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Abstract

I use recent screened-school admission reforms and a structural model to gauge the
contribution of admission criteria to segregation in New York City middle schools.
A difference-in-differences analysis shows that two local admission reforms decreased
school segregation, while prompting changes in application patterns and an increase
in white and high-income student exit from the public-school sector. Using a school
demand model which allows for strategic application behavior to predict the conse-
quences of hypothetical city-wide reforms, I estimate that about half of NYC middle
school segregation is due to admission criteria, with the rest due to family preferences
and residential sorting.
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1 Introduction
In the landmark case of Brown v. Board of Education, the U.S. Supreme Court declared
that racial segregation in public schools is “inherently unequal” and mandated that schools
integrate “with all deliberate speed” (Brown v. Board of Educ. II, 1955). Nonetheless, sev-
enty years later, many American schools are still divided by race, ethnicity, and class (Lutz,
2011; Reardon et al., 2012). Stark racial and socioeconomic gaps are especially apparent in
large urban school districts such as New York City (NYC), where 77% of Black and Hispanic
students attend schools enrolling fewer than 10% of white students while only 11% of white
students and 43% of Asian students attend such schools (Cohen, 2021). The persistence of
school segregation may contribute to widening racial and economic achievement gaps (Rear-
don, 2013), as attending a more diverse school can have both academic and psychological
benefits (Billings and Hoekstra, 2019; Guryan, 2004; Johnson, 2019).

Contemporary school segregation arises in a different institutional context than in the
1960s and 1970s. Today, many large urban districts in the U.S. assign students through cen-
tralized assignment plans which allow families to choose schools, decoupling students’ home
addresses from the schools they can attend. Within this framework, policy makers across
the country have recently adopted admission reforms aimed at reducing school segregation.1
The political effort is particularly visible in NYC where Mayor de Blasio campaigned on the
promise to make the schools “reflect the city better” (Harris, 2018). Under his mandate, the
city implemented several "diversity in admissions" initiatives aimed at reducing segregation.

In the context of centralized assignment systems, segregation is an equilibrium outcome
of applicant preferences (demand-side) and school admission criteria (supply-side). On the
student side, applicants may prefer enrolling in schools with similar classmates (Bjerre-
Nielsen and Gandil, 2020) or in schools close to home, in which case school segregation could
arise from residential sorting (Laverde, 2020). At the same time, schools may also implement
admission criteria based on academic achievement or residence, criteria which tend to make
schools more homogeneous. Determining the respective roles of these two factors is key
as it informs the extent to which policy makers can influence school segregation through
admission reforms.

This paper evaluates the contribution of school admission criteria to the observed pattern
of segregation in NYC middle schools. The first part of my analysis studies the effects of
admission reforms in two local NYC school districts. The analysis of these unique natural
experiments highlights the importance of student behavioral responses to admission reforms
both at the application and enrollment stages. Based on the reduced form analysis, I de-
velop a model of demand for schools which reflects the observed behaviors. I then simulate
how counterfactual admission schemes would affect the city-wide level of school segregation,

1For instance, Fairfax County (VA) and San Francisco replaced the admission tests at their exam schools
with lotteries in 2020 (Warikoo, 2021). In Boston, exam schools still screen students based on academic
achievement but now give priorities to students living in disadvantaged zip codes (Barry, 2021). Philadel-
phia switched to lottery admission for its magnet schools and introduced some zip code priorities in 2021
(Mezzacappa, 2021). Chicago expanded access to its elite high school entrance test in 2021. Under the new
policy, all public school students take the test, which is administered directly at their schools (Karp, 2021).
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accounting for applicant responses. These counterfactual scenarios allow me to isolate the
contribution of admission criteria to school segregation from demand-side factors.

In 2019, two of the 32 NYC school districts, Northwest Brooklyn (NWB) and Upper West
Side (UWS), launched integration reforms which reduced the role of academic screens in mid-
dle school admission. I use a difference-in-differences strategy to estimate the impact of these
reforms on school segregation and to analyze changes in applicant behaviors. To measure
changes in school segregation, I compute a segregation index which measures the percentage
deviation of same-group exposure at school as compared to a reference geographical level. I
find that NWB’s integration reform substantially decreased economic and racial segregation
at the district’s schools. The segregation index of low-income applicants decreased by 30%,
while the segregation index of Black and Hispanic (minority) applicants decreased by 13%.
UWS’s integration reform, in contrast, only decreased economic segregation index by 8%
and did not affect racial segregation.

Despite the difference in final impact between the NWB and UWS integration reforms,
both reforms elicited large behavioral responses from applicants. At the application stage,
families changed the rank-order list (ROL) of schools submitted to the central assignment
system. Applicants who faced the largest decreases in admission odds due to the reforms de-
cided to lengthen their ROLs, while applicants with increased admission odds at competitive
programs ranked those programs more highly. These changes amplified the reforms’ effects
on integration, resulting in school offers that were roughly three times less segregated.

During the enrollment phases, I find that White and higher-income applicants were more
likely to turn down their match offer and exit the public school system. These changes
in school offer take-up rates may be explained by changes in the achievement of potential
peers as White and higher-income applicants were assigned to schools which had, on average,
lower-achieving potential peers after the implementation of the reforms. Overall, this “white
flight” halved the effects of the integration reforms on racial and economic segregation in
both districts.

The extent of these behavioral responses underscores the importance of understanding
applicant decision-making processes both during the enrollment and application stages to
predict the effects of changes in admission regime. To fully characterize the application
response, I develop and estimate a model of ROL formation which captures the changes
induced by the integration reforms. The observed responses are hard to reconcile with the
assumption that applicants list schools in order of true preference, without considering their
admission chances.2 Thus, my model departs from the truthful benchmark in two ways.
Firstly, applicants can submit short lists, i.e. stop adding schools to their list once they are
confident of securing admission to one of the listed programs. Secondly, applicants can omit
schools for which they have a low probability of admission.

2Artemov et al. (2017) and Larroucau and Rios (2020) also find evidence consistent with students omitting
programs to which they are unlikely to be admitted in two other school systems that use deferred acceptance
to assign students. Relatedly, Rees-Jones and Skowronek (2018) present experimental evidence that medical
students misrepresent their preferences in the National Resident Matching Program. Luflade (2017) estimates
the value of giving information to students on their probabilities of admission in DA matches, when the length
of the ROL is constrained and students cannot always express their true preferences.
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To allow for strategic application behavior, I model the applicant choice of ROL as an
optimal portfolio choice problem as in Chade and Smith (2006). In this framework, the ROL
can viewed as a set of lotteries over schools, where the weights assigned to each school depend
on the applicant’s admission probabilities and the school’s position in the applicant’s list.
Applicants choose their ROL to maximize their expected utility, which is determined by their
utility over schools, the lottery over schools induced by the ROL, and the cost of submitting
the ROL. In my model, I simplify the applicant choice problem by assuming applicants use a
heuristic method to construct their ROL. Instead of solving a one-shot utility maximization
problem that requires considering all possible ROLs, applicants choose which schools to rank
sequentially with a limited understanding of the dynamic consequences of each choice.

Besides being able to fit the observed behavioral changes, my model simplifies the estima-
tion of preferences under strategic reports. Agarwal and Somaini (2018) propose a general
methodology to estimate preferences based on the optimality of the chosen ROL, whenever
the mechanism can be represented with a cutoff structure. A major challenge when imple-
menting this methodology is the curse of dimensionality, as the number of potential ROLs
grows exponentially with the number of schools and the method requires checking the opti-
mality of each applicant’s choice among all possible lists. To circumvent this dimensionality
problem, Larroucau and Rios (2020) proposes a strategy to limit the choice space considered
for estimation, while Calsamiglia et al. (2020) shows how the optimality of a list can be
checked by backward induction. My model instead assumes that applicants do not consider
all lists and implies a series of bounds on indirect utilities for schools. These bounds yield a
reduction in dimensionality which allows me to estimate preferences, even in the case where
admissions are not independent events.

Using the preference estimates from my model, I assess the contribution of admission
criteria to school segregation by simulating the equilibrium effect of different admission
regimes. The first counterfactual drops all academic selection criteria, which are used by
30% of NYC middle schools and are often deemed responsible for school segregation.3 The
second counterfactual drops all admission criteria based on residence as well as academic
criteria. In this scenario, students are allowed to apply to any NYC school, do not get priority
based on residence, and are not ranked on academic achievement. This would represent a
sweeping change, as 97% of middle schools use some or all of these criteria. Since this second
counterfactual removes all school admission criteria, it isolates how much of segregation is
due to applicant preferences and residential sorting.

The simulation results suggest that academic screens play only a small role in city-
wide school segregation, while geographic screens are much more important. In the first
simulation which drops only academic screens, I find a modest decrease in racial and economic
segregation: the segregation index of low-income students drops from 5% to 4% while the
segregation index of minorities drops from 14% to 13%. In contrast, when dropping also
geographic screens, the segregation index of low-income students drops from 5% to 2%,
while the segregation index of minority students decreases from 14% to 9%. Hence, about
half of NYC middle school segregation is due to school admission criteria while the remaining

3This counterfactual scenario was implemented temporarily in 2021 due to the Covid-19 pandemic.

4



half is due to demand-side factors. As at least half of the demand-induced school segregation
is driven by residential sorting, admission reforms are unlikely to reduce school segregation
in NYC by more than 50% from its current level.

The rest of the paper is organized as follows. After a brief review of the related literature
in the remainder of this section, Section 2 describes segregation in NYC schools and resi-
dential areas and the NYC school assignment system. Section 3 discusses the effects of the
integration reforms on school diversity. This section also details applicant responses to the
plans. Section 4 discusses the estimation of a strategic model of school demand. Section 5
presents the effects of counterfactual admission regimes on NYC school segregation. Section
6 concludes.

Related literature

This paper contributes to the contemporary policy debate on school segregation. The effect
of school segregation on disadvantaged student academic achievement has been documented
by research which has found that the Black-white test score gap is higher in more segregated
cities (Card and Rothstein, 2007; Vigdor and Ludwig, 2007) and has increased in school
districts that suspended race-based admission (Billings et al., 2014; Cook, 2018). Studies on
the effects of integration policies also suggest that integration may confer both academic and
psychological benefits to students (Angrist and Lang, 2004; Guryan, 2004; Zebrowitz et al.,
2008; Johnson, 2011; Bergman, 2018; Johnson, 2019).4 My paper shows that admission
criteria and academic screens play a role in school segregation, but that their elimination
would not result in a fully integrated school system in NYC. These results are consistent with
the previous literature on segregation under school choice, which has emphasized the role of
informational frictions (Son, 2020), applicant preferences, and residential sorting (Laverde,
2020; Bjerre-Nielsen and Gandil, 2020).

This paper also documents enrollment responses to contemporary integration policies.
I find that both districts’ integration reforms resulted in white and high-income student
enrollment losses, changes which are quantitatively similar to the ones observed during the
adoption of court-ordered desegregation plans in the 1970s (Reber, 2005; Lutz, 2011). Build-
ing on the “white flight” literature, I am able to scrutinize the underlying cause of exit and
provide evidence that changes in public-school enrollment are mediated through changes in
peer achievement at the assigned school. Once peer achievement is controlled for, other peer
characteristics do not affect the enrollment decision. This finding relates to the analysis of
NYC application patterns in Abdulkadiroğlu et al. (2020), which shows that an important
determinant of applicant preferences for schools is peer quality.

Finally, this paper contributes to the literature on estimating demand for schools in
deferred acceptance (DA) under strategic behavior (Fack et al., 2019; Ajayi and Sidibe, 2020;
Larroucau and Rios, 2020; Son, 2020). First, I provide evidence from a natural experiment
that applicants respond to changes in the admission criteria, and that their responses are
not compatible with the assumption of truthfulness of expressed preferences. Second, I offer

4Moreover, exposure to more diverse peers at school might also impact preferences and racial attitudes
in adulthood (Boisjoly et al., 2006; Carrell et al., 2019; Billings et al., 2020).
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an alternative method to estimate preferences in DA where students take into account their
admission probabilities. My method modifies Agarwal and Somaini (2018) to avoid the
curse of dimensionality by assuming that applicants use a heuristic method to choose their
list, rather than solving a one-shot utility maximization problem that requires considering
all possible rank-order lists (Larroucau and Rios, 2020). The model allows applicants to
submit short lists and ignore low-probability choices, while being computationally feasible
to estimate even in a large market and when admissions are not independent events.5

2 Background

2.1 Institutional context and data
The NYC middle school match

The NYC public school system has around 450 middle schools which enroll approximately
70,000 new 6th graders each fall. In the preceding winter, current 5th graders submit applica-
tions to NYC public middle schools through a centralized admission system run by the NYC
Department of Education (DOE). Applicants apply to academic programs and are asked to
rank them by order of preference. Subsequently, academic programs submit a ranking of all
their applicants. A school may operate more than one program.

In the spring, the centralized admission system combines the information and makes a
single school offer to each applicant using the deferred acceptance (DA) algorithm.6 About
92% of students who completed their application are matched in this main round. Applicants
that are unassigned at the end of DA are manually placed in programs with unfilled seats
based on geographic proximity and expressed interests.

Applicants report their preferences to the mechanism through a rank-order list, which
has been limited to 12 choices since 2017. To support families in the application process,
the DOE provides both a physical admission guide and access to a personalized website.
Each personalized website only includes schools to which the applicant is eligible.7 Both the
website and the guide include an information page about each school, which comprises of a
brief statement of the school’s mission; a list of offered programs, courses, and extracurricular
activities; the performance of enrolled students on standardized tests; admission priorities
and selection criteria for each of its programs; the number of applicants per seat and the
priority of the last admitted applicant in the prior year. The DOE also issues annual school
reports that list enrolled student demographics, teacher characteristics, and statistics about
student performance and school environment.

5Ajayi and Sidibe (2020) and Son (2020) also consider a model of list formation in which applicants
only consider a subset of programs. However, in their models, strategic considerations based on admission
probabilities do not affect which schools are ranked whenever an applicant does not fill her list.

6The detailed steps of the algorithm are described in Appendix F.
7The application guide is district-specific and only includes schools that accept students residing in the

district.
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Each academic program ranks applicants according to program-specific eligibility and
admission criteria.8 While most programs prioritize students on the basis of their residential
zones, the school at the time of application and attendance to information sessions are also
sometimes used in rankings. 33% of programs also rank individual students based on prior
grades, standardized test scores, talent test scores, and behavioral measures. These programs
that rank students on academic criteria are often referred to as screened programs.

NYC middle schools are intended to serve students living in their neighborhoods. The
school district is divided into 32 local school districts whose boundaries are shown in Figure 1
and most middle schools only consider applicants residing in the district or in smaller specific
residential areas. In 2018, 83% of programs had zone or district eligibility requirements,
14% were borough-wide programs, and only the remaining 3% were city-wide programs. In
addition, 23% of borough-wide or city-wide programs gave priority to applicants residing in
or attending schools in specific districts. In part because of these rules, 85% of students
attend a middle school in their district.

Data

The data is obtained from the DOE administrative information system. It covers all students
enrolled in the New York City public school system. These data include the application and
match data for NYC middle schools for enrollment years 2015-2016 to 2020-2021. The
application and match files contain information on applicants’ choices, applicants’ priorities
and rankings at the programs they applied to, main round offers, manual placements, and
final offers. All applicants receive a final offer. The data also contains information about the
disability status of the applicant as students with disabilities are matched to specific seats.
I am able to replicate the main round offers received by 93% of applicants in the 2015-2016
match. By 2020-2021, the replication rate increases to 99%.

The application data can be matched through a unique identifier to data on school
enrollment, student demographics, standardized test scores, and residential location. The
DOE collects school enrollment data each year in June. Besides the grade and school enrolled,
the data also contains information about the ethnicity, poverty status (which proxies for free
or reduced-price lunch (FRPL) eligibility), and English language learner (ELL) status of
each NYC student.9 The test score files include the results to NY State ELA and math
standardized tests administered in grades 3 through 8. A performance level of 1, 2, 3, or
4 is associated with each scaled score. Students that score above 3, which corresponds
roughly to the 60th percentile, are considered high performers. Finally, the DOE provided
students’ residential census tracts and zip codes. School distances are computed as the
linear distance between the centroid of a student’s census tract and each school. Appendix
details the construction of the samples used in the reduced form analysis and in the demand
estimation.

8Ties between applicants with the same rank are broken using a unique tiebreaker.
9The enrolled school corresponds to the last school a student was enrolled in during the academic year.

Students that leave the NYC public school system mid-year have as school of enrollment the latest NYC
public school they attended.
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2.2 Segregation in NYC
Measure of segregation

Segregation is measures based on the concept of same-group exposure (SGE), which corre-
sponds to the probability that a member of one group meets a member of the same group
within a given geographical unit (an area or a school). The segregation index (SI) standard-
izes same-group exposure by subtracting the group’s marginal probability in the population
of interest. For a given demographic group identified by a dummy variableX, the segregation
index for that group is calculated as:

SIX = SGE[X]− E[X] (1)

This segregation index represents the percentage deviation from perfect integration, given
the population’s demographics, and can be used to compare segregation across time and
space while taking into account differences in the demographic makeup of the population.
The index takes the value of 0 when students attend schools whose student bodies mirror the
population of reference, its maximum value corresponds to 1 minus the benchmark same-
group exposure.

There are many other measures of the unevenness of a distribution, but this index has
several useful properties. First, it can be applied to both residential and school segregation
and to measures with two or more groupings (e.g. multiple races). Second, the index
can be used to compute district-level school segregation by subtracting the demographic
makeup of the district from the average school SGE among students residing in the district.10

Since most NYC middle schools only accept in-district students, the district-level measures
constitute relevant benchmarks to evaluate school segregation. Finally, the normalization
by the demographic composition of applicants and not of enrolled students accounts for the
effect of public school exits on segregation.11

NYC residential and school segregation

School choice may ameliorate the segregation inherent in neighborhood schools by allowing
students to attend more distant schools. The policy has more leverage when segregation
occurs at a smaller geographic scale, as in NYC, since students do not need to travel long
distances to mix with different peers.12. The scope for district-level choice to increase inte-
gration is also limited by the number of non-minority students enrolled in the district public
schools. In 2018, one third of NYC 6th graders were white or Asian, leaving some potential
for school choice to affect racial mixing.

10A district-level school segregation index can take a negative value if district students attend less segre-
gated schools than the district itself thanks to out-of-district attendance.

11This distinguishes this index from the one used in Margolis et al. (2020), which compares the demographic
makeup of district schools to the makeup of students enrolled in the district.

12Reardon et al. (2008) finds that NYC is amongst the five most segregated metropolises when considering
small neighborhoods with a 500-meter radius, but falls to around the 20th when segregation is measured
over a 4,000-meter radius
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Table 1 documents the extent of residential and school segregation for middle school
applicants in 2018. As the second column shows, residential segregation at the census tract
level is substantial. The segregation index at the census tract level for Black, white and Asian
students is approximately 0.30, while it is 0.18 for Hispanic students. Residential segregation
falls when measured at the district level in column (3). For insrance, the segregation index
for Black and white students drops from around 0.30 at the census tract level to 0.18 and 0.12
at the school district level. Segregation is also visible along economic lines, as low-income
applicants are slightly over-represented in some census tracts and districts.

Schools appear to facilitate integration as segregation is lower in schools compared to the
census tract level. Nevertheless, schools are still not fully integrated, even when compared
to school districts. Column (5) of Table 1 shows that city-wide segregation indexes at the
enrolled school are halfway between the census tract and district level values for all groups.13

Overall, the NYC centralized seat assignment results in middle schools which are less diverse
than school districts, meaning that the match process falls short of achieving the maximum
level of integration allowed by geographic eligibility and priority rules.

3 Reduced form analysis of NYC integration reforms

3.1 NYC integration reforms
In 2019, the Northwest Brooklyn (NWB) and Upper West Side (UWS) school districts
implemented district-wide “Diversity in Admissions” initiatives that substantially altered
program admission criteria for all district schools.14 The integration reforms impacted 11
middle schools in NWB and 16 middle schools in UWS. These reforms provide two unique
natural experiments to evaluate the impacts of admission criteria on school segregation.
Since out-of-district enrollment is quite limited, district-level plans allow for an evaluation
of the general equilibrium effect of admission reforms and the effect on public school exits.

Both integration reforms aimed to promote integration by reducing academic screening
and increasing access to selective schools. NWB eliminated academic screens at all of its mid-
dle schools, and prioritized 52% of the seats in each school for low-income, English language
learners, or homeless students. UWS’s reform was less far-reaching: it maintained academic
screens, but prioritized 25% percent of seats at each school for low-achieving low-income
students.15 As a result, the reforms increased admission chances for low-income students
with low baseline test scores and reduced admission chances for high-income applicants with
high baseline test scores who received lower priority for the reserved seats.

13Segregation indexes at the school offered by the match in column (4) are very similar to the ones at the
enrolled school in column (5).

14These district-based initiatives followed school-level programs launched in previous years described in
Appendix Table A2.

1510% of UWS middle schools’ seats were prioritized for free and reduced-price lunch (FRPL) eligible
students who scored an average of below 2 on a composite of 4th grade math and ELA scores ranging from
1 to 4.5; and, 15% of additional seats were prioritized for FRPL-eligible students who earned an average
between 2 and 3 on the same composite score.
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These two districts are suitable settings for examining the impact of admission reform
effects on school segregation for three reasons. Firstly, both districts are more diverse than
the city, as shown in Table 2. For instance, 40% and 31% of UWS and NWB students
are white, compared to 16% city-wide. Secondly, prior to 2019, both districts had higher
racial and economic school segregation compared to most other NYC districts. Black and
Hispanic student district-level school segregation indexed reached 0.22 in UWS and 0.14
in NWB, against 0.04, on average, in NYC.16 Thirdly, academic screens were prevalent in
both districts before the reforms. Prior to 2019, 57% of UWS programs and 80% of NWB
programs screened their applicants on grades and behavioral measures, while only 33% of
NYC programs did so.

Although the direct target of the reforms was economic segregation, they also affected
racial segregation. Black and Hispanic students are more likely to benefit from such reforms
as they are more likely to be FRPL-eligible and have lower baseline test scores.17 Approx-
imately 70% of UWS Black and Hispanic students and 50% of NWB Black and Hispanic
students were eligible for the reserves created under the new admission schemes. By contrast,
only 3% and 15% of white students qualified for the reserves in UWS and NWB, respectively.
Section 3.2 examines the changes in racial and economic school segregation after the reforms.

The diversity effect of such admission reforms hinges on how students respond to them.
Figure 2 illustrates how admission criteria impact enrollment. Student behavior influences
the final impacts of a change in admission criteria by affecting which school offers are made
and which of those offers translate into enrollment. Section 3.3 highlights how exit from the
traditional public school sector increased for white and high-income students, reducing the
impact of the reforms on segregation. Finally, Section 3.4 shows that applicants altered their
school choices in response to the reforms.

3.2 Effects on school segregation
The estimation of the reforms’ effects on school segregation is challenging as segregation is
a district-level outcome. I assess the effects of the plans through a district-level difference-
in-differences (DiD).18 This research design compares differences in measured segregation
between UWS and NWB and other NYC districts before and after the implementation of
the integration reforms. It identifies the causal effects of the reforms under the assumption
that, in the absence of any policy changes, trends in segregation would have been similar
across districts. I examine whether districts followed different trends prior to the reforms to
check the validity of this assumption. To assess the statistical significance of the observed
changes, I use permutation methods similar to the ones introduced in Abadie et al. (2010).

The integration reforms led to a decrease in economic segregation in both UWS and NWB.
Figure 3 plots school segregation indices over time for low-income and minority students

16district-level school segregation indexes are standardized by the district-level shares.
17See appendix Table A3 for a description of student characteristics by race.
18A synthetic control approach is not suitable as the treated units present extreme pre-treatment outcome

levels (Abadie, 2021): UWS and NWB had the highest segregation index for most demographic groups prior
to the implementation of the plans.
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in UWS, NWB, and other NYC districts. In 2019, low-income segregation at the school
of enrollment in UWS dropped by 8%. In the same year, economic segregation in NWB
dropped by 30%. The larger change in school segregation in NWB is consistent with the
more far-reaching nature of its integration reform, as described in Section 3.1. On the other
hand, economic segregation did not change, on average, for other NYC districts.

The integration reforms also led to a decrease in racial segregation in NWB, albeit to a
lesser extent. The Black and Hispanic segregation index decreased by 13% in NWB between
2018 and 2019. The larger decline in economic segregation compared to racial segregation
is consistent with the fact that the integration reforms targeted low-income students. The
decrease in racial segregation in NWB is mostly a result of Hispanic and white students
attending more diverse schools. 19

I assess the statistical significance of changes in segregation using permutation methods.
To obtain a distribution of “placebo effects” on segregation, I estimate the following dynamic
DiD specification where each of 32 NYC districts is assigned iteratively to be the treated
unit d̃:

Ytd = λt + δd +
−1∑
j=−3

βjI(d = d̃)× I(t = j) +
2∑
j=1

βjI(d = d̃)× I(t = j) + εtd (2)

where λt and δd are year and district fixed effects. Ytd is the segregation index in district d
in year t. In each regression, segregation indices are normalized to zero for 2018, the year
prior to the implementation of the integration reforms. βj captures the estimated “placebo”
treatment effects for the district assigned to treatment in each year prior to and after 2018.

The comparison of the changes in the segregation index observed in UWB and NWB to
the “placebo effects” observed for the other NYC districts that did not implement district-
wide admission plans allows us to assess the statistical significance of the plans’ effects.
Figure 4 plots the coefficients from the 32 dynamic DiD regressions in which each NYC
district is iteratively assumed to have implemented a policy change in 2019. The estimated
effects for UWS and NWB are deemed significant when their magnitudes are extreme relative
to the “placebo effects”. Conversely, UWS and NWB do not show pre-trends in the outcome
if estimated effects for years prior to 2018 are comparable to the placebo estimates.

The permutation test reported in Figure 4 suggests that the declines in economic and
racial segregation observed in NWB were driven by its integration reform. Compared to other
NYC districts, NWB had amongst the largest estimated drop in segregation in 2019 for all
demographic groups.20 Moreover, NWB had amongst the smallest estimated coefficients for
years prior to the reform’s implementation. Hence, the drop in NWB segregation indices is
not likely due to chance or pre-existing trends.

19The NWB school segregation index fell by 72% for white students and by 19% for Hispanic students
after the reform, while it remained stable for Asian students and declined by a small percentage for Black
students, as shown in appendix Figures A4. Note that the UWS segregation index also decreased by 49% for
white students, mainly due to the significant increase in the number of white students leaving the traditional
public school system.

20Appendix figure A4 reports permutation tests for white and Hispanic students.
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The evidence is less clear for UWS, where the segregation indices for both low-income and
minority students were declining prior to the reform in comparison to other NYC districts.
Moreover, the 2019 estimated decline in segregation for minority students is only modest
compared to the declines estimated for other districts. While it is plausible that the decrease
in economic segregation in UWS resulted from its integration reform, the decrease in racial
segregation is small and within the bounds of typical year-to-year fluctuations.

Overall, these results are consistent with Margolis et al. (2020) but much smaller in
magnitude. The difference is largely due to the accounting of exit from the traditional
public school system.21 Indeed, economic and racial segregation in match offers, which
corresponds to the level of school segregation that occurs if all applicants enroll in the
school they are offered, exhibit much larger declines in Figures 3 and A4. Moreover, the
corresponding permutation tests reported in Figures 4 and A5 provide with strong evidence
that the declines in segregation at the match offer stage are due to the reforms.

3.3 Effects on exit from the traditional public school system
The results in Figure 3 indicates that changes in enrollment behavior weakened the impact
of the integration reforms. The comparison of the plans’ impacts in final enrollment and in
school offers reveals that shifts in offer take-up approximately halved the effects of the plans
on economic and racial segregation in both districts. This section analyzes the enrollment
responses to the reforms.

To estimate the effect of the integration reforms on take-up behavior, I implement a
student-level DiD regression that controls for district and year fixed effects. Specifically, I
estimate the following regression:

Yitd = λt + δd + β1I(d = UWS)× I(t = 2019) + β2I(d = NWB)× I(t = 2019) + εitd (3)

where λt and δd are year and district fixed effects. Yitd is a dummy that takes the value of
one when applicant i residing in district d enrolls in a school outside the public sector in
year t. β1 and β2 capture the change in the probability that students attend a school outside
of the traditional public school sector after the implementation of the integration reforms.22

For inference, I report robust standard errors and I confirm the statistical significance of DiD
results using the permutation method introduced in the previous section and described in
MacKinnon and Webb (2020).23 The permutation test specification and results are reported

21The analysis in Margolis et al. (2020) is limited by the use of school-level enrollment data. Since they
assess school segregation with respect to the population of students that enrolled in district schools, they
cannot account for the impact of changes in out-of-district enrollment on the effects of the plans.

22Charter schools are outside the traditional public school sector as they do not take part in the match.
23Assessing the statistical significance of the estimates from this DiD specification is complicated in the

context of the policy change. Since treatment is assigned at the district level, standard errors need to
be clustered if treatment effects are not homogeneous (Abadie et al., 2017). Unfortunately, as NYC only
comprises 32 districts, cluster-robust standard errors are not consistent (MacKinnon and Webb, 2017).
Moreover, only one cluster is treated for each experiment in the DiD, which precludes the use of wild
bootstrapping for clustering (MacKinnon and Webb, 2018).

12



in the Appendix G. The permutation tests also allow me to assess the presence of pre-trends
in the outcome.

The DiD estimates presented in Panel A of Table 3 suggest that both integration reforms
resulted in a large increase in the share of white and high-income students leaving the public
school system. Both shares went up by 6-7 percentage points in UWS, a 60% increase from
the pre-reform levels, and by 8 percentage points in NWB, a 45% increase. The integration
reforms had limited effects on public school exit for Black, Hispanic, Asian, and low-income
students, as the corresponding point estimates were close to zero and insignificant in both
districts.24 The drop in white enrollment in traditional public schools is quantitatively similar
to the reductions seen after nationwide court-ordered desegregation plans in the 1970s and
1980s. White enrollment in UWS decreased by 7% and in NWB by 10% as a result of the
reforms, which is comparable in magnitude to the 9% decline in the first two years after
court-ordered desegregation plans documented by Reber (2005).

The information on student offers sheds light on the reasons behind these enrollment
changes. Panel B of Table 3 shows the effect of the integration reforms on a proxy for school
desirability: the mean math baseline test score of offered students.25. Taken together, Panels
A and B of Table 3 offer suggestive evidence that the changes in student enrollment due to
the plans are associated with changes in the mean peer math score obtained through the
match. Changes in offered peer achievement are inversely related to the estimated changes
in exit in Panel A. For instance, white applicants in NWB, who are the most likely to exit
the public school system, receive offers with 0.25 standard deviations lower peer mean math
scores than in previous years.

To quantify the extent to which changes in public school exit are mediated through
changes in offered peer characteristics, table 4 reports IV estimates of the effect of offered peer
achievement on exit from traditional public schools using different sets of reform instruments.
Columns (1) and (2) show IV estimates computed using UWS and NWB integration reforms
separately. In both cases, the integration reforms are interacted with 8 covariates, in a
model that controls for covariate main effects as well as their interactions with district and
year fixed effects.26 Column (3) shows IV estimates that combine both sets of instruments,
using the variation generated by the two district integration reforms. If all of the effect
of the integration reforms on public school exit is mediated through a decrease in offered
peer achievement, IV estimates using each reform instrument and across covariate-defined
subgroups should be equal.

The similarity of the different IV estimates across columns provides support for peer
achievement being a primary mediator of the reforms’ effects on student exit. The resulting

24The only exceptions are Asian students in UWS and Black students in NWB, but these students represent
only 7% and 6% of applicants in UWS and NWB, respectively.

25I use 5th grade math scores as fewer students have a missing math test scores than English test scores. The
peer mean math baseline test score is computed leaving out each corresponding student to avoid simultaneity
bias. This choice of proxy is motivated by Abdulkadiroğlu et al. (2020), who find that peer achievement is
the main determinant of NYC high school popularity.

26The covariates used in the estimation are dummies for English language learner status, race, and the
interactions of low baseline tests score status with low-income status.
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estimates are at most 0.02 standard deviation (SD) apart and not statistically distinguish-
able.27 Being offered a school where peer baseline performance is 0.1 SD better on average
decreases the probability of exiting the public school system by approximately 3 percentage
points.

The overidentification statistics reported at the bottom of Table 4 provide a further test
for treatment effect homogeneity across reform instrument and across covariate-defined sub-
groups. In columns (1) and (2), which use reform-covariate interactions for each integration
reform separately, the overidentification test statistics implicitly test equality of IV estimates
computed separately for covariate subgroups. With p-values of 0.26 and 0.13, respectively,
the tests provide little evidence of differences in impact across covariate subgroups.28 Column
(3)’s overidentification test statistic, in which both district plans are used as instruments,
tests additionally for the equality of IV estimates computed using district plans as instru-
ments one at a time. The p-value for the overidentification test is 0.17, offering little evidence
against treatment homogeneity.

Since other peer characteristics might be correlated with math baseline achievement and
may therefore explain the changes in public school exit probability, I next consider other
mediators. Specifically, Table 4 considers, in addition to math achievement, the proportion
of minority students and the proportion of low-income students among applicants that receive
the same offer. Columns (4) through (6) report IV estimates for models that include each pair
of peer characteristics together. Models with two endogenous variables capture two causal
effects at the same time. These models, identified by differences in the two integration
reforms’ effects on school composition, allow for the possibility that different sorts of causal
effects are either reinforcing or offsetting.

The models with two endogenous variables suggest that peer achievement is the most
relevant mediator of student exit decisions. For the models in columns (4) and (5), which
include both peer math achievement and one of the two competing peer characteristics, the
estimates for the proportion of minority students and the proportion low-income students are
not statistically significant. The coefficient on peer math achievement retains its statistical
significance and is similar to the one estimated using the single endogeneous variable model:
-0.36 compared to -0.28.29

3.4 Effects on expressed preferences
Applicants responded to the reform-induced changes in offered school characteristics by
changing their enrollment behavior. It is therefore plausible that they also adapted their

27Using as mediator the previous year’s baseline achievement at the offered school, which assumes that
students do not anticipate how integration reforms will change school composition, leads to slightly more
variable estimates

28With 8 covariate interactions and an integration reform main effect in the instrument list, the resulting
overidentification test has 8 degrees of freedom.

29Moreover, the overidentification p-value for the model which includes proportion of minority students
and proportion of low-income students as endogeneous variables takes a value of 0.01, rejecting the equality
of IV estimates.
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application behavior, anticipating the effects of the reform. In this section, I characterize
how applicants changed their rank-order lists (ROLs) in response to the plans.

I first assess the contribution of changes in ROLs to the impact of the reforms on segre-
gation. To this aim, I simulate match offers under UWS and NWB plans using application
data from 2018. Note that because this year preceded the reforms, applicant ROLs were
unaffected. The differences in segregation between the simulated 2018 match and the real
2018 match capture the mechanical effect of the changes in admission criteria. The impact of
behavioral responses is then the difference between the observed declines in segregation and
the mechanical effects. These calculations are accurate under the assumption that expressed
preferences would have remained stable between 2018 and 2019 if there had been no reforms.

Figure 5, which reports the results of these simulations, shows that changes in application
behavior explain more than two-thirds of the decrease in economic and racial segregation at
the match offer stage. The decline in low-income and minority student segregation indices
would have been more than three times smaller if applicants had not adapted their ROLs
to the integration reforms. This change in impact due to applicant behavioral responses is
unlikely to be due to chance, since the actual effects of both integration reforms are not
within the 95% confidence intervals surrounding the simulated effects with no behavioral
response. These empirical confidence intervals account for the variability in segregation
indices that arises from differences in applicant population and lottery numbers.30

Changes in applicants’ ROLs determined the impact of the reform on segregation. There-
fore, I now turn to characterizing these changes. I first consider whether the length of the
ROLs was affected. As the integration reforms increased admission uncertainty for appli-
cants, applicants should list more choices if they wish to avoid being manually placed in
schools they might not like. Previously, students could estimate their admission odds based
on their elementary school test scores. By replacing screened admissions with lotteries, NWB
made it harder for applicants to predict their assignments. Similarly, the UWS reform raised
admission uncertainty by increasing the chances of students that were less likely to qualify
and by decreasing the chances of students that were more likely to qualify. Using the same
difference-in-differences specification as in equation (3), Panel A of Table 5 shows the effects
of the integration reforms on the length of the list submitted.

In both districts, the reforms resulted in an increase in the number of choices listed. The
increase was more substantial for applicants in NWB, where admission uncertainty increased
the most. On average, UWS applicants listed 1 additional choice in 2019 and 1.2 additional
choices in 2020, while NWB applicants listed 2.6 additional choices in 2019 and 2.8 additional
choices in 2020. All of these changes are significant at the 1% level. As shown in appendix
Table A4, the increased length of the ROLs almost perfectly offset the increase in uncertainty
as the share of unassigned students remained stable after the reform in NWB, while only
increasing a little in UWS.

The heterogeneity in responses for applicants with different baseline achievement and low-
30I obtain the empirical distribution by bootstrapping 100 times the 2018 match under the two integration

reforms, redrawing each time a sample of applicants and a sequence of tie-breakers. Applicants are sampled
with replacement from each district independently. Students with disability (SWD) and non-SWD applicants
are also sampled separately as they participate in two distinct matches.
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income status in columns (2) through (5) is consistent with applicants listing more choices
to reduce the probability of manual placement.31 High-income applicants with high baseline
test scores, whose admission odds were negatively impacted by the reforms, added the most
choices to their lists. Low-income applicants with low baseline test scores, who benefited
the most from the reforms, added fewer programs to their lists. Finally, the small and
mostly insignificant changes in the probability of manual placement for all groups, shown in
appendix Table A4, suggest that each group of students adjusted the length of their ROLs
in proportion to the change in admission uncertainty induced by the integration reforms.

The increase in length of the ROLs was accompanied by changes in the order and com-
position of the lists. Panel B of Table 5 shows that the mean baseline achievement of the
most preferred school changed heterogeneously for each applicant group.32 The mean base-
line achievement of each school is computed in years prior to the reform, so that it captures
pre-reform school selectivity. Low-income applicants with low baseline scores ranked first
more competitive schools than in previous years in both UWS and NWB. On average, the
schools they preferred most enrolled students with respectively between 0.05 and 0.12 higher
baseline math scores. On the other hand, high-income NWB applicants with high baseline
scores ranked schools that enrolled students with between 0.10 and 0.12 smaller baseline
math scores first after the reform.

These changes in expressed preferences are hard to reconcile with the assumption that
applicants list schools in order of true preference, without taking into account their admission
chances.In contrast, they seem consistent with applicants submitting short lists, i.e. not
adding schools to their list once they are sure of getting into one of the listed programs.
The increase in applicant ROL length in response to the integration reforms suggests that
applicants add more schools to their list when the probability of non-assignment increases.
Applicants also appear to omit schools for which they have a low probability of admission,
as applicants whose admission odds increased thanks to the reforms rank more selective
programs after their implementation.

4 Model of school choice under strategic behavior
The analysis of UWS and NWB integration reforms show that applicants adapt their enroll-
ment and application behaviors to the admission environment. These changes in behavior
substantially affect the impact of a change in school admission criteria. Therefore, it is im-
portant to predict behavioral changes when forecasting the effects of an admission reform.
The prediction of enrollment changes can be done by examining the changes in peer charac-
teristics of the assigned school. The prediction of the updated rank order list (ROL) requires
a model of list formation, as it involves relative comparisons across programs.

This section introduces a model of ROL formation that is compatible with the deviations
31Students with 5th grade math proficiency score above 3 are defined as high-baseline. This corresponds

to the threshold for UWS’ reserves.
32Considering only the school ranked first avoids the selection bias that would arise if the plans also affected

the decision of ranking more choices.
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from truthfulness identified in the previous section. Specifically, this model of strategic
behavior is consistent with applicants submitting short lists and omitting choices for which
the probability of admission is low.

4.1 Model setup
Let students be indexed by i ∈ {1, ..., n} and programs be indexed by s ∈ {1, ..., S}. Each
student submits a rank-order list (ROL) of programs, denoted by Ri ∈ R where R com-
prises the sets resulting from all the k-permutations of {1, ..., S} for k = 1, ..., S. Each Ri

is a strictly ordered set where the ordering of elements in Ri corresponds to student i’s
expressed-preference order.33 For instance, if student i submits rank-order list Ri = (3, 15),
it means that only programs 3 and 15 are indicated as acceptable by i (i.e. preferred to being
unassigned) and that i indicates she would prefer to be assigned to program 3 over program
15. For any rank-order list R, I denote the ordered set including the first k elements of R
as Rk ⊆ R where k ∈ {0, ..., |R|}. In other words, Rk corresponds to the order-preserving
truncation of R in position k; thus, if R = (3, 15), then R1 = 3. Note that R0 = ∅ for all
R ∈ R.

Each program also ranks applicants and students are assigned to programs using the
deferred acceptance (DA) algorithm defined in the Appendix F. At the end of the algorithm,
unmatched applicants are manually placed into a program which I denote by 0.34 Thus,
program 0 corresponds to the student outside option within the traditional public sector. I
next describe the choice problem faced by applicants, applicant preferences over programs,
and applicant beliefs.

School portfolio choice problem

The choice of ROL by applicants is an optimal portfolio choice problem. This framework
was first introduced by Chade and Smith (2006) for college applications and has been used
more recently in other applications of school choice (Agarwal and Somaini, 2018; Larroucau
and Rios, 2020). The key observation is that ROLs can be mapped to lotteries over pro-
grams whose weights depend both on the ordering of programs in the list and on applicant
beliefs about admission probabilities.35 Hence, applicants choose their ROL to maximize
their expected utility, which depends on their preferences over programs, the lottery over
programs induced by the ROL and their beliefs about admission probabilities, and the cost
of submitting the ROL.

33I define the union of two ordered sets A ∪ B to be the ordered set listing elements of A in their order
followed by elements of B in their order.

34Manually placed students are usually assigned to the under-subscribed school closest to their home.
35A property of DA is that students’ admission probabilities at programs are independent of their rank-

order lists. Assuming that applicants understand this property, applicant subjective beliefs about admission
probability depend only on their beliefs about other applicants’ ROLs and programs’ rankings of applicants.
This allows us to consider the effects of changes in ROL and subjective admission probabilities separately.
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Formally, each applicant i chooses her ROL R ∈ R to maximize her expected utility:

max
R

S∑
s=1

vis × pis(R,qi)− Ci(R). (4)

The expected utility from each list depends on the indirect utilities {vis}Ss=1 that ap-
plicant i derives from assignment to each program s. In the expectation, the weight given
to each program is denoted by pis, which captures the subjective probability of assignment
to program s. Finally, each list is associated with some cost Ci(R) that restricts applicant
choice.

The weight assigned to each program pis(R,qi) is jointly determined by applicant choice
of ROL R and by applicant vector of subjective beliefs about admission probabilities qi :=
(qi1, ..., qiS).36 When DA is used to assign students to programs, the function pis(·, ·) has
three properties. First, pis is increasing in qis, which depends only on applicant beliefs about
program rankings of applicants and other applicants’ ROLs. Second, pis is weakly increasing
in the program s position in R as the algorithm goes down sequentially through applicant
lists. Third, under the same logic, pis is decreasing in qij for all programs j ranked before
s in R. To keep track of these dependencies, I define pisk (Rk−1) := pis (Rk−1 ∪ {s},qi),
applicant i’s subjective probability of being offered program s when ranked in position k,
given programs listed in higher positions Rk−1.

Finally, student i incurs a cost Ci(R) when forming her ROL. Ci(R) can be interpreted
as capturing any psychological or monetary cost that a student might face when forming
her list. For instance, students might expend time and effort to learn about programs that
are not in their neighborhoods. Alternatively, listing highly-selective programs may induce a
psychological cost if students anticipate being disappointed if they are not granted admission.

This application cost covers different implementations of DA. When Ci(R) = 0 for all R,
this model coincides with the traditional setting in which DA is strategy-proof (Gale and
Shapley, 1962). When applicants do not face any application cost, it is weakly strategy-
proof to list programs in true order of preference. When the cost depends only on list length
|R|, Haeringer and Klijn (2009) show that it is a weakly dominated strategy for students to
submit a ROL that is not a true partial preference ordering. It follows that the ordering
of programs included in a student’s list should reflect true preferences among those ranked.
Nonetheless, applicants may omit programs for which the odds of assignment are too low to
be worth listing them. The probability of assignment to a program is low if the admission
odds at that program are low or if the applicant is sure of getting in a program she prefers.

36By definition, admission probability at the outside option is 1 (qi0 = 1). Note that this notation is not
fully general as it does not cover all possible dependencies between admission events. Nonetheless, it covers
the case where admissions are either independent or based on a single score, as specified in Section 4.2.
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Preferences: utilities and cost

I assume that applicant i’s indirect utility from assignment into program s is given by:

vis = U(Xis, ξs, εi)− dis, (5)
vi0 = 0, (6)

where Xis denotes observable characteristics of student i and program s, dis is the linear
distance between student i’s home and the school hosting program s, and ξs and εi are unob-
served characteristics of schools and individuals respectively. Following a common approach
in the school choice literature (Agarwal and Somaini, 2020), I assume that εi ⊥ (Di|Xi, ξ)
where Xi := (Xi1, ..., XiS), Di := (di1, ..., diS), and ξ = (ξ1, ..., ξS). This assumption is
violated if student residential choices are determined by students’ idiosyncratic tastes for
programs, conditional on student and program observable characteristics as well as program
unobservables.

This representation of utility includes both a location normalization and a scale normal-
ization. The utility of the outside option is set to zero, which normalizes the location of
utilities. The coefficient on distance dis is set to −1 which normalizes the scale of utilities,
while assuming that distance is undesirable all else equal.

For the empirical application, I allow the utility to vary over time and I divide the vector
Xis into a vector of applicant characteristics (Zi) and a vector of time-varying program
characteristics (Zst). I further parametrize the utility as:

vist = δc(zi)s +
H∑
h=1

βc(zi)h(c(zi)× zsht)− dis + εist, (7)

where c(zi) assigns students to covariate cells based on the variables in the vector of applicant
characteristics Zi, δc(zi)s is the mean utility of program s for students in cell c(zi),37 {zsht}Hh=1
is a set of year-specific school characteristics, βc(zi)h captures the effect of schools’ variation
in peer composition across years for students in each covariate cell, and εist ∼ N(0, σε).

In the estimation, the mutually exclusive covariate cells, c(zi), correspond to the inter-
actions of high baseline math status and minority status (4 cells). The time-varying school
variables, {zsht}Hh=1, consist of the share of high baseline math students and the share of
minority students among students enrolled at the school. These shares are computed for
each school in the year preceding application. As such, I assume that applicants observe the
composition of the student body at each school at the time of application and make their
application decisions assuming school composition will be stable over time.38 To ensure the
plausibility of this assumption, 2019 is omitted in the estimation since it is the first year in
which the reforms were implemented.

Applicant i’s cost of forming a ROL is assumed to be linear in list length, i.e. Ci(R) =
ci|R|. The cost of adding an additional program to the ROL is applicant-specific. For the

37The program-specific dummies interacted with student cells subsume the program unobservables ξs.
38As discussed in Section 2.1, applicants have access to detailed information on enrolled students’ demo-

graphic characteristics and performance at standardized tests at each school.
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empirical application, the per-unit cost is parametrized as:

ci = c+ ζi, (8)

where c ≥ 0 is the average per-unit cost and ζi ∼ TN(0, σζ ,−c,∞) is applicant i’s unobserved
deviation from the average per-unit cost.39 I assume that idiosyncratic utility shocks and
per-unit cost shocks are independent, i.e. ζi ⊥ εi.

Beliefs: rational expectations

When submitting their ROLs to the centralized system, applicants also consider the probabil-
ity of being admitted to each program. Admission to each program may not be independent
if program rankings of applicants are based on a common tiebreaker or the same set of scores.
In the previous section, Table 5 presented evidence consistent with applicants understanding
how changes in admission criteria due to the integration reforms affected their admission
probabilities. I therefore assume that students hold rational expectations over their admis-
sion chances. Applicants are able to infer their admission probabilities at each program
based on their own score τi and the distributions of tiebreakers and scores. Moreover, they
understand the dependencies across admission probabilities.

A recent literature shows that applicants tend to hold mistaken beliefs about their admis-
sion probabilities (Corcoran et al., 2018; Kapor et al., 2020; Arteaga et al., 2021). Specifically,
applicants are more optimistic about their admission chances than what rational expecta-
tions would entail. My framework could accommodate biased beliefs, but this would require
to take a stance on the exact nature of the bias. Unfortunately, in the absence of a survey
on applicant beliefs, it is not possible to separately identify beliefs and preferences. Op-
timistic beliefs would bias the estimated per-unit cost of application and preferences over
schools. Nonetheless, if the extent to which beliefs are mistaken is not affected by changes in
admission regime, simulations based on the model’s estimates would still generate accurate
long-run predictions.

Limited rationality assumption

Given the large number of programs available, it is unrealistic for applicants to find their
optimal ROL by evaluating all possible program combinations.40. Indeed, if applicants can
list up to 12 among 60 potential programs, as in NYC, they have more than 1020 lists to
choose from.41 To simplify the decision-making process, I assume applicants use heuristics

39TN(·) denotes the truncated normal distribution.
40This also entails that inferring preference for programs by comparing ROL utilities runs into the curse

of dimensionality. To circumvent this problem, (Larroucau and Rios, 2020) shows how to limit the number
of lists considered for estimation when admission probabilities are independent.

41Although the NYC middle school match includes almost 700 programs, each applicant is only eligible
for approximately 60 programs.
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instead of comparing every possible list.42 Applicants choose their list sequentially without
fully internalizing how their choices affect the continuation value of their list through changes
in assignment probabilities. Assumption 1 formalizes this heuristic.

Assumption 1 (Limited rationality of applicants)
For each position k in the list, applicant i chooses s ∈ {0} ∪ ({1, ..., S} \Rk−1) to maximize:

vispisk (Rk−1)− I(s 6= 0)ci + Ṽk ({s}) , (9)

where the continuation value for position k is defined for each ordered set of choices C as:

Ṽk (C) := max
s′∈{0}∪(Sk\C)

vis′pis′,k+|C| (Rk−1 ∪ C) + Ṽk (C ∪ {s′}) , (10)

where Sk = {s′ ∈ {0} ∪ ({1, ..., S} \ Rk−1) : vis′pis′k (Rk−1)− I(s′ 6= 0)ci ≥ 0}, i.e. Sk is the
"consideration set" consisting of remaining programs which would clear the per-unit cost ci
if they were added in position k.

This assumption states that an applicant solves the portfolio choice problem sequentially
but does not fully anticipate the consequences of her choice at each step. Her mistake is
reflected in the specification of the continuation value Ṽk in Equation (10). Specifically, the
definition of Ṽk fixes a "consideration set" Sk which contains the programs that would clear
the per-unit cost if they were added in position k.43 Fixing Sk in Ṽk is equivalent to assuming
that, when choosing the k-th ranked program, the applicant thinks that she will eventually
add all programs in Sk to her ranked order list. This assumption is realistic when the number
of programs is not capped or when applicants typically do not exhaust their list, which is
the case for over 92% of applicants to NYC middle schools.

This choice heuristic is consistent with applicants listing a mix of "reach", "match" and
"safety" programs as in Ali and Shorrer (2021) and choosing their most preferred option
within each set of options. Given the applicant’s mistaken belief that she will list all programs
in Sk, and since the assignment mechanism uses deferred acceptance, it is optimal for her
to list the highest utility program in Sk in position k. The fact that the applicant only
considers programs in Sk implies a departure from truthfulness of expressed preferences.
This is because Sk depends on the unit cost of listing and the perceived probability of

42This approach is similar to the one used by Kennan and Walker (2011) who face a similar dimensional
problem when modelling dynamic migrations decisions. They restrict the choice space and simplify the
dynamic problem by assuming that agents partially forget past information.

43On the other hand, the fully rational specification for the continuation value does not feature a consid-
eration set Sk. The maximization problem solved by a fully rational applicant can be obtained by replacing
Ṽk({s}) in Equation (9) by V ({s}) where

V (C) = max
s′∈{0}∪({1,...,S}\Rk−1∪C)

vis′pis′k+|C| (Rk−1 ∪ C)− I(s′ 6= 0)ci + V (C ∪ {s′}).

Using this continuation value specification solving the sequential problem is equivalent to solving the opti-
mization problem in Equation (4).
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assignment at each schools. Thus, applicants take into account the cost of listing additional
programs and do not list programs with small assignment probabilities or utilities.

This assumption precludes students from ranking a program earlier in their list in an-
ticipation of it not being acceptable further down the list. Such a case arises when the
expected utility of the unlisted program vispisk(Rk−1) is larger than the expected utility of
the chosen program whenever the unlisted program is acceptable, but the utility vis′ of the
chosen program is larger than that of the unlisted program. The following example fleshes
out a case in which this happens.

Example 1 (Effect of limited rationality on choice)
Assume a student has only two acceptable programs for the first position, i.e. two programs
for which vsps1 > c. Let v1 = 10c and v2 = 9c, q1 = 0.89, and q2 = 1. Assuming program
admissions are independent, the student does not list two programs as v1 × q1(1 − q2) <
v2 × q2(1 − q1) < c. This is true under both full and limited rationality. But, under full
rationality, the student lists only program 2 as v1q1 < v2q2; while under limited rationality,
she lists only program 1 as v1 > v2 and c < v1q1 < v2q2.

Bounds on utilities and cost

Under the limited rationality assumption, each applicant ROL entails bounds on {vis}Ss=1,
the utilities for each program, and on ci, the per-unit cost of adding a program to the ROL.
These bounds depend on the admission probabilities. Proposition 1 spells them out:

Proposition 1
Under Assumption 1, and for any cost c ≥ 0, the rank-order list R chosen by applicant i
maximizes her overall expected utility ViR if and only if the following conditions hold:

1. Any program s listed kth in list R has weakly higher expected utility (piskvis) than the
cost c.

2. Any unlisted program s has less expected utility than the cost if it were added at the
end of the list.

3. Each program s in R has indirect utility (vis) lower than all programs listed above it
and higher than all those listed below it.

4. Each program s listed kth in R has higher utility than all programs not listed in R which
would have delivered weakly higher subjective utility than the cost c if listed in the kth

position.

Proof. Proof in Appendix A.

This proposition allows me to estimate preferences, as it defines the vectors of program
indirect utilities and per-unit cost that are consistent with the optimality of the observed list.
This insight can be used to construct the likelihood of observing a given ROL as a function
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of the distributions of utilities and per-unit cost. Indeed, given admission probabilities, any
vector of program indirect utilities and cost corresponds to a uniquely optimal ROL.

Under this proposition, an applicant ROL is not only a true partial order but also carries
information about unlisted programs. If the admission probability of an unlisted program is
high enough, it entails that listed programs are preferred to the unlisted program. Neverthe-
less, the utility of an unlisted program for which the probability of admission is low cannot
be bound, as the program might just have been skipped because of its low admission odds.

This proposition is consistent with applicants omitting programs for which their admis-
sion probabilities are low and submitting short lists. If the unconditional probability of
admission at a program qis is sufficiently low, applicant i omits that program from any po-
sition on her list since her expected utility of listing the program is always lower than the
corresponding cost. The expected gain from listing any program also goes down with the list
position. Indeed, pisk(·) is decreasing in k so pisk(·) may be small even when pis1(·) is non-
negligible. This entails that applicants stop their list once they are sure of being admitted
to one of the programs they have already listed. Finally, when c = 0, DA is strategy proof
and these inequalities correspond to the ones implied by truthful reports.

Identification of the model

I now intuitively discuss the role that shifts in distance and probabilities play in learning
about the distributions of both indirect utilities and per-unit cost. Agarwal and Somaini
(2018) derive the conditions on the utility regions for non-parametric identification of the
distribution of indirect utilities using a “special regressor” that is additively separable from
the utilities. In my setting, distance satisfies this property and can be used as a special
regressor for identification.

Nonetheless, as the model also includes a cost parameter, a second source of identifica-
tion is required.44 Indeed, variations in ROL for different distance vectors Di, given student
characteristics Zi and vector of admission probabilities Pi45, cannot separately identify indi-
rect utilities and per-unit cost. The second source of identification comes from variation in
admission probabilities. Fixing Di and Zi, changes in Pi identify the distribution of per-unit
cost, as long as the variation in admission probabilities does not affect the distributions of
indirect utilities and per-unit cost. Together with the variation in distance, shifts in ad-
mission probabilities faced by similar students allow us to separately identify utilities and
per-unit cost.46

Shifts in admission probabilities can be found both within year and across years. Within-
year variations in admission probabilities arise from program priorities and seat reserves.47

Admission probabilities vary discontinuously at school zone and school district boundaries
44In addition, the identification of preferences for time-varying school characteristics requires at least two

years of data.
45Pi := (pi1, ..., piS)
46Note also that applicants ranking programs for which pisk = 0 have per-unit cost ci = 0, by Proposition

1. Thus, the distribution of utilities is fully identified by these applicants as long as vi ⊥ ci|Xi, Di, ξ.
47In the empirical application, the model is also identified by variations in admission probability along

continuous variations in applicant test scores since the vector of applicant characteristics only includes a
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due to program priorities, while FRPL eligibility, elementary school of enrollment, and ELL
status jointly determine reserve eligibility. Moreover, year-to-year changes in admission
criteria generate variation in admission probabilities for similar students. NYC’s admission
system and admission reforms provide an ideal setting as they entailed substantial variation
in admission odds for different types of applicants.

4.2 Model estimation
The estimation of the preference parameters, θ = ({δc(zi)s}Ss=1, {βc(zi)h}Hh=1, σε, c, σζ), follows
a two-step method. In the first step, I estimate admission probabilities for each applicant
at each program. The second step uses the bounds on program indirect utilities derived in
Proposition 1 to estimate θ, taking as given the first step’s estimates of admission proba-
bilities. If the admission probabilities estimators are consistent and asymptotically normal,
the two-step estimator of θ is also consistent and asymptotically normal as the second step
is equivalent to a maximum likelihood estimator.

First step: estimation of admission probabilities

I estimate admission probabilities qis by bootstrapping student assignments. The bootstrap
procedure samples applicants with ROLs and test scores, draws a new lottery tiebreaker, and
runs DA to obtain an assignment. For each bootstrapped assignment, I compute admission
cutoffs as the largest lottery number among admitted applicants for programs that rank
applicants based on lottery number, or as the lowest score among admitted applicants for
programs that rank applicants based on prior academic performance.48 The admission prob-
abilities are estimated based on these bootstrapped cutoffs, which capture the uncertainty
in admission due to variation in the lottery draw and year-to-year variation in the applicant
population. Agarwal and Somaini (2018) show that this estimator is consistent if applicants
hold rational expectations about their admission probabilities. Appendix H.1 describes the
estimator in detail.

Given the estimated probability of admission at each program, I then compute pisk(Rk−1),
the conditional offer probability for each program s if placed in position k of the applicant’s
chosen list. This conditional probability takes into account the dependencies between ad-
mission events, and varies depending on whether the program admits applicants based on
their score or their lottery number.

I assume that admission score cutoffs are approximately independent, thus admissions
at each score program are independent events given applicant scores.49 On the other hand,

binary indicator for high-achieving applicants.
48The score for each applicant τi corresponds to the average 4th grade math and ELA state test score. In

practice, programs also use additional discretionary criteria to rank applicants. Nonetheless, this composite
score is a good predictor of admission given student information at the time of application.

49This is a plausible assumption if the market becomes large, as variations in cutoffs are due to changes in
the applicant population. In the limit, admission cutoffs are constant in DA (Azevedo and Leshno, 2016).
In the empirical application, variations in cutoffs are also driven by changes in the discretionary weights
programs give to different criteria when deciding student rankings.
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admissions at lottery programs are not independent events. Since all programs use the
same lottery and lottery numbers are not known at the time of application, an applicant’s
rejection at a lottery program reveals information on the applicant’s tiebreaker. Indeed, the
probability of being offered each lottery program if placed in a given position depends on
the lottery cutoffs of the lottery programs ranked higher in the list. The formulas used to
capture these dependencies can be found in Appendix H.1.

Second step: estimation of preference parameters

The second step takes as given the admission probabilities computed in the first step. Specif-
ically, Assumption 1 implies that the vector of parameters maximize the likelihood that the
observed ROL solves the student’s sequential optimization problem:

θ̂ = argmax
θ∈Θ

n∑
i=1

logP(Ri = arg max
R∈R

V (R)|Xi, Di, τi; θ) (11)

This likelihood does not have a closed-form solution. Thus, I implement a Gibbs sampler
adapted from McCulloch and Rossi (1994), which yields estimates that are asymptotically
equivalent to the maximum likelihood estimator. The Gibbs sampler obtains draws of δ, β,
c, σε, and σζ from the posterior distribution by constructing a Markov chain from any initial
set of parameters θ0. The posterior given the data and the prior corresponds to the invariant
distribution obtained through the Markov chain.

The chain is constructed by sampling from the conditional posteriors of the parameters,
utility vectors, and per-unit cost given the previous draws. The sampler iterates between
sampling the parameters of the model conditional on the simulated utilities and per-unit cost
and sampling the utilities and per-unit cost conditional on the parameters. Specifically, the
estimator computes the following sequence of conditional posteriors at each new iteration
t+ 1:

δt+1, βt+1|U t
i , σ

t
ε

σt+1
ε |U t

i , β
t+1, δt+1

ct+1|cti, σtζ
σt+1
ζ |cti, ct+1

U t+1
i |σt+1

ε , βt+1, δt+1, cti
ct+1
i |σt+1

ζ , ct+1, U t+1
i .

The first four steps of the sampler follow McCulloch and Rossi (1994). The two last data
augmentation steps are different as the set of constraints differ. I modify the constraints
on utilities to be consistent with the applicant optimization problem. I use the bounds on
indirect utilities and per-unit cost derived in Proposition 1 to pick utilities and per-unit costs
that are consistent with applicants choosing their ROL to solve the sequential optimization
problem described in Equation (10). Appendix H.2 reports details for the Gibbs sampler.
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This approach differs from Agarwal and Somaini (2018) as it does not compare the
utilities of potential lists to pick program utility vectors that are consistent with observed
choices. This substantially reduces the number of constraints. To draw each program utility,
it is enough to check S + 1 constraints instead of |R| constraints, the cardinality of the set
of all potential lists.50

4.3 Model estimation results
Table 6 reports the estimates of preferences for time-varying characteristics. The model
in column (1) allows for strategic reports by including a per-unit cost, while the model
in column (2) assumes truthful reports by setting the per-unit cost to zero. To reduce the
computational burden, these parameters are estimated on the sample of 2018 and 2020 NWB
applicants only.51 Table 7 reports estimates for the remaining model parameters for both
the NWB sample and the sample including all 2018 applicants.

The two models of applicant behavior generate substantially different preference esti-
mates. The starker contrasts appear when considering preferences for time-varying school
characteristics. Estimated preferences for changes in Hispanic and Black shares are null
and insignificant in the model allowing strategic reports, while they are negative and signif-
icant in the model that assumes truthful reports. In addition, an increase in the share of
high-achieving students at a program is much more valued by applicants in the model that
allows for strategic reports. In the model assuming truthful reports, applicants with low
baseline math test scores are actually found to like a school less after it increases its share
of high-achieving students.

These two observations are consistent with omission of programs affecting the validity
of the estimates from the model which assumes truthful reports. A model without cost
might estimate a stronger distaste for programs that enroll more minority students, as it
ignores that applicants tend to omit less-preferred programs when they are certain of being
assigned to one of the programs already listed. Moreover, such a model interprets a decrease
in program selectivity as a preference for lower-achieving peers if applicants are less likely
to list programs with proportionally more high-achieving students for which their admission
odds are lower.

Table 7 also reveals heterogeneity in the mean preferences for schools estimated by the
two models. Specifically, if students only include programs when it is strictly beneficial to
do so, assuming truth-telling overstates the value of being unassigned. The truthful model
also overestimates the degree of preference heterogeneity across students since it attributes
differences in admission probabilities to differences in taste. As a result, both estimated
mean program utilities and their correlation across student cells are larger in the model
allowing for strategic reports. More than 50% of the mean program utility estimates for

50For estimation purposes, the set of programs for each student only includes programs for which the
student is eligible given her demographic characteristics.

51NWB applicants faced the most substantial changes in school composition and application probabilities
over this period because of the scope of NWB integration reform.
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low-achieving minority students are not statistically different from these of high-achieving
non-minority students.

The inclusion of an application per-unit cost affects the preference estimates despite the
relatively small estimated mean per-unit cost. On average, the cost of including one more
program in a list corresponds to traveling 0.005 miles. Moreover, 76% of applicants have a
per-unit cost lower than 0.01, which suggests that most applicants adopt very safe listing
strategies by omitting only very unlikely assignments.

5 Simulations of counterfactual admission regimes
Based on the model estimates, I can simulate student assignments under alternative admis-
sion regimes. These simulations allow us to asses how different admission criteria contribute
to school segregation. The change in school segregation induced by dropping a given ad-
mission criterion measures that criterion’s contribution to segregation. In addition, residual
segregation in a counterfactual assignment where schools do not screen applicants captures
the contribution of family preferences and residential segregation to school segregation.

I simulate the impact of two counterfactual admission regimes: the first counterfactual
removes all academic admission criteria while the second removes both academic admission
criteria and admission criteria based on residence. These simulations are motivated by
ongoing policy discussions in NYC. Academic screening at middle schools was temporarily
suspended in 2021 due to the Covid-19 pandemic, and geographic criteria were partially
phased out of NYC high schools.52 The second counterfactual isolates the contribution to
segregation of applicant preferences and residential sorting since it eliminates almost all
school admission criteria.

Before showing the results from these counterfactual exercises, I discuss the technical
difficulties with the simulation of an equilibrium outcome and how I assess the fit of the
model.

5.1 Simulation setup and model fit
To determine the equilibrium level of segregation under a counterfactual admission policy,
I iteratively simulate the match until a fixed point for school segregation is reached. This
iterative procedure is necessary as changes in admission policy lead to changes in admission
probabilities which in turn induce different application patterns and school characteristics.
At each iteration of the match, applicants update their ROL by optimizing given the previous
step’s school attributes and probabilities of admission.53

52On December 14th 2021, the phase-out was suspended: high schools were authorized to maintain borough
and zone priorities, while district priorities had been eliminated in the previous admission cycle.

53Only non-SWD applicants with baseline demographics update their ROL (90% of non-SWD applicants).
The ROLs of all other applicants (SWD applicants and the remaining non-SWD applicants) are fixed across
iterations.
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The baseline utility for each school is given by the estimated mean program utilities and
student characteristics, while cost and utility shocks are randomly drawn so that applicants’
original lists of programs are optimal.54 The utility that applicants derive from each school is
updated at each iteration , depending on the changes in the composition of each school, while
the utility of the outside option is fixed. At each iteration, the match is bootstrapped 100
times by re-drawing a new set of applicants and lottery numbers. This bootstrap procedure
allows us to compute probabilities of admission and average school composition that account
for the uncertainty in the student assignment.

The results presented in this section ignore the effect that counterfactual admission
regimes might have on exit from the public school system. In Appendix B, I extend the sim-
ulations to account for potential exit. Applicants’ binary decision to quit the public school
system is predicted using the probit model detailed in Appendix B. This model is based on
offered school composition and follows the multiple endogenous variables IV specification of
Table 4. The share of applicants exiting the traditional public school sector increases from
11.5% to 13.2% on average in the simulated match with no academic screens and to 13.7% on
average in the simulated match with neither academic nor geographic screens. The increase
in public school exit generally diminishes the impact of changes in admission criteria, but
all the main conclusions are robust to accounting for it.

To assess the fit of the model, I first check whether the model can predict the segregation
effect of the NWB diversity reform. Section 3 shows that a simulation that fixes ROLs
falls short of predicting the full decrease in both economic and racial segregation. Figure 6
shows that the simulation using pre-reform data but updating applicant lists is able to match
the observed effect of the reform more closely. For minority and low-income students, the
observed decline in segregation index lies within the 95% confidence interval of the simulated
decline that updates applicant behavior based on changes in admission probabilities and
school composition.55

The replication of the NWB diversity reform’s effects is an out-of-sample validation of
the simulation’s accuracy, as it almost solely relies on pre-reform data. All parameters are
estimated on the 2018 applicant sample, except the taste for changes in school composition
which leverages the reform. Nonetheless, changes in school composition only modestly affect
student utilities compared to time-invariant school characteristics. Hence, ignoring the effect
of school characteristic changes does not substantially affect the accuracy of the replication,
as shown in appendix Figure A6.

5.2 Effect of dropping academic screens
The first counterfactual scenario drops all academic screens while maintaining school prior-
ities and eligibility criteria. This counterfactual is motivated by the current public debate

54This method of drawing errors leverages the information on student utilities embodied in the observed
ROLs. For programs an applicant was not eligible for in the original 2018 match, the utility error is drawn
from a Normal distribution using the estimated variance.

55Appendix Figure A1 incorporates enrollment decisions into the simulation. The simulation replicates
the changes in school segregation induced by the integration reform for all groups except Asian applicants.
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over segregation in NYC which often focuses on the practice of screened admission. Selective
enrollment schools are accused of perpetuating racial and economic segregation by allowing
white and upper-income families to avoid mostly-minority and low-income public schools (Hu
and Harris, 2018).56 Recently, the city has suspended the use of academic screens for the
2020-2021 application cycle, as some of the measures used — including grades, test scores,
attendance, student interviews, and auditions for performing arts programs — were upended
by the Covid-19 pandemic.

Despite the public emphasis, dropping all academic screens would only slightly decrease
city-wide school segregation, as shown in Figure 7. In the absence of academic screens,
economic and racial school segregation would be 1 percentage point lower, 4% instead of 5%
and 13% instead of 14%, respectively.57 These moderate drops in segregation are consistent
with the ones observed during the 2020-2021 application cycle, shown in appendix Figure
A7, although these changes might also have been affected by the pandemic.

Figure 7 also displays segregation levels for a simulation with no academic screens in which
applicants rank programs randomly with unrestricted list size. This simulation provides a
benchmark for the contribution of academic admission criteria to school segregation, given
additional non-academic school preferences embedded in program priorities and eligibility
criteria. Random application behavior effectively removes the demand-side contribution to
school segregation, isolating the effect of non-academic school preferences. In this benchmark
scenario school segregation closely matches residential segregation at the school district level,
which is a reflection of 83% of programs being reserved for district applicants.58 Relative to
this benchmark, dropping academic screens would achieve between a quarter and a third of
the possible drop in segregation.

As academic screens are not equally prevalent in all NYC districts, these city-wide figures
could aggregate substantial heterogeneity. Figure 8 compares the effect of dropping admission
screens on district-level school segregation in NYC boroughs.59 In Brooklyn and Manhattan,
dropping admission screens would almost halve the district-level economic and racial school
segregation. For instance, a low-income student in Manhattan would attend a school 4%
more segregated than her district in the absence of academic admission criteria, compared
to 6% currently. Similarly, district-level low-income school segregation would drop from 3%
to 1% in Brooklyn. On the other hand, dropping academic screens would have almost no
effect in the Bronx or Queens.

5.3 Effect of dropping all admission screens
Results from the previous section highlighted that city-wide school segregation is largely
determined by the current system of geographic eligibility and priority rules. Hence, the
second counterfactual simulates a match that drops all geographic priorities and eligibility
criteria, in addition to academic screens. As such, this second scenario is akin to a city-wide

56This viewpoint is reflected in the New York Times’ widely-followed 2020 podcast, Nice White Parents.
57Appendix Figure A2 shows similar effects on school segregation after enrollment.
58As a result, 16.6% of applicants are offered a school in their district of residence in the simulation.
59The exhibit omits Staten Island, which enrolls less than 5% of NYC students.
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lottery-based admission, in which only gender-specific and language-specific programs are
able to select students.60 Figure 10 compares school segregation under this counterfactual
admission regime to the observed levels of segregation. As a benchmark, the figure also
displays school segregation if applicants rank programs randomly under the same admission
regime.61

Geographic eligibility criteria and priorities appear to play a more substantial role in
city-wide school segregation. Dropping geographic barriers in addition to academic screens
would halve school segregation, as measured by the segregation index, for all demographic
groups. For instance, low-income student segregation would drop from 5% to 2%, while
minority student segregation would decrease from 14% to 9%. The largest drop in school
segregation would be for Black students, whose segregation index would fall from 26% to
13%.62 Appendix Figure A8 shows that all NYC boroughs would be impacted by the change
in admission regime, with the Bronx nonetheless experiencing the smallest decreases in school
segregation.

5.4 What drives school segregation?
School segregation does not drop to the corresponding benchmark in either counterfactual
exercise. The residual differences correspond to the contribution of applicant preferences to
observed school segregation. Applicant preferences may increase school segregation either
because of differences in taste for specific schools and peers or because of the combination
of preference for nearby schools and residential segregation. As a last step, I attempt to
disentangle these two channels.

Preference for nearby schools is reflected by the fact that even in the absence of admission
barriers, 50% and 84% of applicants still attend a school within their district and borough,
respectively. To quantify the contribution of residential segregation combined with preference
for nearby schools to school segregation, I simulate a match in which applicants do not
take distance into account school when forming their rank-order lists.63 Results from this
simulation compared to previous estimates are displayed in Figure 7.

The level of segregation for students indifferent to school distance falls midway between
that of the two other counterfactual simulations and their corresponding benchmarks. This
suggests that the combination of preference for nearby schools and residential segregation
explains approximately half of the residual school segregation. Consequently, applicant pref-
erences for similar peers and for specific schools account for only a quarter of the observed
school segregation.

60In the simulation, applicants are eligible to a dual language program only if they applied to the program
in the actual match.

61The benchmark levels of school segregation are slightly larger than zero, reflecting the remaining eligi-
bility criteria as well as sample restrictions in the simulation.

62Appendix Figure A2 shows similar effects on school segregation after enrollment.
63In practice, this corresponds to setting the coefficient on distance to zero when computing updated

utilities for schools in order to predict optimal rank-order lists under the new admission regime.
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6 Conclusion
School district leadership, politicians, and the public are increasingly concerned that ad-
mission schemes are responsible for school segregation. To understand the role of school
admission criteria in determining segregation, I studied two middle school admission reforms
in NYC northwest Brooklyn and upper west side districts. My analysis of these district-
level reforms showed that reducing academic screening can lead to a decrease in segregation.
Nonetheless, the impact of such reforms hinges on student responses both at the enrollment
and application stages. In particular, I found that the NYC admission reforms entailed an
increase in white and high-income student exit from the traditional public school system,
which partially offset the effects on segregation. Interestingly, this “white flight” appears
to be driven by an increase in exposure to lower-achieving peers, rather than to racial mi-
norities. Changes in application behavior in response to the reforms, on the other hand,
reinforced rather than diminished the their effects.

The magnitude of the behavioral responses I documented highlights the need to un-
derstand applicant decision-making as a first step toward evaluating alternative admission
regimes. To fully characterize the application response, I developed a model of school choice
which allows for strategic behavior but avoids the curse of dimensionality and can thus be
estimated in settings with many schools, like NYC. This model rationalizes two important
aspects of applicants’ behavior. First, applicants submit shorter lists than necessary. Second,
they omit schools to which they are unlikely to be admitted.

Based on the model’s estimates, I simulate the effect of alternative city-wide admission
regimes in NYC. The simulations suggest that academic screens play only a modest role in
city-wide school segregation. The role played by geographic screens, however, is substantial.
The simulation exercise also shows that demand-side factors account for around half of school
segregation. Thus, policy makers might find it hard to reduce school segregation in NYC
by more than 50% from its current level, as at least half of the demand-induced school
segregation is driven by residential sorting.

This paper highlights the limit of what admission reforms can accomplish as their im-
pact is limited by demand-side factors. An open direction of research would consist in
understanding how family preferences for schools are formed and whether these preferences
can be affected through policies. Can family preferences be affected by changing the infor-
mation provided at the time of application? Since students apply to school several time over
their school life, do previous assignments affect expressed preferences when applying to later
grades?
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7 Figures

Figure 1: NYC’s Local School Districts

Note: This map shows NYC’s 32 local school districts. The two districts that implemented middle school
integration reforms in 2019 are highlighted in color.
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Figure 2: From Admission Criteria to Final Enrollment

Note: This flow chart describes the mechanisms through which a change in admission criteria affects students’
final enrollment and by extension school segregation.
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Figure 3: Evolution of School Segregation Indices for Low-Income and Minority Students

(a) Low-income students (b) Minority students

Note: These figures plot the evolution of district school segregation indices for UWS, NWB, and other
NYC districts between 2015 and 2020. Figure (a) displays the segregation index for applicants classified
as disadvantaged by the DOE, a proxy for low-income status. Figure (b) displays the index for Black and
Hispanic applicants. To obtain the plotted values, school segregation indices are standardized by the share
of students belonging to the group among applicants residing in the district. The school segregation index
for other NYC districts corresponds to the weighted average of district-level indices, with weights equal to
the shares of NYC students belonging to the group considered residing in each district. Dashed lines give
the value of the school segregation index at the offer stage, that is if all students were to enroll in the school
they were offered in the match. Solid lines correspond to the value of the index after enrollment. Students
that leave the NYC public school system are included in the standardization.
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Figure 4: Comparison of Changes in School Segregation Indices in all NYC Districts

Panel A: Offered School

(a) Low-income students (b) Minority students

Panel B: School of Enrollment

(c) Low-income students (d) Minority students

Note: These figures plot changes in the district-level school segregation indexes with respect to 2018 for all
NYC districts. In Panel A, SIs are computed using the school offered. In Panel B, SIs are computed using
the school of enrollment. Each plot only includes districts in which at least 5% of the student population
belongs to the group considered.
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Figure 5: Decomposition of Plan Effects on School Segregation
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Note: This bar chart plots the changes in district school segregation indices at the match offer stage between
2018 and 2019. Each bar gives the observed change in the index between 2018 and 2019. The shaded part
of each bar corresponds to the effect of the integration policies absent behavioral response, i.e. using 2018
ROLs. A manual placement round is run after DA in which applicants rank all available schools by distance
and schools rank applicants by tie-breaker. The 95% confidence intervals for the effect of the integration
reforms absent behavioral response are computed by simulating 100 times the 2018 match under integration
reforms. For each simulation, a new sequence of tiebreakers is drawn and applicants are sampled with
replacement, through sampling stratified by SWD indicator and district.
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Figure 6: Replication of the NWB Plan’s Effect on Segregation

Note: This bar chart plots the changes in NWB school segregation indices at the match offer stage between
2018 and 2019, and between 2018 and two simulations of the 2018 match under the NWB integration
reform. The first simulation updates 2018 applicant ROLs according to the model of list formation and
preference estimates. The second simulation does not update 2018 applicant ROLs, as in Figure 5. The 95%
confidence intervals for the simulated effects of the integration reforms are computed by simulating 50 times
the 2018 match. For each simulation, a new sequence of tiebreakers is drawn and applicants are sampled
with replacement, through sampling stratified by SWD indicator and district. The first simulation which
updates applicant ROLs is iterated 5 times to obtain the equilibrium levels of segregation.
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Figure 7: Effect of Dropping Academic Admission Criteria on School Segregation

Note: This bar chart plots segregation indices in 2018 for the school district and for offered schools under
different admission criteria. The offered school corresponds to the school students were offered in the 2018
match. The simulated school corresponds to the school students are offered in a simulation that drops all
academic screens. The random school corresponds to the school students are offered in a simulation that
drops all academic screens and where students rank programs randomly. For both simulations, students can
only apply to programs to which they are eligible in the 2018 match.
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Figure 8: Effect of Dropping Academic Admission Criteria on District-Level School Segregation

(a) Brooklyn (b) Manhattan

(c) Bronx (d) Queens

Note: This bar chart plots district-level school segregation indices in 2018 under the actual match, a match
that drops all academic screens, and a match that drops all academic screens and where students rank
programs randomly.
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Figure 9: Effect of Dropping Academic and Geographic Admission Criteria on School Segregation

Note: This bar chart plots segregation indices in 2018 for the school district and for offered schools under
different admission criteria. The offered school corresponds to the school applicants were offered in the 2018
match. The simulated school corresponds to the school applicants are offered in a simulation that drops
all academic screens and all geographic eligibilities and priorities. The random school corresponds to the
school applicants are offered in a simulation that drops all academic screens and all geographic eligibilities
and priorities, and where applicants rank programs randomly. For both simulations, applicants can apply
to any program in the 2018 match except dual-language programs and gender-specific programs, for which
they need to be eligible.
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Figure 10: Effect of Counterfactual Admissions Criteria on School Segregation

(a) No academic screens

(b) No academic and geographic screens

Note: This bar chart plots the school segregation index in 2018 under different admission criteria and
applicant preferences. The offered school corresponds to the school applicants were offered in the 2018
match. The simulated school corresponds to the school applicants are offered in a simulation that drops
all academic screens (Figure (a)) or all academic screens and geographic eligibilities and priorities (Figure
(b)). The random school corresponds to the simulated school when applicants rank programs randomly. The
simulated school with no distaste for distance corresponds to the simulated school when applicants do not
account for distance when ranking schools.
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8 Tables

Table 1: NYC Segregation in 2018

Segregation index
City-wide Census School Offered Enrolled
shares tract district school school
(1) (2) (3) (4) (5)

Black 0.23 0.32 0.18 0.25 0.25
Hispanic 0.41 0.18 0.11 0.15 0.16
Black + Hispanic 0.64 0.17 0.10 0.14 0.14

Asian 0.18 0.30 0.15 0.22 0.23
White 0.16 0.33 0.12 0.24 0.25

Low-income 0.75 0.07 0.03 0.05 0.06

N units 1 2,099 32 479 479
N students per unit 73,600 35 2,300 154 136

Note: This table reports 2018 segregation indices for different demographic groups at different geographic
levels in NYC. The sample is restricted to 6th grade applicants offered or enrolled in match schools who
have non-missing demographic information. Column (1) reports the share of each group among NYC middle
school applicants and enrolled students. Columns (2) and (3) report residential segregation at the census
tract level and school district level. Columns (4) and (5) report school segregation for middle school match
offers and middle school enrollment. Column (4) considers the school the student is offered in the match
when available (92% of cases) and inputs the enrolled school when missing. Column (5) only considers the
school the student enrolls in; students that do not enroll in match schools are dropped.
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Table 2: Characteristics of UWS and NWB

NYC UWS NWB
(1) (2) (3)

Panel A: Characteristics of schools and applicants
N middle schools 479 20 11
N programs 686 21 13
% screened programs 33% 57% 80%

N applicants 71,512 1,134 2,536
% Asian applicants 0.18 0.07 0.22
% Black applicants 0.23 0.20 0.06
% Hispanic applicants 0.41 0.29 0.38
% White applicants 0.16 0.40 0.31
% Low-income applicants 0.72 0.42 0.54
% ELL applicants 0.13 0.05 0.16
Applicants’ mean math proficiency 2.8 3.3 3.1
Applicants’ mean English proficiency 2.7 3.1 2.9

Panel B: School segregation index at the district-level
Black + Hispanic 0.04 0.22 0.14
White 0.12 0.12 0.12
Low-income 0.03 0.26 0.15

Note: This table presents the characteristics of NYC school districts. Column (1) includes all NYC middle
school applicants, while columns (2) and (3) only include applicants residing in UWS and NWB, respectively,
at the time of application. Panel A describes the population of middle school applicants that enroll in
6th grade in year 2018. Mean math and English proficiency are computed based on the proficiency level
obtained in 4th grade state tests. Panel B presents the district-level school segregation index for three groups
of applicants (Black and Hispanic, White, and Low-income). School segregation indices are computed for
each NYC district separately, standardizing by the group share among applicants residing in the district.
The average school segregation index for NYC corresponds to the average of district-level school segregation
indices, weighted by the share of NYC students of each group living in each district.
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Table 3: DiD Estimates of Reform Effects on Public School Enrollment

All Black Hispanic Asian White Low-income High-income
(1) (2) (3) (4) (5) (6) (7)

Panel A: Effects on exit from traditional public system
UWS × 2019 0.04*** -0.01 0.04* 0.09** 0.06*** 0.00 0.07***

(0.01) (0.03) (0.02) (0.05) (0.02) (0.02) (0.02)
NWB × 2019 0.03*** -0.07** 0.01 -0.00 0.08*** -0.01 0.08***

(0.01) (0.03) (0.01) (0.01) (0.02) (0.01) (0.01)

Mean UWS pre-2019 0.10 0.13 0.07 0.12 0.10 0.09 0.11
Mean NWB pre-2019 0.12 0.18 0.09 0.07 0.18 0.09 0.17

Panel B: Effects on offered peer mean math score
UWS × 2019 -0.11*** -0.04 -0.01 -0.24*** -0.23*** 0.07** -0.23***

(0.02) (0.05) (0.04) (0.07) (0.02) (0.03) (0.02)
NWB × 2019 -0.10*** -0.01 0.02** -0.05*** -0.25*** 0.03*** -0.24***

(0.01) (0.03) (0.01) (0.02) (0.01) (0.01) (0.01)

Mean UWS pre-2019 0.37 -0.16 0.05 0.81 0.77 -0.11 0.72
Mean NWB pre-2019 0.31 0.19 0.11 0.36 0.550 0.15 0.51

N 332,488 73,261 136,303 60,515 56,173 239,494 92,997

Note: This table reports difference-in-differences estimates of integration reform effects for 2015-2019 middle
school applicants. In all panels, the endogeneous variable is the interaction of dummies for residing in UWS
or NWB and applying for admission in 2019. Panel A’s dependent variable is a dummy equal to one for
applicants that do not enroll in a NYC public school at any point in the school year following middle school
admission. Panel B’s dependent variable is the leave-out mean 5th grade math test score among applicants
offered the same school in the match. The last two rows of each panel report the mean of the dependent
variable among 2015-2018 applicants. All models control for year and district fixed effects. Robust standard
errors are reported in parentheses; * significant at 10%; ** significant at 5%; *** significant at 1%. The
corresponding permutation tests are reported in A9 and A10.
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Table 4: 2SLS Estimates of Offered Peer Characteristics on Exit from Traditional Public Schools

UWS and UWS and UWS and UWS and
UWS NWB NWB NWB NWB NWB
(1) (2) (3) (4) (5) (6)

Peer achievement -0.27*** -0.29*** -0.28*** -0.30*** -0.36***
(0.06) (0.05) (0.04) (0.05) (0.08)

Proportion minority -0.08 -0.41**
(0.11) (0.18)

Proportion low-income -0.16 0.70***
(0.14) (0.15)

First stage F 19.9 74.0 44.7 29.1 12.7 14.0
Overid p-value 0.26 0.13 0.17 0.14 0.18 0.01
Overid DF 8 8 17 16 16 16

N 319,867 327,000 332,488 332,488 332,488 332,488

Note: This table reports alternative IV estimates of the effects of offered peer characteristics on the probabil-
ity of exiting the traditional public school system for 2015-2019 middle school applicants. Peer achievement
corresponds to the leave-out mean 5th grade math test score among applicants offered the same school in
the match. Proportion minority and proportion low-income correspond to the equivalent leave-out means
for the respective characteristics. Estimates are computed by instrumenting potential peer characteristics
by UWS and NWB integration reforms plus interactions with covariates (English learner, race, and interac-
tions of low-baseline test scores with low-income status). The table also reports first stage F-statistics and
overidentification test p-values and degrees of freedom. For each specification, the sample is restricted to
applicants with non-missing covariates. Robust standard errors are reported in parentheses; * significant at
10%; ** significant at 5%; *** significant at 1%.
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Table 5: DiD Estimates of Changes in Applicant ROLs

All Low-income High-income
Low-baseline High-baseline Low-baseline High-baseline

(1) (2) (3) (4) (5)

Panel A: Length of the rank-order list submitted
UWS × 2019 1.01*** 0.69*** 1.18*** 0.50 1.07***

(0.09) (0.21) (0.24) (0.36) (0.12)
UWS × 2020 1.20*** 0.39** 1.00*** 0.93*** 1.53***

(0.09) (0.19) (0.28) (0.35) (0.13)
NWB × 2019 2.56*** 2.07*** 1.89*** 2.74*** 3.45***

(0.07) (0.13) (0.14) (0.24) (0.12)
NWB × 2020 2.84*** 1.59*** 1.58*** 3.84*** 4.58***

(0.07) (0.12) (0.14) (0.24) (0.11)

Mean UWS pre-2019 4.0 4.5 4.6 4.3 3.5
Mean NWB pre-2019 4.9 4.3 5.1 4.7 5.3
N 396,958 171,653 94,672 37,999 63,778

Panel B: Mean math score in school ranked first
UWS × 2019 0.05** 0.06 0.09 0.10** -0.02

(0.02) (0.05) (0.06) (0.05) (0.02)
UWS × 2020 0.11*** 0.12*** 0.09 0.08 0.01

(0.02) (0.05) (0.07) (0.07) (0.02)
NWB × 2019 -0.02** 0.06*** 0.00 0.02 -0.10***

(0.011) (0.02) (0.03) (0.03) (0.02)
NWB × 2020 -0.03** 0.05*** 0.03 0.00 -0.12***

(0.01) (0.02) (0.03) (0.03) (0.02)

Mean UWS pre-2019 0.51 -0.02 0.49 0.33 0.92
Mean NWB pre-2019 0.55 0.23 0.67 0.46 0.86
N 396,656 171,523 94,618 37,973 63,724

Note: This table reports difference-in-differences estimates of integration reform effects for 2015-2020 middle
school applicants. In all panels, the endogeneous variables are the interactions of dummies for residing in
UWS and NWB and applying for admission in 2019 and 2020. Panel A’s dependent variable is a count
variable that indicates the length of applicant ROLs. Panel B’s dependent variable is the 5th grade mean
math test score of students enrolling between 2015 and 2018 for the school ranked first by each applicant.
The last two rows of each panel report the mean of the dependent variable among 2015-2018 applicants.
All models control for year and district fixed effects. Robust standard errors are reported in parentheses;
* significant at 10%; ** significant at 5%; *** significant at 1%. The corresponding permutation tests are
reported in A11 and A12.
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Table 6: Model Estimates of Preference for Time-Varying School Characteristics

Strategic reports Truthful reports
model with cost model without cost

(1) (2)

School char. (zstk) Student’s cell (c(zi))

Minority share

low math × minority 1.40*** -0.99**
(0.59) (0.48)

high math × minority 3.89*** -1.19***
(0.59) (0.48)

low math × non minority 0.31 -2.50***
(0.76) (0.61)

high math × non minority 2.27*** -2.96***
(0.37) (0.28)

High math share

low math × minority 2.49*** -1.64*
(1.10) (0.84)

high math × minority 7.99*** -0.55
(1.37) (1.04)

low math × non minority 0.57 -4.44***
(1.42) (1.12)

high math × non minority 9.90*** -0.57
(0.77) (0.54)

N students 2,343 2,343
N programs 60 60

Note: This table reports estimates of applicant preferences for time-varying school characteristics for a
model that includes a per-unit cost and a model that set this cost to zero. Results are reported for the
sample of middle school applicants residing in NWB and attending a NWB elementary school in 2018 and
2020. Students are assigned to one of four cells depending on their minority and math achievement status.
Minority students include Hispanic and Black students. High math students include students who scored
more than 3 (NYC proficiency level) on their 4th grade math state exam. School minority and high math
shares correspond to the shares of minority and high math students that were enrolled at the school the year
prior. Reported estimates are based on the last 50,000 out of 100,000 draws. Standard errors are reported
in parentheses; * significant at 10%; ** significant at 5%; *** significant at 1%.
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Table 7: Model Estimates of Preference for Schools and per-unit cost

Strategic reports Truthful reports
model with cost model without cost

Parameter Student’s cell (c(zi))

Mean program utility

low math × minority 0.82 -0.65
high math × minority 0.97 -0.63
low math × non minority 0.33 -1.37
high math × non minority -0.27 -2.00

SD program utility

low math × minority 2.94 2.70
high math × minority 3.33 3.09
low math × non minority 3.86 3.55
high math × non minority 4.29 3.98

Corr. program utilities cell 1 VS cell 4 0.73 0.58

Mean cost 0.0054
SD cost 0.0001
% with cost < 0.01 0.76

Variance utility error (σ2
ε) 8.78 10.64

Variance cost error (σ2
ζ ) 0.0001

N students 47,226 47,226
N programs 645 645

Note: This table reports preference parameters for a model that includes a per-unit cost and a model that sets this cost to zero. Results are
reported for the sample of all non-SWD NYC middle school applicants in 2018 with baseline covariates. Students are assigned to one of four
cells depending on their minority and math achievement status. Minority students include Hispanic and Black students. High math students
include students who scored more than 3 (NYC proficiency level) on their 4th grade math state exam. School minority and high math shares
correspond to the shares of minority and high math students that were enrolled at the school the year prior. Reported estimates are based on
the last 50,000 out of 100,000 draws. Standard errors are reported in parentheses; * significant at 10%; ** significant at 5%; *** significant at
1%.
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APPENDIX

A Proof of Proposition 1
As the order of programs in applicant ROL determines offer probabilities, I explicitly define
notation which indicates the position of each program in the ROL. Specifically, I denote the
rank of program s in applicant i ROL by ris. If program s is not listed, ris =∞. I also define
Rik as applicant i’s rank-order list up to the kth position. Thus, ri0 = |R|+1 = k denotes the
rank of the outside option. Given this notation, pisk (Rk−1) denotes the probability applicant
i is offered program s when ranked in position k given choices for previous positions.

Under Assumption 1, and for any cost c ≥ 0, the rank-order list R chosen by applicant i
maximizes her overall expected utility Vi(R) if and only if the following conditions hold:

1. For listed programs (ris = k 6=∞) :

vis ≥
ci

pisk (Rk−1) ,

vis ≥ vij ∀j s.t. (rij 6=∞ and ris < rij) or (rij =∞ and vij ≥
ci

pijk (Rk−1)),

vis ≤ vij ∀j s.t. ris > rij.

2. For unlisted programs (ris =∞) :

vis ≤
ci

pisk
(
Rk−1

) ,
vis ≤ max(vij,

ci
pisk (Rk−1)) ∀j s.t. rij = k <∞.

3. For the cost ci :
ci ≥ 0,
ci ≤ pijk (Rk−1) vij ∀j s.t. rij = k <∞,
ci ≥ vijpijk

(
Rk−1

)
∀j s.t. rij =∞,

ci ≥ vijpijk (Rk−1) ∀j s.t. rij =∞ and vij > vij′ where rij′ = k.

When both ci and pisk (Rk−1) are zero, I define ci
pisk(Rk−1) as zero.

1. Bounds for listed programs (ris = k 6=∞):
The first bound vis ≥ ci

pisk(Rk−1) follows directly from the sequential optimization prob-
lem as Vi(Rk−1 ∪ {s}) = Vi(Rk−1) + vispisk (Rk−1)− ci ≥ Vi(Rk−1) for any R.
The second bound follows from the sequential optimization problem as well as the
properties of DA. The second bound is equivalent to:

vis ≥ vij ∀j ∈ Sk, where Sk = {j ∈ {0, 1, ..., S} \Rk−1 : vijpijk (Rk−1)− I(j 6= 0)ci ≥ 0}
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To simplify the notation, I drop the subscript i throughout the proof.
I prove that if s = arg maxj∈Sk vj, then program s must be the k-th element of the
chosen list R. This can be proven by contradiction: let’s assume that this is not the
case and that instead rs > k in the optimal list R. Under the limited rationality
assumption, moving s earlier in the list to the k-th position only changes expected
utility by reducing the probability of being assigned to schools originally listed higher
than s. Concretely, moving s to the k-th position of R reduces the utility of the
applicant by: ∑

j∈Sk:rj<rs
αj(R)vj

where αj(R) is the probability of being above the cutoff for admission at both schools
s and j, conditional on not being above the cutoff for any school ranked before s and
j, i.e. denoting Ah to be the event of being above the cutoff for school h, we have:

αj(R) = Pr

As ∩ Aj |
 ⋃
j′∈Sk:rj′<rj

Aj′

c  .
At the same time, her utility is increased by:∑

j∈Sk:rj<rs
αj(R)vs,

Since we assumed that list R is optimal and that there are no ties between programs,
the decrease must be larger than the increase∑

j∈Sk:rj<rs
αj(R)vs −

∑
j∈Sk:rj<rs

αj(R)vj =
∑

j∈Sk:rj<rs
αj(R)(vs − vj) < 0.

but this contradicts the fact that vs ≥ vj and therefore it has to be the case that rs = k.
Intuitively, this proof follows from the fact that in DA, the position of a program in the
ROL does not affect the probability of clearing its admission cutoff. As such, moving a
program to a higher position in the ROL only increases the assignment probability by
displacing some of the probability of being offered programs previously ranked higher
in the ROL.
The last bound vis ≤ vij ∀j s.t. ris > rij follows from the same reasoning since
program s is included in S ′k for rij = k′.
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2. Bounds for unlisted programs (ris =∞):

vis ≤
ci

pisk
(
Rk−1

)
vis ≤ max(vij,

ci
pisk (Rk−1)) ∀j s.t. rij = k <∞

The second bound follows from the second bound for listed programs. Indeed, for any
program j 6= s such that rij = k < ∞, if vis ≥ ci

pisk(Rk−1) then vis ≤ vij by the second
bound for listed programs.
The first bound also follows from the second bound for listed programs given that the
outside option (program 0) can be viewed as the last program listed by any applicant
and that I assumed it has indirect utility vi0 = 0.

3. Bounds for the per-unit cost ci:

ci ≥ 0,
ci ≤ pijk (Rk−1) vij ∀j s.t. rij = k <∞,
ci ≥ vijpijk

(
Rk−1

)
∀j s.t. rij =∞,

ci ≥ vijpijk (Rk−1) ∀j s.t. rij =∞ and vij > vij′ where rij′ = k.

Beside the first bound which is an assumption, the other bounds for the per-unit cost
follow directly from inverting the utility bounds for all listed or unlisted programs.
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B Robustness of simulations to applicant exits
Simulation results presented in the main text do not incorporate the potential effect of
counterfactual admission regimes on applicant exits from the traditional public school sector.
In this appendix, I extend the simulations to account for potential exit. Applicants’ binary
decision to quit the public school system is predicted using a probit model which follows the
multiple endogenous variables IV specification of Table 4.

Pr[Yidt = 1|λtv, γdv,Widt] = Pr[Y ∗ > 0]

= Pr

[
V∑
v

λtv +
V∑
v

γdv + βWidt + εidt > 0
]

= Φ
(

V∑
v

λtv +
V∑
v

γdv + βWidt

)

where λtv are covariate-specific time fixed effects and γdv are covariate-specific district fixed
effects. Widt are time-varying characteristics of the school student i is assigned to (the
share of minority students and the share of high-math students). These characteristics
are instrumented by the reform instruments interacted with 8 covariates. The covariates
used in the estimation are dummies for English learner status, race, and the interactions of
low baseline test scores with low-income status. The model is estimated using maximum
likelihood on 2018 and 2019 data. Estimates for the coefficients on school time-varying
characteristics are reported below.

Table A1: IV Probit Estimates of Offered Peer Characteristics on Public School Exit

Exit
(1)

Share high-math peers -2.47***
(0.49)

Share minority peers -0.39
(0.70)

Mean Exit 2018 0.115
N 133,078

I then use these model estimates to incorporate applicant decisions on traditional public
school exit into the simulations of counterfactual admission regimes. At each iteration of the
match, applicants decide whether to exit public school based on the characteristics of the offer
they receive. Specifically, I update the applicant latent variable Y ∗i based on the estimated
β̂ and the iteration-specific Wi. An applicant exits in the iteration whenever Y ∗i > 0. To set
the baseline value of the latent variable Y ∗i , I draw εi for each applicant so that the baseline
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value of Y ∗i is compatible with her observed exit decision. In the simulations that incorporate
applicant exits, applicants also update their ROLs based on post-exit school characteristics.

Figure A1: Replication of the NWB Plan’s Effects on Enrolled School Segregation

Note: This bar chart plots the changes in school segregation indices at the match offer stage between 2018
and 2019, and between 2018 and two simulations of the 2018 match under the integration reforms. The
95% confidence intervals for the effect of the integration reforms absent behavioral response are computed
by simulating 100 times the 2018 match under integration reforms. For each simulation, a new sequence
of tiebreakers is drawn and applicants are sampled with replacement, through sampling stratified by SWD
indicator and district.
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Figure A2: Effect of Counterfactual Admission Criteria on Enrolled School Segregation

Note: This bar chart plots the segregation indices for different levels and under different admission criteria
in 2018. The enrolled school corresponds to the school applicants enrolled in 2018. The simulated school
corresponds to the school applicants enroll in a simulation that drops all academic screens. The random
school corresponds to the school applicants enroll in a simulation that drops all academic screens and where
students rank programs randomly. For both simulations, applicants can only apply to programs to which
they are eligible in the 2018 match. 11.5% of applicants exit the traditional public school district in the
actual match, 13.2% on average in the simulated match with no academic screens, and 13.7% on average in
the simulated match with neither academic nor geographic screens.
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Figure A3: Effect of Dropping Academic Screens on district-level Enrolled School Segregation

(a) Brooklyn (b) Manhattan

(c) Bronx (d) Queens

Note: This bar chart plots the district-level school segregation index under the actual match and a match
that drops all academic screens in 2018.
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Figure A4: Evolution of School Segregation Indices for White, Hispanic, Black and Asian Students

(a) White students (b) Hispanic students

(c) Asian students (d) Black students

Note: These figures plot the evolution of district school segregation indices for UWS, NWB, and other NYC
districts between 2015 and 2020. Figure (a) displays the segregation index for White applicants, Figure
(b) for Hispanic applicants, Figure (c) for Asian applicants and Figure (e) for Black applicants. School
segregation indices are computed as in Figure 3.
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Figure A5: Comparison of Changes in School Segregation Indices in all NYC Districts

Panel A: Offered School

(a) White students (b) Hispanic students

Panel B: School of Enrollment

(c) White students (d) Hispanic students

Note: These figures plot changes in the district-level school segregation indexes with respect to 2018 for all
NYC districts. In Panel A, SIs are computed using the school offered. In Panel B, SIs are computed using
the school of enrollment. Since the segregation index is more volatile for districts with fewer students of the
group considered, each plot only includes districts in which at least 5% of the student population belongs to
the group considered.
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Figure A6: Replication of NWB Plan Effects on School Segregation

Note: This bar chart plots the changes in district school segregation indices at the match offer stage between
2018 and 2019, and between 2018 and two simulations of the 2018 match under the integration reforms. The
first simulation updates 2018 applicant ROLs according to the model of list formation but without taking
into account changes in school composition. The second simulation does not update 2018 applicant ROLs,
as in 5. The 95% confidence intervals for the effect of the integration reforms absent behavioral response
are computed by simulating 50 times the 2018 match under integration reforms. For each simulation, a new
sequence of tiebreakers is drawn and applicants are sampled with replacement, through sampling stratified
by SWD indicator and district.

63



Figure A7: School Segregation Under Alternative Admission Criteria

Note: This bar chart plots segregation indices in 2018 for the school district and for offered schools under
different admission criteria. The 2018 offered school corresponds to the school 2018 applicants were offered
in the actual match. The 2018 simulated school corresponds to the school 2018 applicants are offered in a
simulation that drops all academic screens. The 2021 offered school corresponds to the school 2021 applicants
were offered in the actual match. For the 2018 simulation, applicants can only apply to programs to which
they are eligible in the 2018 match.
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Figure A8: Effect of Dropping Academic and Geographic Screens on School Segregation

(a) Brooklyn (b) Manhattan

(c) Bronx (d) Queens

Note: This bar chart plots the school segregation indices in 2018 under different counterfactual admission
regimes for four NYC boroughs. The offered school corresponds to the school applicants were offered in the
2018 match. The simulated school corresponds to the school applicants are offered in a simulation that drops
all academic screens and all geographic eligibilities and priorities. The random school corresponds to the
school applicants are offered in a simulation that drops all academic screens and all geographic eligibilities
and priorities, and where applicants rank programs randomly. For both simulations, applicants can apply
to any program in the 2018 match except dual-language programs and gender-specific programs, for which
they need to be eligible.
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D Additional Tables
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Table A2: Description of NYC Diversity in Admissions Policies

Fall of middle school enrollment year
2017 2018 2019 and 2020

Programs Policy Programs Policy Programs Policy
UWS All FRPL lowest performing -

10%
FRPL lower performing -

15%

NWB 15K447 FRPL - 30% 15K447 FRPL - 30% All Low-income, ELL,
Temp housing - 52%15K839 FRPL - 40% 15K839 FRPL - 40%

15K497 FRPL - 40% No screening of applicants

Other districts
District 1 01M450 FRPL - 62% 01M450 FRPL - 62% 01M450 FRPL - 62%
District 2 02M114 FRPL - 10% 02M114 FRPL - 10% 02M114 FRPL - 17%

02M260 FRPL - 17% 02M260 FRPL - 17%
02M255 FRPL - 17%
02M422 FRPL - 60%

District 7 07X343 Feeder schools -
40%

07X343 Feeder schools -
40%

Note: This table describes the Diversity in Admissions policies implemented in each school year in NYC between 2017 and 2020. The school
year refers to the year in which applicants enrolled in middle school. The Diversity in Admissions policies consisted of reserving a share of seats
to which eligible applicants had priority over other applicants. For each year and each program, the policy column indicates which applicants
were reserve-eligible and the size of the reserve in percentage seats.
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Table A3: Characteristics of UWS and NWB Students by Race

English Math Reserve
District Race N % Low-income % ELL score score eligible

UWS

Asian 196 27% 4% 3.9 4.0 4%
Black 360 86% 2% 2.6 2.5 57%

Hispanic 621 74% 10% 2.8 2.8 47%
White 966 11% 2% 3.8 3.8 3%

NWB

Asian 1097 84% 29% 3.2 3.4 69%
Black 328 74% 0% 2.9 2.6 66%

Hispanic 1874 78% 22% 2.8 2.8 74%
White 1766 16% 4% 3.7 3.6 15%

Note: This table describes the characteristics of 2019-2020 applicants residing in UWS and NWB by race.
English and Math test scores correspond to the proficiency rating on the 4th grade state test. Reserve
eligibility is based on an indicator variable included in the 2019 and 2020 assignment files. The sample drops
206 applicants that do not list any school, as the reserve eligibility variable is missing for 2020 applicants
with no school listed.
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Table A4: DiD Estimates of Changes in Probability of Unassignment

All Low-income High-income
Low baseline High baseline Low baseline High baseline

(1) (2) (3) (4) (5)

UWS × 2019 0.01* 0.01 0.03 -0.02 0.00
(0.01) (0.01) (0.03) (0.03) (0.01)

UWS × 2020 0.02** 0.01 0.04 0.00 0.01
(0.01) (0.01) (0.03) (0.03) (0.01)

NWB × 2019 0.00 -0.02** -0.02** -0.01 0.03***
(0.01) (0.01) (0.01) (0.02) (0.01)

NWB × 2020 -0.01 0.00 -0.03*** -0.01 0.01
(0.00) (0.01) (0.01) (0.02) (0.01)

Mean UWS pre-2019 0.06 0.05 0.06 0.08 0.05
Mean NWB pre-2019 0.07 0.07 0.07 0.10 0.05

N 396,958 171,653 94,672 37,999 63,778

Note: This table reports difference-in-differences estimates of integration reform effects for 2015-2020 middle
school applicants. The endogeneous variable is the interaction of dummies for residing in UWS and NWB
and applying for admission in 2019 and 2020. The dependent variable is a dummy that is equal to one
for applicants who are unassigned by the algorithm and have to be manually placed. The last two rows of
each panel report the mean of the dependent variable among 2015-2018 applicants. All models control for
year and district fixed effects. Robust standard errors are reported in parentheses; * significant at 10%; **
significant at 5%; *** significant at 1%.
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E Data description and sample construction
The data used come from several sources. Lists of high school applicants, applicant rank-
order lists, and assignments are constructed from annual records from the New York City
Department of Education (NYCDOE) school assignment system. Information on student de-
mographic characteristics and schools attended comes from the NYCDOE’s Office of School
Performance and Accountability (OSPA). Achievement test scores are taken from the New
York State Assessment. Geographic information on students comes from Zoned DBN data.
All non-public data files were provided by NYCDOE. These files include a unique student
identification number that links records across files. More details on each data source are
provided below.

NYCDOE Assignment Data
Data on NYC middle school applications are controlled by the Student Enrollment Office
of the NYCDOE. I received all applications for the 2015-16 through 2021-2022 school years.
Application records include students’ rank-order lists of academic programs submitted in
each round of the application process, priorities and rank at each program listed, lottery
tiebreaker values, and the program to which the applicant was assigned.

OSPA Data
I received registration and enrollment files for the 2015-2020 school years from NYCDOE’s
Office of School Performance and Accountability (OSPA). These data include every student’s
grade and school District Borough Number (DBN), as of June of each school year, as well
as information on student demographic variables. I use this file to code school enrollment,
special education status, subsidized lunch status, and limited English proficiency.

New York State Assessment Data
The New York State Assessment is the standardized state exam for New York, taken in
grades 3-8. The NYCDOE provided scores for students taking the exam from the 2005-06 to
2018-19 school years. Each observation in the dataset corresponds to a single test record. I
use 4th grade test scores from 2014-2019 to assign baseline math and English Language Arts
(ELA) scores. Baseline scores are normalized to have mean zero and standard deviation one
within a subject-year among all 4th grade NYC public school students.

Zoned DBN Data
The Zoned DBN dataset provides geographic data for elementary, middle, and high school
students in NYC based on the address provided to the DOE. In these files, there is a record
for every student with an active address record during the school year. I use Zoned DBN
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files from school years 2010-2019 to collect data on student residential districts and census
tracts.
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F Description of deferred acceptance (DA)
Student-proposing DA has been adopted in many school districts around the world because
of its attractive theoretical properties.64 In particular, the mechanism produces a student-
optimal stable match and is strategy-proof when students do not face application costs
(Abdulkadiroğlu and Sönmez, 2003).

The mechanism is based on three inputs: student rankings of schools, school rankings of
students, and school capacities. First, students submit a ROL of schools to the mechanism.
The length of this list may be capped in some applications of the mechanism. Second, schools
rank all their applicants. These rankings are strict and may be school specific or common
to all schools. Finally, school capacities are entered in the mechanism.

Once all three inputs are inputted into the mechanism, DA works as follows:

• Step 1: Each student proposes her first choice. School seats are assigned tentatively
to proposers one at a time, following their rank. Students are rejected if no seats are
available at the time of consideration.

• Step k > 1: Each student who was rejected in the previous step proposes her next
best school. Each school considers the students tentatively assigned in previous steps
together with new proposers and tentatively assigns its seats to these students one at
a time following the school’s ranking. Students are rejected if no seats are available at
the time they are considered.

The algorithm terminates either when all students are assigned or when all unassigned
students have exhausted their lists of schools.

An important feature of DA is that applicant ranks at each school are independent of
student ROLs. As such, each student’s probability of admission at each school only depends
on other applicant ROLs and school rankings of applicants. Thus, applicants may take as
given their admission probabilities at each school when forming their ROLs.

64Among others: Amsterdam, Boston, New York City, Chicago, and Paris are assigning students using
deferred acceptance (see Tables 1 of Pathak and Sönmez (2013) and Agarwal and Somaini (2018)).
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G Robustness of DiD Results
This section reports permutation test results for each main DiD specification. These per-
mutation tests aim at evaluating the statistical significance of DiD results (MacKinnon and
Webb, 2020). They also allow us to to assess the presence of pre-trends in the outcome for
the treated units. To obtain a distribution of “placebo effects” for each outcome, I estimate
the following dynamic DiD specification assigning each of 32 NYC districts to be the treated
unit d̃ iteratively:

Yitd = λt + δd +
−1∑
j=−3

βjI(d = d̃)× I(t = j) +
2∑
j=1

βjI(d = d̃)× I(t = j) + εitd (12)

where λt and δd are year and district fixed effects. Yitd is the outcome of interest. βj cap-
tures the estimated “placebo” treatment effects in each year prior to and after 2018 for the
district assigned to treatment. To assess statistical significance of the plans’ effect, the treat-
ment effects estimated for UWS and NWB are compared to the placebo effects computed for
the remaining 30 districts. The effects estimated for UWS and NWB are deemed significant
when their magnitudes are extreme relative to the permutation distribution. Conversely,
UWS and NWB do not show pre-trends in the outcome if estimated effects for years prior
to 2018 are comparable to the placebo estimates.

The remainder of this appendix section reports plots of the estimated coefficients βj for
each DiD specification. The plots exclude districts with less than 50 observations in any year
of the sample period. Results are reported in the order they appear in the text and under
the same rubric names.
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G.1 Effects on exit from the traditional public school system

Figure A9: Treatment and Placebo Effects on Exit from Traditional Public School

(a) All students

(b) Black students (c) Hispanic students
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Figure A9: Treatment and Placebo Effects on Exit from Traditional Public School

(a) Asian students (b) White students

(c) Low-income students (d) High-income students

Note: These figures plot the permutation tests for Panel A of Table 3.

75



Figure A10: Treatment and Placebo Effects on Offered Peer Mean Math Score

(a) All students

(b) Black students (c) Hispanic students
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Figure A10: Treatment and Placebo Effects on Offered Peer Mean Math Score

(a) Asian students (b) White students

(c) Low-income students (d) High-income students

Note: These figures plot the permutation tests for Panel B of Table 3.
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G.2 Effects on expressed preferences

Figure A11: Treatment and Placebo Effects on Length of Rank-Order List

(a) All students

(b) Low-income low-baseline test score students (c) Low-income high-baseline test score students

(d) High-income low-baseline test score students (e) High-income high-baseline test score students

Note: These figures plot the permutation tests for Panel A of Table 5.
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Figure A12: Treatment and Placebo Effects on Mean Math Score in School Ranked First

(a) All students

(b) Low-income low-baseline test score students (c) Low-income high-baseline test score students

(d) High-income low-baseline test score students (e) High-income high-baseline test score students

Note: These figures plot the permutation tests for Panel B of Table 5.

79



H Details of the Model Estimation

H.1 Description of the estimation of admission probabilities
Assuming that applicants hold rational expectations about their admission probabilities, a
consistent estimator of applicant beliefs about admission probabilities qis can be obtained
by bootstrapping student assignments. This bootstrap procedure captures the uncertainty
in the probability of admission both due to the lottery and year-to-year variation in the
applicant population. Specifically, for a match in which a set of programs L rank students
based on their lottery numbers while other programs rank students based on a scores, the
estimation of admission probabilities at each program unfolds as follows.

• For each bootstrap simulation b = 1, ..., B, where B = 1000:

– Sample with replacement n applicants with their score τi and ROL Ri.65

– Draw a new lottery number ti for each applicant.
– Run DA to obtain an assignment.
– Obtain the lottery number of the last admitted applicant tbs for lottery programs
s ∈ L and the score of the last admitted applicant τ bs for score programs s ∈ Lc.

• Estimate the probability of admission of student i at each lottery program s ∈ L as:

q̂is = 1
B

B∑
b=1

tbs

• Estimate the probability of admission of student i at each score program s ∈ Lc as:

q̂is = 1
B

B∑
b=1

I(τi ≥ τ bs )

For any rank-order list R, it is possible to compute pisk(Rk−1), the conditional offer
probability for each program s if placed in position k of a student’s list. This conditional
probability takes into account the dependency between admission events, which differs de-
pending on whether a program admits applicants based on their score or lottery number.

I assume that admission score cutoffs are approximately independent, thus admissions
at each score program are independent events given applicant score.66 However, admissions
at lottery programs are not independent events. Since all programs use the same lottery
number and lottery numbers are not known at the time of application, applicant rejection

65The re-sampling is stratified by school district of residence.
66This is a plausible assumption if the market becomes large, as variations in cutoff are due to changes in

the applicant population. In the limit, admission cutoffs are constant in DA (Azevedo and Leshno, 2016).
In the empirical application, variations in cutoffs are also driven by changes in the discretionary weights
programs give to different criteria when deciding student rankings.
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at a lottery program carries information on applicant tiebreaker. As such, the probability of
being offered each lottery program if placed in a given position depends on the lottery cutoff
at the lottery programs ranked higher in the list. Formally, this entails that the probability
of being offered each lottery program s ∈ L if ranked in position k is:

pisk(Rk−1) = max
[
0 , qis − max

j∈L:{rij<k}
qij

] ∏
j∈Lc:{rij<k}

(1− qij) ,

and the probability of being offered each score program s ∈ Lc if ranked in position k is:

pisk(Rk−1) = qis ×
(

1− max
j∈L:{rij<k}

qij

) ∏
j∈Lc:{rij<k}

(1− qij) .

H.2 Description of the Gibbs sampler
Given the school indirect utilities and per-unit cost parameterization:

vist = δc(zi)s +
H∑
h=1

βc(zi)h(c(zi)× zsht)− dis + εist, (13)

ci = c+ ζi (14)

The vector of parameters to be estimated is the following θ = ({δc(z)s}Ss=1, {βc(z)h}Hh=1, σε, c, σζ).
This parameter vector is estimated through data augmentation using the following Gibbs

sampler:

1. Initiate the sampler with vectors U0
i , cost c0

i and priors β0 ∼ N(µ0, V 0), σ0
ε , c0 ∼

TN(µ0
c , σ

0
c , 0,∞), σ0

ζ , δ0
c(z)s ∼ N(µδ0

c(z)s, Vδ
0
c(z)s) with δ0

c(z)s = 0 and β0 = 0.

2. Sample {δ1
c(z)s}Ss=1 for each cell c(z) given {δ0

c(z)s}Ss=1, σ0
ε , U0, and β0 fromN(µδ1

c(z)s, Vδ
1
c(z)s).

• Compute Vδ1
c(z)s = (Nc(z)

σ0
ε

+ 1
Vδ

0
c(z)s

)−1.

• Compute Eis = v0
is + dis −Xiβ

0 (vector of residuals). Multiply this vector by the
vector identifying cell c(z) to obtain Eisc(z), the residuals only for individuals of
cell c(z).

• Compute µδ1
c(z)s = Vδ

1
c(z)s(

∑N

i=1 Eisc(z)
σ0
ε

+ µδ
0
c(z)s

V 0
δ c(z)s

).

• Sample δ1
c(z)s ∼ N(µδ1

c(z)s, Vδ
1
c(z)s) for all s ∈ S.

3. Sample β1 given σ0
ε , U0, and δ1 from N(µ1, V 1).

• Compute the vector of residuals Ei = U0
i +Di − δ1

c(zi).

• Compute V 1 = (X′X
σε

+ (V 0)−1)−1.

• Compute µ1 = V 1(X′E
σε

+ (V 0)−1µ0).
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4. Sample σ1
ε given β1, δ1, and U0 from a IW (N × S + 100, 3 +O).

• N is the number of students, S is the number of programs.
• O = ∑N

i=1 ε
′
iεi where εi = U0

i +Di −Xiβ
1 − δ1.

5. Sample the vectors U1
i by sampling iteratively from truncated normal distributions

given U0
i , c0

i , β1, δ1, and σ1
ε .

• Draw iteratively each v1
ist = δ1

c(zi)s + ∑H
h=1 β

1
c(zi)h(c(zi) × zsht) − dis + εist where

εist ∼ TN(0, σ1
ε , list, uist) with list, uist computed using the rank-order list of each

applicant and the bounds specified in Proposition 1, given U0
i , U1

i , c0
i .

6. Sample c1 given σ0
ζ and c0

i from TN(µ1
c , σ

1
c , 0,∞).

• Compute σ1
c = (N/σ0

ζ + 1/σ0
c )−1.

• Compute µ1
c = σ1

c (1′Ec/σ0
ζ + µ0

c/σ
0
c ) where Eci = c0

i .

7. Sample σ1
ζ given c1 and c0

i from a IW (N + 3, 3 +∑
i(c0

i − c1)2).

8. Sample the vectors c1
i by sampling from truncated normal distributions given U1

i , c1,
and σ1

ζ .

• Consider the bounds for each ci defined in Proposition 1 and given by U1
i and the

rank-order list.

As starting values for the indirect utility vector and the per-unit cost, I set:

vis = 0 ∀s s.t. ris =∞
vis = (13− ris)/13 ∀s s.t. ris 6=∞
ci = 0

I use diffuse priors to minimize their influence on estimates. I set the prior distributions
for parameters δ0

c(z)s ∼ N(µδ0
c(z)s, Vδ

0
c(z)s), β ∼ N(µ0, V 0) and c0 ∼ TN(µ0

c , σ
0
c , 0,∞) as:

µ0
δ = 0

V 0
δ = 100× I
µ0 = 0
V 0 = 100× I
µ0
c = 0
σ0
c = 100
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To check convergence of the sampler, I simulated three chains of length 100,000 each
and burned-in the first half of each chain to ensure mixing. I monitored convergence by
examining the trace plots of the various coefficients and by making sure that the potential
scale reduction factor was below 1.1 for 95% of parameters before stopping the sampler.
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