 5,556 19,290 28,477 79,512

Black 0.405 0.0044 0.0048 0.256 0.0010 0.0020
(0.0128) (0.0067) (0.0064) (0.0037)

Hispanic 0.415 0.0042 -0.0035 0.458 0.0059 0.0048
(0.0127) (0.0066) (0.0075) (0.0040)

Female 0.494 0.0012 -0.0039 0.497 0.0005 -0.0038
(0.0131) (0.0068) (0.0077) (0.0040)

Special education 0.188 -0.0071 -0.0043 0.077 0.0028 -0.0001
(0.0102) (0.0052) (0.0042) (0.0023)

Limited English proficiency 0.143 -0.0029 -0.0012 0.055 0.0020 -0.0037
(0.0086) (0.0042) (0.0035) (0.0016)

Free and reduced-price lunch 0.793 0.0022 0.0010 0.772 -0.0018 -0.0070
(0.0103) (0.0055) (0.0068) (0.0037)

Baseline math -0.097 0.0191 0.0011 0.07 -0.0109 0.0023
(0.0236) (0.0120) (0.0113) (0.0060)

Baseline English -0.114 -0.0131 -0.0089 0.04 -0.0101 0.0034
(0.0245) (0.0126) (0.0124) (0.0064)

N 11,053 11,053 28,682 25,463 25,463 71,423

Table A2. Attrition and Covariate Balance

Boston New York

A: Attrition and selection into other sectors

B: Baseline covariates

Notes: This table reports coefficients from regressions of the variables listed in each row on distance and travel
instruments. Column 1 and 4 report sample means for each dependent variable. The independent variable in
columns 2 and 5 is a non-neighborhood school assignment. The independent variable in columns 3 and 6 is
offered travel time. Estimates in columns 2, 3, 5, and 6 are computed in the Boston and New York risk samples
corresponding to the independent variable. The instruments and controls are as in Table III. Travel time effects
are per 20 minutes of travel. Exam school enrollment is computed in the sample of 9th grade applicants in Boston.
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Table A3: 2SLS Estimates of Quadratic School Travel Effects on Test Scores and College Attendance

(1) (2) (3) (4) (5) (6) 

-0.0191 0.0004 -0.0159 0.0004 -0.0351 0.0001
(0.0706) (0.0009) (0.1026) (0.0013) (0.1151) (0.0015)

N 23,798 23,798 11,089 11,089 9,046 9,046

-0.0269 -0.0001 -0.0561 0.0001 -0.0802 0.0004
(0.0821) (0.0009) (0.1286) (0.0014) (0.1283) (0.0015)

N 17,518 17,518 7,948 7,948 7,122 7,122

0.0863 -0.0012 0.0116 -0.0008 0.1143 -0.0015
(0.0785) (0.0009) (0.1206) (0.0013) (0.1213) (0.0015)

0.0839 -0.0011 0.0761 -0.0012 0.1597 -0.0020
(0.0710) (0.0008) (0.1073) (0.0012) (0.1089) (0.0013)

N 17,410 17,410 7,887 7,887 7,089 7,089

0.0218 -0.0002 0.1086 -0.0012 -0.0036 0.0002
(0.0273) (0.0003) (0.0553) (0.0006) (0.0428) (0.0006)

N 52,506 52,506 14,709 14,709 21,920 21,920

-0.0308 0.0002 0.0008 -0.0001 -0.0567 0.0004
(0.0172) (0.0002) (0.0389) (0.0004) (0.0307) (0.0004)

N 63,476 63,476 18,562 18,562 27,637 27,637

-0.0454 0.0002 -0.0780 0.0006 -0.0472 -0.0000
(0.0219) (0.0003) (0.0464) (0.0005) (0.0372) (0.0005)

-0.0279 0.0001 -0.0266 0.0002 -0.0660 0.0004
(0.0219) (0.0003) (0.0453) (0.0005) (0.0356) (0.0005)

N 66,171 66,171 19,813 19,813 28,956 28,956

All applicants Black applicants Hispanic applicants
Travel Time 

Squared Travel Time 
Travel Time 

Squared Travel Time 
Travel Time 

Squared Travel Time 

A. Boston

MCAS (Math & ELA)

On time graduation

Any college

Four-year college

B. New York

SAT (Math & Verbal)

On time graduation

Any college

Four-year college

Notes: This table reports 2SLS estimates of quadratic travel time effects on student achievement and college atten-
dance, computed in samples of Boston middle and high school applicants and New York high school applicants. The
instruments are offered travel time and travel time squared, and the endogenous are enrolled travel time and travel
time squared. The sample and controls are as described in Table III. Standardized test outcomes are as described in
Table II.
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Table A4: 2SLS Estimates of School Travel Effects on Behavioral Outcomes

(1) (2) (3) (4) (5) (6) 

1.9263 -1.8561 4.9002 1.4376 1.0948 1.8466
(2.3267) (3.5897) (3.4104) (1.4483) (2.0642) (2.2367)

Mean 24.162 23.161 24.625 25.850 25.248 26.878
SD 41.21 40.50 39.23 42.00 41.72 41.13

N 10,920 4,426 4,536 28,291 13,054 10,905

0.0133 -0.0130 0.0709 0.0090 0.0441 0.0048
(0.0675) (0.1329) (0.0880) (0.0427) (0.0649) (0.0687)

Mean 0.272 0.381 0.228 0.306 0.393 0.265
SD 1.195 1.474 1.011 1.849 1.945 1.957

0.0677 0.0236 0.1251 0.0356 0.0376 0.0443
(0.0491) (0.0814) (0.0734) (0.0294) (0.0439) (0.0453)

Mean -0.086 -0.112 -0.012 -0.054 -0.076 0.022
SD 0.948 0.944 0.985 0.992 0.984 1.025

N 10,276 4,093 4,342 26,600 12,104 10,410

0.1726 -0.1678 0.7345 0.8116 0.5618 1.4364
(0.4441) (1.2389) (0.7326) (0.2917) (0.6031) (0.5012)

Mean 12.190 13.925 14.112 12.961 14.759 14.896
SD 19.06 20.97 20.29 19.90 21.54 21.02

N 25,428 6,507 11,660 71,422 21,747 31,327

-0.0058 -0.0177 -0.0041 -0.0047 0.0064 -0.0132
(0.0082) (0.0300) (0.0117) (0.0059) (0.0148) (0.0082)

Mean 0.069 0.133 0.063 0.080 0.147 0.067
SD 0.365 0.527 0.336 0.408 0.564 0.358

N 25,463 6,512 11,670 71,423 21,747 31,327

A. Boston

Days absent

Number of suspensions

Disciplinary index

B. New York

Days absent

Number of suspensions

Non-neighborhood Attendance Travel Time (20 minutes)

Hispanic 
applicants

All 
applicants

Black 
applicants

Hispanic 
applicants

All 
applicants

Black 
applicants

Notes: This table reports 2SLS estimates of distance and travel effects on behavioral outcomes,
computed in the samples of Boston middle and high school applicants and New York high school
applicants. The samples, instruments, and controls are as in Table III. The corresponding endoge-
nous variables are 6th or 9th grade non-neighborhood attendance and enrolled travel time. Travel
time effects are per 20 minutes of travel. Outcomes are measured in either 6th or 9th grade. Fol-
lowing Jackson (2018), the disciplinary index equals the first principal component of the following
outcomes: ever being suspended, number of suspensions, ever being truant, number of days tru-
ant, ever attending a DYS school, and number of days absent. The index is standardized to have
mean zero and standard deviation one among all enrolled students. When constructing the index,
outcomes are coded so that a positive estimate reflects an increase in discipline.
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Table A5: 2SLS Estimates of School Travel Effects on School Characteristics

(1) (2) (3) (4) (5) (6) 

-0.0017 -0.0089 0.2120 0.4317 0.6983 0.3809
(0.1509) (0.2570) (0.2142) (0.1050) (0.1561) (0.1556)

Mean 12.808 12.586 12.759 12.960 12.872 12.816
SD 2.871 2.971 2.624 3.062 3.167 2.869

0.0066 -0.0044 0.0106 0.0020 -0.0055 0.0088
teaching assignment (0.0082) (0.0142) (0.0118) (0.0049) (0.0074) (0.0072)

Mean 0.901 0.881 0.913 0.902 0.888 0.911
SD 0.140 0.160 0.125 0.134 0.147 0.121

0.0140 0.0086 0.0178 0.0094 0.0142 -0.0001
by highly-qualified teachers (0.0052) (0.0093) (0.0074) (0.0033) (0.0050) (0.0048)

Mean 0.876 0.872 0.877 0.880 0.878 0.879
SD 0.118 0.126 0.114 0.114 0.118 0.112

N 9,073 3,789 3,647 23,506 11,157 8,766

0.1918 0.0581 0.2794 0.2112 0.1230 0.3268
(0.0323) (0.0915) (0.0487) (0.0217) (0.0487) (0.0327)

Mean 4.422 4.327 4.252 4.451 4.347 4.319
SD 1.378 1.572 1.359 1.377 1.523 1.370

0.0140 0.0272 0.0182 0.0148 0.0148 0.0202
teaching assignment (0.0035) (0.0096) (0.0055) (0.0022) (0.0043) (0.0038)

Mean 0.789 0.767 0.771 0.787 0.766 0.773
SD 0.157 0.164 0.164 0.160 0.168 0.167

0.0075 0.0024 0.0194 0.0097 0.0046 0.0172
by highly-qualified teachers (0.0027) (0.0072) (0.0043) (0.0016) (0.0032) (0.0029)

Mean 0.856 0.845 0.842 0.857 0.847 0.845
SD 0.106 0.110 0.112 0.106 0.109 0.112

N 19,026 4,855 8,744 53,857 16,367 23,682

Percent of core academic classes taught 

A. Boston

Student-teacher ratio

Percent of teachers licensed in 

Percent of core academic classes taught 

B. New York

Student-teacher ratio

Percent of teachers licensed in 

Non-neighborhood Attendance Travel Time (20 minutes)

Hispanic 
applicants

All 
applicants

Black 
applicants

Hispanic 
applicants

All 
applicants

Black 
applicants

Notes: This table reports 2SLS estimates of distance and travel effects on school characteristics, computed in
the samples of Boston middle and high school applicants and New York high school applicants. The sample,
instruments, and controls are as in Table III. The corresponding endogenous variables are 6th or 9th grade non-
neighborhood attendance and travel time. Travel time effects are per 20 minutes of travel. The sample is limited
to offered applicants with travel time and non-neighborhood risk respectively.

55



Table A6: School Value-Added and Travel Effects in Boston

Black Applicants Hispanic Applicants

(1) (2) (3) 

-0.0202 -0.0063 -0.1137
(0.0250) (0.0337) (0.0423)

0.8545 0.7029 0.8952
(0.1364) (0.2006) (0.1960)

0.0312 -0.0081 0.1555
(0.0429) (0.0530) (0.0795)

N 23,556 10,931 8,992

-0.0219 -0.0208 -0.0287
(0.0268) (0.0379) (0.0427)

0.4715 0.6152 0.0545
(0.3269) (0.4484) (0.5333)

-0.0064 -0.0140 -0.0203
(0.0397) (0.0516) (0.0696)

N 17,328 7,841 7,068

0.0036 -0.0324 -0.0310
(0.0258) (0.0357) (0.0408)

0.4919 0.2527 0.5979
(0.2767) (0.3554) (0.4764)

-0.0201 -0.0095 0.0487
(0.0382) (0.0491) (0.0666)

N 17,220 7,780 7,035

All Applicants

C. Any College

A. MCAS (Math & ELA)
Travel time

Value-added

Average travel time

B. On-time Graduation
Travel time

Value-added

Average travel time

Travel time

Value-added

Average travel time

Notes: This table reports 2SLS estimates of the effects of travel time and value-added on student achievement, on
time high school graduation, and college attendance for Boston high school applicants. The estimates come from
an over-identified model that instruments enrolled travel time, enrolled value-added, and average travel time to
enrolled school with individual school offer dummies and offered travel time, scaled in 20 minute increments. The
sample is as described in Table III. Models include control functions µi, as defined in Equation 5, as well as school-
level propensity scores, running variable controls, student demographic variables, and baseline achievement. The
risk-controlled value-added computation follows that in Angrist et al. (2024).
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B 2SLS Inference with an Estimated Control Function

Section B discusses 2SLS estimates of distance and travel effects with first and second stages that

can be written:

Gi = γZi + κ1µi + ξ1i,

Yi = βGi + κ2µi + ξ2i.

This appendix derives the limiting distribution of a 2SLS estimator, denoted β̂2SLS , computed by

replacing the control function, µi, with an estimate, µ̂i.

Replacing µi with µ̂i in the second stage equation, we have:

Yi = βGi + κ2µ̂i + (ν2i + κ2(µi − µ̂i)).

Define

Z̃i = (I − Pµ̂)Zi,

where Pµ̂ is the matrix that projects onto µ̂i, so that
∑

i Z̃iµ̂i = 0 by construction. Then, β̂2SLS

can be written:

β̂2SLS =

∑
i Z̃iYi∑
i Z̃iGi

= β +

∑
i Z̃i(ξ2i + κ2(µi − µ̂i))∑

i Z̃iGi

= β +

∑
i Z̃i(ξ2i + κ2µi)∑

i Z̃iGi

= β +

∑
i Z̃iui∑
i Z̃iGi

,

where ui = ξ2i+κ2µi. Given random sampling, the limiting distribution of our 2SLS estimator has

sampling variance proportional to E[Z̃2
i u

2
i ].

Note that the residual needed for this formula is consistently estimated by ûi = Yi − β̂2SLS .

Our calculation uses the residual generated by 2SLS, however, that is, ν̂2i = Yi − β̂2SLS − κ2µ̂i.

In practice, the distinction between the two residuals matters little for estimated standard errors.

This is apparent from a comparison of the standard deviation of the two residuals. These estimated

standard deviations are less than 1% apart for both test scores and college enrollment outcomes in

Boston and New York.
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B Additional Notes to Figure 2

We downloaded the most recent version posted of the Public Elementary/Secondary School Universe

Survey Data file from the National Center for Education Statistics (NCES) website. Data for

the 1988-89 through 2018-19 school years were downloaded on May 6, 2021. Data for 2019-20

through 2022-23 were downloaded on June 6, 2024. We adjusted school-level enrollment by race

as described in the errata accompanying the data documentation. This yields year-specific files

containing enrollment characteristics for every public school in the U.S. and territories.

For school years 1988-89 through 2000-01, enrollment by race was retrieved using the race-

specific student count variable. For school years 2001-02 through 2022-23, enrollment by race is

calculated by collapsing student count by race, grade, and gender to enrollment by race.

Online schools are removed by eliminating those with a virtual status of “Yes”, “Full Virtual”,

“Supplemental Virtual”, and “Virtual with face-to-face options”. To account for remote schooling

during the COVID-19 pandemic, schools with a virtual status “Supplemental Virtual” are retained

in the 2020-21 school year. Schools marked as closed are also omitted. Student counts given for a

grade level of “Adult Education” are also omitted.

Total school enrollment is defined as the sum of all reported enrollment by race. Schools not

reporting enrollment by race are therefore omitted. In 2009, NCES changed race reporting to allow

schools to specify “Two or more races”, “Native Hawaiian or other Pacific Islander”, and “Not

specified”. This contributes to changes in peer shares by race over time.

Boston schools are those where the local education agency (LEA) identifier is 2502790. New

York City schools are identified by a single LEA prior to the 2005-06 school year and by commu-

nity district LEAs in later years. New York LEAs are 3620580 (the aggregated district), 3600135

(D75 special needs), 3600075 (alternative schools), or one of the 32 community district LEAs

(3600076, 3600077, 3600078, 3600079, 3600081, 3600083, 3600084, 3600085,3600086, 3600087,

3600088, 3600090, 3600091, 3600119, 3600092, 3600094, 3600095, 3600096, 3600120, 3600151,

3600152, 3600153, 3600121, 3600098, 3600122, 3600099, 3600123, 3600100, 3600101, 3600102,

3600103, 3600097). This definition of New York schools follows NCES documentation. Los Angeles

LEAs are 0622710 (the unified distric) and 0691078 (county office of education).

Racial isolation measures district-level exposure to peer share Black, Hispanic, from the perspec-

tive of a given race, coded by rp ∈ {Black, Hispanic, Black or Hispanic}. Racial groups defining

exposure are coded by re chosen from the same set as rp. The number of rp and re students in the

district is denoted Np and Ne. Districts are made up of

• a set of schools s ∈ S enrolling ns students

• School- and race-specific enrollment counts nsp and nse.
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Exposure to racial group re for students in racial group rp is computed as:

epe =
∑
s∈S

((
nse

ns

)
·
(
nsp

Np

))
.

Minority isolation rates are computed as follows. Let t ∈ {80, 90} denote the cutoff defining

minority isolation and let nsm denote the number of minority (Black or Hispanic) students enrolled

at school s. Indicate isolated schools by Ds = 1[nsm
ns

> t]. Minority isolation of race group rp in a

district is then

Ipt =
∑
s∈S

Ds
nsp

Np
.

C Measuring School Proximity

Our econometric framework uses two measures of school proximity, one based on distance and

one based on travel time. For Boston students, proximity is measured by a dummy indicating

school attendance inside applicants’ Garrity walk zone and by travel time in 20-minute units. For

NYC students, proximity is measured by a dummy indicating school attendance inside applicants’

residential district and by travel time in 20-minute units.

Garrity Walk Zone Offer/Enrollment Status

For Boston, non-neighborhood offers and enrollment are defined by whether schools offered or

attended are outside applicants’ and students’ residential walk zone. A Boston student is said

to reside within a school’s walk zone if a one-mile-radius circle around the school intersects the

boundary defining the student’s residential geocode. BPS codes walk-zone status only for applicants

(this is a priority in the match). We use this data to identify the set of residential geocodes in each

school’s walk zone, thereby imputing walk zone enrollment status for all students in the cohorts

analyzed here. Charter and exam schools are coded as out-of-walk zone for all students.

New York District Offer/Enrollment Status

For New York, non-neighborhood offers and enrollment are defined by whether schools offered

or attended are outside applicants’ and students’ residential district. New York City schools are

allocated to one of 32 community districts that partition all addresses in the city. School districts

are identified by the first two digits of the school DBN. Charter and Specialized high schools are

coded as being out-of-district for all applicants.1

1Similarly, a small set of alternative schools are coded out-of-district for all applicants. See https://infohub.

nyced.org/in-our-schools/programs/district-79 for list of alternative schools.
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Travel Time

Travel time measures the time it takes to travel from residential GPS coordinates to school GPS

coordinates. Boston school coordinates are inferred from addresses. New York school coordinates

for all non-charter schools appear in NYCDOE High School Directory files.2 New York charter

school coordinates are inferred from school addresses. The student data sets we work with omit

home address. Residential coordinates are approximated by the coordinates of the centroid of

residential geocodes in Boston and by the centroid of residential census tracts in New York.

Travel times are obtained by applying the HERE Public Transit API to pairs of (home,school)

coordinates.3 Specifically, we compute minutes of travel with an arrival time of 8:00 AM on Monday,

January 31st, 2022. The resulting times are winsorized at the 1st and 99th percentiles of the relevant

distribution and divided by 20.

D Boston Data Appendix

Lists of middle school and high school applicants, applicant rank order lists, and assignments are

constructed using annual records from the Boston Public Schools (BPS) school assignment system.

Information on student demographic characteristics and schools attended comes from the Stu-

dent Information Management System (SIMS), a centralized database that covers all public school

students in Massachusetts. Achievement test scores are from the Massachusetts Comprehensive

Assessment System (MCAS). College attendance information comes from the National Student

Clearinghouse (NSC). Data on school characteristics were obtained from publicly available Mas-

sachusetts Department of Elementary and Secondary Education (DESE) online records. SIMS and

NSC data were provided by DESE. MCAS data from 2000-2001 are from Boston and MCAS data

from 2002-2017 are from DESE. Other Boston data sources are detailed below.

BPS Assignment Data

We received assignment data from BPS for all applicants to 6th and 9th grade seats in traditional

and some pilot schools between 1997-2020. These files exclude applicants who applied only to

selective enrollment (exam) schools and/or charter schools. The data include preferences as reflected

in rank order lists, priorities at each program listed, lottery tiebreaker values, and the program to

which the applicant was assigned. In the assignment data, applicants rank programs rather than

schools; many schools host multiple programs, including bilingual and special education programs.

Assignment data include applicant geocode, defined as one of 867 Garrity-era geographic areas that

determine walk-zone priority in the contemporary Boston match.

The analysis sample covers applicants for 6th and 9th grade seats in the school years beginning

2002-2017. DESE data on MCAS outcomes begins in 2002. Fall 2014 marked the introduction of a

new assignment scheme known as the Home-Based Assignment Plan (HBAP). The HBAP phased

2These were obtained online from https://opendata.cityofnewyork.us.
3See https://developer.here.com/documentation/public-transit/dev_guide/index.html.
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out walk zone priorities and limited the set of schools applicants may rank, favoring neighborhood

schools while still including at least some with good outcomes (Shi, 2015; Pathak and Shi, 2021).

Depending on the year, the BPS assignment system has three or four rounds. Most students

(87-95% of 6th graders and 83-93% of 9th graders in years 2002-2013) participate in the first round.

Our analysis covers first-round participants only. Application counts by year and grade appear in

columns 1 and 3 of Table B1. Preferences, priorities, and capacities for each program (the last

of which is computed by summing the number of offers) are used to replicate the match. The

steps from priorities to rankings over students are taken from Pathak and Shi (2014). Our match

replication rates mostly exceed 95%, a fact documented in columns 2 and 4 of Table B1.

Application data are supplemented by BPS enrollment records. This file provides geocode data

for application years in which geocodes are missing from the assignment files (2006-07 to 2010-11).

Application and enrollment files are linked by a BPS-defined applicant identifier.

SIMS Data

Our analysis uses SIMS files for the school years beginning fall 2002-17. These files include informa-

tion on student demographics, behavioral outcomes, and schools attended for all students enrolled

in Massachusetts public schools each year. SIMS contain a state student identifier known as the

SASID, used to match SIMS records to MCAS and NSC files.

SIMS data are used to code school enrollment, special education status, subsidized lunch status,

and limited English proficiency. Students who attended multiple schools in the same school year

are recorded as attending the school they attended longest. Students are classified as qualifying

for special education services or eligible for a free or reduced-price lunch in any record within a

school-year-grade retain that designation for the entire year-grade. SIMS data are also used to code

behavioral outcomes, including ever being suspended, number of suspensions, ever being truant,

number of days truant, ever attending school operated by the Massachusetts Department of Youth

Services, and number of days absent. SIMS omits data on suspensions after 2012-13. Suspension

data for the 2013-14 cohort come from School Safety and Discipline Reporting (SSDR) files provided

by DESE.

MCAS Data

The Massachusetts Comprehensive Assessment System (MCAS) is the state accountability exam

for Massachusetts, taken in grades 3-10. Our analysis uses MCAS Math and English Language

Arts (ELA) data from the school years beginning 2000-2019. MCAS scores are linked with student

SIMS records using SASIDs. Our analysis uses MCAS ELA and Math test scores from the 4th,

6th, 7th, 8th, and 10th grade exams. Grade 4 Math and ELA scores are used as baseline controls

for applicants to grade 6. Grade 8 Math scores and grade 7 and 8 ELA scores are used as baseline

controls for applicants to grade 9. As as baseline, grade 7 ELA scores from years 2000-01 through

2003-04 are used for applicants enrolled in 9th grade in school years 2002-03 through 2005-06 and

grade 8 ELA scores from years 2005-06 through 2012-13 are used for applicants enrolled in 9th
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grade in school years 2006-07 through 2013-14. Grade 6 Math scores and grade 7 ELA scores are

the MCAS outcomes for applicants to grade 6. Grade 10 Math and ELA scores are the MCAS

outcomes for applicants to grade 9. Raw scores are standardized to have mean zero and standard

deviation one within a subject-grade-year among enrolled students in our sample who are tested in

a given year.

NSC Data

Data on college enrollment comes from the National Student Clearinghouse (NSC) database, which

captures enrollment for 96% of U.S. college student Hindley and Eaton (2018). The Massachusetts

DESE regularly requests an NSC extract with college-going information for Massachusetts high

school graduates and dropouts (requests are mostly made annually for graduates and every two

years for dropouts and other non-graduates). The resulting matched data set includes each student-

school enrollment record found in the NSC database. Student enrollment records are associated

with SASIDs, thereby linking NSC data to SIMS data. We use NSC records from the 2006-07

through 2021-22 school years, covering potential college enrollment for 9th graders in our sample.

Students are coded as having enrolled in college if they appear as enrolled in NSC data within 6

months of their projected high school graduation. NSC college enrollment data distinguish between

four-year and two-year schools.

Boston School Characteristics

Data on school characteristics come from publicly available records posted online.4 These records

provide school-specific information on student-teacher ratios, the percent of teachers licensed in

their teaching assignment, and the percent of core academic classes taught by highly-qualified

teachers. Information on these three outcomes is available for all cohorts in our sample. The

student-teacher ratio is defined as the total number of students divided by the number of full-time

equivalent (FTE) teachers across all grade levels at the school attended. The number of FTE

teachers counts all teaching professionals, including teachers who work with special populations

such as high needs students or English learners in small groups. The percent of teachers licensed in

their teaching assignment refers to the percent of teachers who are licensed with provisional, initial,

or professional licensure to teach in the subject(s) in which they are posted. Finally, the percent of

core academic classes taught by highly-qualified teachers gives the percent of core subjects (English

language arts, mathematics, and science, among others) taught by teachers holding a Massachusetts

teaching license and demonstrating subject matter competence in the areas they teach.

E New York Data Appendix

Lists of high school applicants, applicant rank order lists, and assignments are constructed using

annual records from the New York City Department of Education (NYCDOE) school assignment

4See https://profiles.doe.mass.edu/statereport/teacherdata.aspx.
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system. Information on student demographic characteristics and schools attended comes from the

NYCDOE’s Office of School Performance and Accountability (OSPA). Achievement test scores

are taken from New York State Assessments and the SAT. College attendance information comes

from the National Student Clearinghouse (NSC). Data on school characteristics were obtained

from publicly available school report cards posted online. Geographic information on students

and schools comes from an administrative data set known as the Zoned District Borough Number

(DBN) file. All non-public data were provided by NYCDOE. These files include a unique student

identification number for record linkage. New York data sources are detailed below.

NYCDOE Assignment Data

Data on NYC high school applications were provided by the NYCDOE enrollment office. We

received assignment data for all applicants seeking 9th grade seats at traditional city high schools

for the school years beginning 2012-16. These files exclude applicants who applied only to selective

enrollment (exam) schools and/or charter schools. Application records include students’ rank-order

lists of academic programs submitted in each round of the application process, priority and rank at

each program listed, lottery tiebreaker values, and the program to which the applicant was assigned.

We focus on 9th grade applicants seeking seats in school years beginning fall 2012-2016, and who

submitted preferences in the main round of the high school match. The NYC high school match

includes three rounds. The main round uses a deferred acceptance (DA) algorithm. Between 85-

89% of applicants in years 2012-2016 were assigned in the main round. Applicants unassigned

in this round typically apply in a subsequent round.5 Students who remain unassigned in later

rounds are assigned on a case-by-case basis in a final administrative process. Application counts

by year appear in Column 1 of Table B2. Preferences, priorities, and capacities for each program

(computed by summing the number of observed offers) are used to replicate the match. As can be

seen in column 2 of Table B2, we replicate an average of 96.0% or more of main round assignments.

OSPA and Address Data

We received registration and enrollment files for the school years starting fall 2012-16 from NYC-

DOE’s OSPA office. These data include students’ grade and enrolled-school DBN, as well as student

demographic variables. OSPA data for a given year include a record for every student enrolled at

a New York City public school any time during the year. Our data come from end-of-year files

recorded in June. This file supplies information on school enrollment, attendance, special education

status, subsidized lunch status, and limited English proficiency.

DBN files contain a residential address for most New York City students. We search DBN files

for 2010-2018 when address information is missing in cohort-specific files.

5Students in the first round are those who also apply to the city’s specialized high schools. If a student does not
receive a specialized high school offer, they are notified of their offer in the main round. See Abdulkadiroğlu, Pathak
and Roth (2005) for details.
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New York State Assessment Data

Lagged test score controls come from New York State Assessments, a set of state accountability

tests covering grades 3-8. Our lagged score controls come from 6th grade tests in math and English

Language Arts (ELA) scores, taken in spring 2010 through spring 2014. Baseline scores are nor-

malized to have mean zero and standard deviation one within a subject-year among all 9th grade

public school students in the city.

SAT Data

The NYCDOE supplied data on SAT scores covering the period in which our applicant cohorts

were tested. NYCDOE obtains SAT data for New York City students from the College Board,

which owns and administers the SAT. College board data are matched to DOE files using name

and date-of-birth.

Many students take the SAT repeatedly. For those that do, we use the score from the first test.

Most of these were taken in 11th grade. SAT score scales were redesigned in 2016. We therefore

scale pre-redesign scores using the detailed in https://collegereadiness.collegeboard.org/

educators/higher-ed/scoring/concordance for the conversion scale. Raw scores are standard-

ized to have mean zero and standard deviation one within a subject-year among enrolled students

in our cohorts who are tested in a given year.

NSC Data

As for Boston, New York college outcomes come from the NSC. The NYCDOE shared raw NSC

data for cohorts graduating through 2019. College graduation and degree type are coded as for

Boston.

New York School Characteristics

Data on school characteristics come from publicly available files released online by the New York

State Education Department.6 We use three outcomes from these data files: the student-teacher

ratio, the percent of teachers licensed in their teaching assignment, and the percent of core academic

classes taught by highly-qualified teachers. The student-teacher ratio is the total number of students

divided by the number of full-time equivalent (FTE) teachers across all grade levels at the school

attended. The number of FTE teachers counts all teaching professionals, including teachers who

work with special populations, such as high needs students and English learners, in small groups.

This data is available for school years 2012-2016. The percent of teachers licensed in their teaching

assignment refers to the percent of teachers who are licensed to teach in the subject(s) in which

they are posted. This data is also available for school years 2012-2016. Finally, the percent of

core academic classes taught by highly-qualified teachers gives the percent of core subjects that are

6See https://data.nysed.gov/downloads.php.
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taught by teachers holding a New York State teaching license and demonstrating subject matter

competence in the areas they teach. This data is available for 2012-2015 only.

School addresses are obtained from the Zoned DBN file.
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Table B1: Boston Match Replication Rates

(1) (2) (3) (4)

2002 4,239 96.1% 3,143 95.2%
2003 3,868 94.4% 3,416 95.3%
2004 3,596 97.4% 3,323 94.3%
2005 3,451 95.2% 3,134 96.4%
2006 2,884 97.5% 3,062 99.6%
2007 2,466 96.4% 2,714 100.0%
2008 2,149 97.4% 2,609 99.2%
2009 2,352 96.1% 2,738 99.7%
2010 2,320 95.5% 2,691 96.6%
2011 2,074 97.5% 2,495 93.8%
2012 2,073 96.6% 2,727 93.3%
2013 1,748 95.5% 2,810 96.3%

Middle School High School

Number of 1st 
round 

applicants
Replication rate

Number of 1st 
round 

applicants
Replication rate
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Table B2: NYC Match Replication Rates

(1) (2)

2012 67,778 96.8%
2013 66,342 96.0%
2014 68,077 96.6%
2015 64,911 98.2%
2016 64,698 97.8%

High School

Number of 1st 
round 

applicants
Replication rate
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