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Pragmatic cancer screening trials mimic real-world scenarios in which patients and
doctors are the ultimate arbiters of treatment. Intention-to-screen (ITS) analyses of such
trials maintain randomization-based apples-to-apples comparisons, but differential
adherence (the failure of subjects assigned to screening to get screened) makes ITS
effects hard to compare across trials and sites. We show how instrumental variables
(IV) methods address the nonadherence challenge in a comparison of estimates from
17 sites in five randomized trials measuring screening effects on colorectal cancer
incidence. While adherence rates and ITS estimates vary widely across and within
trials, IV estimates of per-protocol screening effects are remarkably consistent. An
application of simple IV tools, including graphical analysis and formal statistical tests,
shows how differential adherence explains variation in ITS impact. Screening compliers
are also shown to have demographic characteristics similar to those of the full trial
study sample. These findings argue for the clinical relevance of IV estimates of cancer
screening effects.

clinical trials | causal effects | adherence | econometrics | treatment effects

The question of whether cancer screening improves health remains contentious—a
fact highlighted by recent debates over mammography, prostate-specific antigen (PSA)
screening, and colorectal cancer (CRC) screening.* Regularly screened patients tend to be
healthier than those who opt out. But this observational comparison may be misleading:
Patients and doctors who do and do not screen are likely to differ in many ways besides
screening itself. When screening is randomly assigned, and those assigned to screening are
indeed screened, any later difference in the health of screened and unscreened participants
is almost certainly caused by screening. This fact motivates randomized screening trials,
which offer screening to participants by lottery.†

Pragmatic randomized trials, meant to “measure effectiveness in routine clinical
practice” (5), are particularly well suited to estimate the real-world impact of cancer
screening on health. As in clinical practice, pragmatic trials allow patients and their
doctors to be the ultimate arbiters of screening and other treatments. At the same
time, evaluation of unpleasant and time-consuming medical interventions under real-
world conditions is often complicated by the fact that many patients fail to take their
doctor’s advice. It is one thing to randomize the opportunity to screen, quite another
to randomize screening itself. Consequently, pragmatic cancer screening trials typically
report intention-to-screen (ITS) effects that compare those randomized to receive an
offer of screening with a control group that receives no such offer.

Free colonoscopies—now there’s an offer! Indeed, when it comes to pragmatic trials
for colonoscopy and sigmoidoscopy, the share of participants randomized to a screening
invitation who are actually screened can be worryingly low. Data from five screening
trials, summarized in Table 1, bear this out. In four sigmoidoscopy trials, adherence
ranges from a low of 58% in the Italian SCORE study to a high of 87% in the American
PLCO study. The more invasive colonoscopy screenings offered to patients in Poland,
Norway, and Sweden in the NordICC pragmatic trial resulted in even lower adherence,
with only 42% of those randomly offered a colonoscopy completing one.

Nonadherence in NordICC, which showed little mortality benefit alongside reduced
CRC incidence, recently sparked a debate over the clinical relevance of screening trial
findings (6). In one of many letters responding to the Bretthauer et al. (7) report on

*See, e.g., Kowalski (1, 2) for discussions of mammography, Hayes and Barry (3) on PSA, and references in the CRC studies
cited below.
†A recent NEJM editorial on CRC screening (4) notes that “[non-randomized] studies probably overestimate the real-world
effectiveness of colonoscopy because of the inability to adjust for important factors such as incomplete adherence to
testing and the tendency of healthier persons to seek preventive care.”

Significance
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Table 1. Sigmoidoscopy and colonoscopy screening trials
NordICC NORCCAP SCORE UKFSST PLCO

Trial (1) (2) (3) (4) (5)

Countries Poland, Norway, Sweden Norway Italy UK U.S.
Screening period 2009 to 2014 1999 to 2001 1995 to 1999 1994 to 1999 1993 to 2001
Initial screening type Colonoscopy Sigmoidoscopy + FOBT Sigmoidoscopy Sigmoidoscopy Sigmoidoscopy
Follow-up screening type Biopsy Colonoscopy, Biopsy Colonoscopy Colonoscopy Second sigmoidoscopy

(after 3/5 y)
Participants identification Population registry Population registry Survey Survey Survey
Median Follow-up Years 10.0 10.9 10.5 11.2 11.9
Participants (N) 84,585 98,792 34,272 170,038 154,900
Range 55 to 64 50 to 64 55 to 64 55 to 64 55 to 74
Invitation ratio 0.33 0.21 0.50 0.34 0.50
Adherence rate 0.42 0.63 0.58 0.71 0.87

Notes: This table summarizes key features of the trials analyzed here. These trials randomly assigned an invitation to screening in the form of flexible sigmoidoscopy or colonoscopy.
Half of the NORCCAP-treated group was invited for sigmoidoscopy, with the rest invited for both sigmoidoscopy and a fecal occult blood test (FOBT). The PLCO trial offered a second
screening 3 or 5 y after the initial screening. This second screening had an adherence rate of 0.51. The adherence rate is the proportion screened in the group invited for screening. The
number of participants counts only subjects with follow-up data. The PLCO protocol includes two invitations to screen, an initial sigmoidoscopy and a second sigmoidoscopy 3 to 5 y later
for all subjects initially invited to screen. Follow-up screening invitations in NORCCAP, SCORE, and UKFSST are based on polyp detection in the initial screening. NordICC does not provide
follow-up screenings.

NordICC, Winawer (8) asks, “are these intention-to-treat
observations applicable to other clinical environments?” In
cancer screening trials, randomization of invitations to screen
ensures ITS effects are free of selection bias—meaning they
are unconfounded by pre-treatment differences between those
assigned to screening and control groups. Yet, as ref. 8 suggests,
nonadherence can make ITS effects hard to compare across
studies and even harder to apply to public health policy.
Intuitively, low adherence dilutes ITS effects by including in the
treatment group people whose screening behavior is unaffected
by a randomized opportunity to screen. The number needed to
screen in order to prevent cancer may therefore be well below the
number that must be offered screening in a trial.

A role for offer adherence in mediating ITS effects is suggested
by the first column of Table 2, which reports estimated ITS
effects on CRC incidence 10 to 12 y after random assignment
for the five trials summarized in Table 1. In principle, screening
reduces CRC incidence by revealing precancerous abnormalities
in the colon, which can then be removed.‡ In practice, ITS effects
on CRC incidence vary widely. The estimated ITS effect in the
NordICC trial is 0.19 percentage points (reported as −0.0019
in the table), while data from the UKFSST trial yield an ITS
estimate that’s nearly twice as big at 0.37 points. These estimates
are precise enough that the difference between them is unlikely
to be due to chance (the P value for the null of equality is 0.02).

At first blush, systematic differences in ITS effects for a
common or similar intervention would seem to threaten the
external validity—and therefore the clinical relevance—of in-
dividual studies. Of course, medical interventions may affect
different populations differently. The NordICC and UKFSST
study populations are broadly similar, however, both involving
men and women aged 55 to 64 in European countries that offer
low-cost access to modern medical services. On the other hand,
the impact of colonoscopy screening examined in NordICC
might exceed that of less invasive and less sensitive sigmoidoscopy
screening examined in UKFSST. But the ITS results in this regard
present a puzzle, since the estimated CRC incidence reduction
due to NordICC colonoscopy offers is far below the the estimated
CRC incidence reduction yielded by UKFSST sigmoidoscopy
offers.

‡Our follow-up horizon matches that in ref. 7. We focus on CRC incidence over mortality
because estimates for the former are more precise, a point noted by Bretthauer et al. (9).

This article shows that divergent ITS estimates—across trials,
across sites within trials, and even across variations on a similar
treatment—can be reconciled by instrumental variables (IV)
methods that make adherence the mediator of trial effects.
The next section sketches the IV approach to causal inference.
The IV estimand, known to econometricians as a local average
treatment effect (LATE), is shown to be a type of per-protocol
effect that captures the average screening effect for subjects
induced to screen by virtue of their trial participation. In
some cases, this can be interpreted as the number needed to
screen to prevent 1 CRC case. Section 2 uses IV to estimate
screening effects on CRC incidence. Substantial variability in
ITS estimates notwithstanding, LATE estimates are remarkably
consistent across and within the five studies in Table 1. The fact
that adherence explains variation in ITS impact, while LATEs
are reasonably stable, bolsters the case for seeing IV estimates as
clinically relevant.§ In support of this claim, Section 3 deploys
three IV tools not previously applied in this context: visual
instrumental variables, overidentification testing, and complier
characteristics. Section 4 summarizes our argument and draws
some conclusions.

1. The IV Advantage
A. Casting Causal Effects. Consider a pragmatic trial offering
CRC screening by lottery to a population of experimental subjects
indexed by i. Let Zi ∈ {0, 1} be a dummy variable indicating
experimental screening offers (also called invitations) and let
Si ∈ {0, 1} be a dummy variable indicating post-randomization
screening completion. Subjects are free to decline or ignore
screening offers, while some not invited for screening through the
trial may be screened elsewhere. The possibility of nonadherence
is reflected in the fact that Si 6= Zi for some (and perhaps
many) subjects. CRC incidence, denoted by dummy variable
Yi ∈ {0, 1}, is measured for all subjects after offers are made in
the trial.

A potential outcomes model is used to define the causal effects
of interest in our setting (and many others; see, e.g., ref. 11). Let
dummy variable Y0i indicate the CRC status of subject i when
she is unscreened, while Y1i indicates CRC incidence when i is

§Angrist and Meager (10) makes an analogous point in the context of schooling-related
interventions in developing countries, where mediating instrumental variables gauge
program implementation.
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Table 2. IV estimates of screening effects on CRC incidence
Per-protocol

First stage PP omitting
Control mean ITS (Adherence) IV/LATE As-treated Never-takers

(1) (2) (3) (4) (5) (6)

NordICC 0.0110 −0.0019 0.4197 −0.0044 −0.0021 −0.0024
(0.0006) (0.0020) (0.0017) (0.0009) (0.0010)

NORCCAP 0.0114 −0.0022 0.6297 −0.0035 −0.0025 −0.0024
(0.0007) (0.0027) (0.0013) (0.0009) (0.0009)

SCORE 0.0179 −0.0032 0.5784 −0.0055 −0.0050 −0.0051
(0.0009) (0.0019) (0.0024) (0.0014) (0.0015)

UKFSST 0.0161 −0.0037 0.7114 −0.0052 −0.0051 −0.0051
(0.0005) (0.0013) (0.0008) (0.0006) (0.0006)

PLCO 0.0171 −0.0037 0.8660 −0.0042 −0.0038 −0.0040
(0.0006) (0.0012) (0.0007) (0.0006) (0.0006)

Notes: This table reports the estimated effect of colonoscopy screening on 10-y colorectal cancer (CRC) incidence. The instrument is a randomly assigned invitation to undergo
colonoscopy/sigmoidoscopy screening; treatment is defined as receiving colonoscopy/sigmoidoscopy screening. The outcome variable indicates CRC diagnosis 10 to 12 y after random
assignment. Column 1 reports mean CRC incidence in the group not offered screening. Column 2 reports the reduced-form (intention-to-screen; ITS) effects of screening invitation on
CRC incidence; column 3 reports the first-stage effect of screening invitation on screening. The IV estimate reported in column 4 is the ratio of ITS to first stage. Column 5 reports the
as-treated effects of undergoing screening on CRC incidence; column 6 reports effects of invitation to screening on CRC incidence, omitting those that were invited but did not undergo
screening. Robust SEs appear in parentheses.

screened. Only one of these potential outcomes is ever observed
for a given subject, depending on the value of Si. In particular,
observed CRC incidence can be written:

Yi = Y0i + Si(Y1i − Y0i). [1]

The difference in potential outcomes by screening status, Y1i−
Y0i, is the causal effect of screening on individual i. This is never
seen for any one person, since we only see one of Y0i or Y1i for
each i. Randomization of Zi makes Zi independent of both Y0i
and Y1i.

Although individual causal effects are unknowable, random-
ized trials with full adherence reveal average effects. Specifically,
when Si = Zi for all i, a comparison of the average Yi in the
samples of screened (Si = 1) and unscreened (Si = 0) groups
give the average screening effect, E [Y1i − Y0i]:

E [Yi|Si = 1]− E [Yi|Si = 0] = E [Y1i|Zi = 1]− E [Y0i|Zi = 0]
= E [Y1i]− E [Y0i] = E [Y1i − Y0i].

The first equality follows from the potential outcomes model
and the assumption that Si = Zi; the second follows from
the random assignment of Zi, which makes this independent
of potential outcomes; the third follows from the fact that the
expectation of a difference is the corresponding difference in
expectations.

When screening itself is effectively randomized (because of full
adherence), the unconditional average screening effect E [Y1i −
Y0i] also equals the average effect of screening on the screened:

E [Y1i − Y0i] = E [Y1i − Y0i|Si = 1].

This quantity answers the question of whether those who are
screened have lower average CRC incidence than they would
have suffered in a counterfactual scenario in which they are
unscreened. Clinicians and public health officials often prioritize
this measure of impact, which reveals the extent to which people
screened in a trial can expect to have fewer cancers as a result of
screening. Moreover, with a dummy variable outcome like CRC
incidence, the reciprocal of E [Y1i − Y0i|Si = 1] is the epidemi-
ological “number needed to screen”: the number of patients that

must be screened, on average, to prevent one CRC case (12). To
see this, note that a single CRC case is prevented by screening
N ∗ such that 1 = E [Y1i − Y0i | Si = 1] × N ∗. The number
needed to screen is therefore N ∗ = E [Y1i − Y0i | Si = 1]−1.

B. A Little LATE. For many subjects in screening trials, treatment
received diverges from treatment assigned. Subjects who are
especially healthy, worried, or well informed may be most
likely to respond to a randomized invitation to screen. In
such scenarios, screening Si is no longer randomly assigned
though it is still correlated with the randomized screening
offers, Zi. We model this correlation using potential adherence.
Specifically, let S1i denote a dummy variable indicating i’s
screening status when offered screening, while S0i denotes a
dummy indicating i’s screening status when not offered. Potential
adherence determines screening status according to:

Si = S0i + Zi(S1i − S0i). [2]

The causal effect of screening offers on an individual’s
screening behavior is the difference in potential adherence,
S1i − S0i.

The local average treatment effects model, introduced in
Imbens and Angrist (13) and Angrist et al. (14), categorizes trial
participants on the basis of potential adherence. In randomized
screening trials, screening compliers are subjects for whom
S1i = 1 and S0i = 0. In the vernacular of screening trials,
compliers are subjects who adhere to the screening status to which
they are randomly assigned. Subjects for whom S1i = S0i = 0
or S1i = S0i = 1 are either never or always screened, regardless
of Zi. The LATE framework presumes that the trial population
includes at least some compliers.

The LATE setup also assumes away the possibility of a perverse
response in which trial participants are screened only when not
invited for screening but are not screened when invited. In other
words, we assume no subject has S1i = 0 and S0i = 1. Given this
monotonicity assumption, Ci = S1i − S0i is a dummy variable
that equals one for compliers and is zero otherwise. Monotonicity
is surely satisfied when those not offered screening have no other
access to it, since S0i = 0 then equals zero for all i. More generally,
monotonicity is satisfied when invitations to screen necessarily
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make screening more attractive and accessible to some subjects,
with no effect on screening status for subjects not invited to
screen.

A final LATE assumption is called an exclusion restriction.
In our context, the exclusion restriction says that randomized
invitations to screen have no effect on CRC incidence other than
by boosting the likelihood of screening.¶ Like monotonicity, this
assumption is plausible in pragmatic screening trials where screen-
ing offers have no intrinsic value beyond possibly encouraging
screening. Given exclusion, the random assignment of screening
offers makes Zi independent of the set (Y0i, Y1i, S0i, S1i). An
ITS analysis leverages this independence to estimate the average
effect of screening offers on CRC incidence. More ambitiously,
IV takes us from ITS offer effects to the effect of screening itself.

The journey from ITS to screening effects starts by combining
Eqs. 1 and 2 to show that randomized offers determine outcomes
according to:

Yi = Y0i + Sji(Y1i − Y0i) when Zi = j.

Because Zi is independent of (Y0i, Y1i, S0i, S1i), this represen-
tation can be used to write ITS as:

E [Yi | Zi = 1]− E [Yi | Zi = 0]
= E [Y0i + S1i(Y1i − Y0i)]− E [Y0i + S0i(Y1i − Y0i)]
= E [(S1i − S0i)(Y1i − Y0i)] = E [Ci(Y1i − Y0i)] ≡ �. [3]

In an IV context, the ITS effect denoted by � is called the
reduced-form effect of treatment assignment. In a screening trial
with less than full adherence, the reduced form averages Y1i−Y0i
for compliers (for whom Ci = 1) with zeros for subjects whose
screening status is unchanged by Zi (for whom Ci = 0). Hence,
ITS understates the magnitude of the effect of screening itself.

Along with CRC incidence, screening status becomes an
additional outcome in the LATE framework. The causal effect of
screening offers on screening status is given by a comparison of
conditional average screening rates analogous to the comparison
generating the reduced form:

E [Si | Zi = 1]− E [Si | Zi = 0] = E [S1i − S0i] ≡ �. [4]

In an IV context, � is called the first-stage effect of intended
treatment assignment. Because monotonicity makes S1i − S0i =
Ci a dummy variable, � is the probability of compliance:

� = E [S1i − S0i] = Pr(Ci = 1).

The first stage captures the extent to which � is diluted
by nonadherence. In a trial where few subjects take screening
offers, Ci is mostly zero and, consequently, the reduced form is
necessarily small. As long as the first stage is nonzero, however,
some subjects offered a chance to screen take it. By dividing � by
�, IV adjusts for dilution due to nonadherence, transforming the
reduced form into a screening effect. This is formalized by using
Eqs. 3 and 4 and the fact that Ci is a dummy to write:

�
�

=
E [Ci(Y1i − Y0i)]
E [S1i − S0i]

=
E [Y1i − Y0i | Ci = 1]Pr(Ci = 1)

Pr(Ci = 1)
= E [Y1i − Y0i | Ci = 1]. [5]

LATE, defined as E [Y1i − Y0i | Ci = 1], is the average causal
effect of screening on screening compliers. Given monotonicity,

¶Exclusion is formalized with the help of double-indexed potential outcomes. Let Yi(d, z)
denote the outcome realized for subject i when Di = d and Zi = z. Exclusion asserts that
Yi(d,0) = Yi(d,1) = Ydi for each d ∈ {0,1}.

random assignment of screening offers, and the exclusion restric-
tion, the ratio of reduced-form offer effects to first-stage offer ef-
fects is the average causal effect of screening on experimental sub-
jects screened when randomized to receive screening offers (but
not otherwise). From a public-health perspective, the reciprocal
of LATE gives the number needed to screen per cancer averted
in the population that’s responsive to screening opportunities.

LATE can be consistently estimated by replacing conditional
expectations with sample averages on the left side of the formulas
for � and �, above.# But the link between LATE and IV is
of practical as well as conceptual value. In practice, IV estimates
and the associated standard errors are easily computed using two-
stage least squares (2SLS), an IV estimator described in Section 3.
Powerful and flexible 2SLS estimators accommodate covariates
and multiple instruments (both arise, for instance, in stratified
trials in which offers are made at different rates in different strata).
2SLS also provides an immediate path to off-the-shelf statistical
inference.||

In comments on the relevance of IV adjustments for nonadher-
ence, Hernán and Robins (24) notes that it is usually impossible
to name individual LATE compliers in a study population,
since only one of S1i and S0i is observed for any one subject.
Even in a trial in which no randomized controls cross-over to
receive screening (so S0i = 0 for all i), the identity of compliers
among subjects not offered treatment remains hidden since we
don’t know S1i when Zi = 0. Yet, just as readers of medical
journals must remain ignorant of treated subjects’ identities,
researchers and other observers need not identify individual
compliers. Rather, these observers are likely most interested in the
distribution of complier characteristics. Are compliers mostly old
or mostly young? Mostly male or mostly female? Do they have
pre-existing conditions that predispose them to take advantage of
screening? Are complier populations so unusual that the external
validity of IV estimates is limited? The IV tools detailed in Section
3 answer these questions.

C. LATE, Effects on the Screened, and Per-Protocol the Old–
Fashioned Way. Trial analysts distinguish intent-to-treat effects
from per-protocol effects, typically defined as “the effect that
would have been observed had all trial participants followed the
trial protocol” (25). LATE is also per-protocol effect, but not for
everyone: as Eq. 5 shows, �/� gives the average causal effect of
screening among experimental subjects screened as a result of the
trial—that is, for screening compliers. The complier population
constitutes the subset of the study population that follows a trial
protocol in the field.

Importantly, when all subjects not offered screening remain
unscreened, LATE equals the average effect of screening on
everyone in the study population who is screened. In other words,
with no control-group crossovers into screening (as in most of the
CRC screening trials analyzed below), LATE is an average causal
effect in the population for which Si = 1. This is a consequence
of the fact that, in general, two sorts of subjects are screened:

#The term “consistent” is used here in the statistician’s sense: Sample moments and
smooth functions thereof converge in probability to the corresponding population
quantities as the sample size grows to infinity.
||IV ideas applied to randomized trials appear in alternate forms in social science and
medicine without referencing IV or potential outcomes. Bloom (15) adjusts trial data for
treated never-takers. Newcombe (16) derives an adjustment for randomized trials with
control-group crossovers. Hearst et al. (17) uses similar reasoning to obtain effects of
Vietnam-era military service using the American draft lottery. Baker and Lindeman (18) and
Baker et al. (19) use maximum likelihood to derive an IV-type adjustment for nonadherence
in a model for Bernoulli outcomes. Some analyses of screening trials, including Atkin et al.
(20) and Segnan et al. (21), reference an adherence adjustment due to Cuzick et al. (22).
Also focusing on Bernoulli outcomes, the latter derives a maximum likelihood estimator
that adjusts risk ratios for nonadherence. The Cuzick et al.’s (22) estimator is an instance
of results in Imbens and Rubin (23), which uses IV to compute marginal distributions of
potential outcomes for compliers.
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• Those with S0i = 1, in which case monotonicity implies S1i =
1 as well. Ref. 14 calls this group, which is screened regardless
of Zi, always-takers.

• Compliers who are offered screening, a group for which Zi = 1
and S1i − S0i = S1i = 1.

In screening trials in which no controls are screened, the fact
that S0i = 0 for all i means there are no always-takers. Hence,
only the second group, compliers with Zi = 1, are screened.
Moreover, because Zi is randomly assigned, effects on compliers
offered screening are the same as LATE for all compliers.

The result that LATE equals the average effect of screening on
all screened subjects in a trial with no always-takers is formalized
by writing:

E [Y1i − Y0i | Si = 1] = E [Y1i − Y0i | S1i = 1, Zi = 1]
= E [Y1i − Y0i | S1i = 1]
= E [Y1i − Y0i | Ci = 1]. [6]

The first equality uses the fact that, with no always-takers,
Si = S1iZi; the second uses the fact that Zi is independent of
potential outcomes and potential adherence; the third uses the
fact that Ci = S1i − S0i = S1i when S0i = 0 for everyone.

When applied to a randomized screening trial, the LATE
theorem, Eq. 5, turns only on the claims that random assignment
to screening: i) makes screening more likely on average, ii)
never inhibits screening, and iii) affects outcomes solely by
making screening more likely. This contrasts with the arguments
underpinning old-fashioned per-protocol adjustments. An “as-
treated” analysis (as in, e.g., refs. 26 and 27) ignores experimental
random assignment, comparing outcomes by screening status, Si,
as if the latter was randomized as intended. But comparisons of
E [Yi | Si = 1] and E [Yi | Si = 0] in a trial with partial adherence
are confounded for the same reason that comparisons by
treatment status in cohort studies are confounded. In a pragmatic
trial, where patients and their doctors freely choose adherence,
potential outcomes cannot be presumed to be independent of
adherence.

An alternative non-IV estimation strategy (seen, e.g., in ref. 7)
compares all randomly assigned controls to treated subjects who
are screened as intended. This amounts to a comparison of
E [Yi | Si = 1, Zi = 1] with E [Yi | Zi = 0], which differs
from an as-treated analysis in that it discards subjects for whom
S1i = 0, rather than moving them to a putative control group
defined by screening status. Ref. 14 labels subjects with S1i = 0
“never-takers” because they remain unscreened regardless of their
assignment. When no one assigned to control is screened, the
per-protocol estimator discarding never-takers is given by:

E [Yi | Si = 1, Zi = 1]− E [Yi | Zi = 0]
= E [Y1i | S1i = 1, Zi = 1]− E [Y0i | Zi = 0]
= E [Y1i | S1i = 1]− E [Y0i],

where the last equality uses random assignment ofZi. Because the
two expectations contrasted here involve different groups, this is
not an apples-to-apples comparison.**

It is remarkable and even surprising that in a trial with no
control-group crossovers, IV estimates

�
�

= E [Y1i − Y0i | Si = 1],

**The resulting selection bias is isolated by writing:

E[Y1i | S1i = 1]− E[Y0i ] = E[Y1i − Y0i | S1i = 1] + {E[Y0i | S1i = 1]− E[Y0i ]}.

while, at the same time, E [Yi | Si = 1, Zi = 1] − E [Yi |
Zi = 0] is compromised by selection bias. When the decision
to comply is a matter of choice rather than chance, omission
of never-takers is consequential because adherents in the group
invited to screening may be special. In the NORCCAP trial,
for instance, the Holme et al. (28) supplement notes that “some
baseline characteristics (e.g., gender, area of residency, ethnic
background, income, education, and marital status) are strong
predictors of adherence.” The resulting selection bias can go
either way. For instance, NORCCAP adherents are relatively
educated, and therefore likely to be relatively healthy whether
screened or not. But they are also older and more likely to be male,
elevating risk. Beyond such demographic differences, adherence
may be motivated by chronic health concerns such as diabetes, a
history of polyps, or a family history that elevates CRC risk.

2. Colonoscopy Screening Trials
A. Background. We apply IV to estimates from five trials meant
to gauge the impact of CRC screening. Trials considered here
include the four featured in an influential meta-analysis (29) plus
NordICC, for which 10-y widely noted follow-up results were
recently released (7). Screening treatments evaluated in these
trials include colonoscopy (which examines the entire colon),
sigmoidoscopy (which examines the lower colon and is relatively
rare in the United States), and sigmoidoscopy plus fecal occult
blood testing (FOBT).

The five trials of interest recruited and screened subjects in
various ways. NordICC participants were drawn from population
registries in Poland, Norway, and Sweden, with the sample lim-
ited to men and women 55 to 64 y of age who had not previously
undergone screening, excluding people diagnosed with CRC.
NordICC is the only one of our trials to offer initial colonoscopy
screening rather than initial sigmoidoscopy. NORCCAP likewise
randomly assigned participants directly from the Norwegian
population registry, offering sigmoidoscopy in one group and
sigmoidoscopy plus FOBT in another (we pool these treatment
groups). The other three trials randomly assigned treatment to
people who expressed interest in participating in a screening
trial when surveyed. Finally, the American PLCO trial offered
2 sigmoidoscopy screening examinations to subjects recruited in
various ways by mostly university-based cancer screening centers.
Table 1 summarizes these and other key facts related to study
populations, screening modalities, trial design, and adherence.††

Recent applications of IV methods to CRC screening trials
include methodological studies such as Swanson et al. (25),
which illustrates an IV-inspired bounding computation using
NORCCAP; and Lee et al. (30), which uses PLCO data
to illustrate a new IV procedure for estimation of survival
models. Substantive trial analyses using IV include Holme et al.
(28, 31, 32), which report IV estimates for the NORCCAP
trial; Senore et al. (33), which reports IV estimates for the
SCORE trial; and ref. 7, which comments briefly on an IV-based
“sensitivity analysis.” As far as we know, published IV analyses
of the four European trials to date fail to note that IV recovers
average causal effects on all screened subjects. Except for the two
methodological contributions noted above, most screening trial
reports feature traditional per-protocol estimates—comparing
subjects by treatment received rather than IV. We aim to
explain why IV analysis, which shares with ITS a focus on
random assignment, offers a uniquely compelling solution to the

††See ref. 7 for a description of NordICC. Juul’s (29) meta-analysis (which ignores
differential adherence) details the other trials examined here.
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adherence problem. We also show how IV tools can be deployed
to establish the clinical relevance of IV estimates.

B. IV Estimates. Randomized screening invitations reduced CRC
incidence in each of the screening trials summarized in Table 1.
This is documented in Table 2, which reports reduced-form ITS
estimates of the effect of screening offers on CRC incidence, along
with associated SEs.‡‡ Incidence reductions range from a low of
0.19 percentage points in the NordICC trial to highs of 0.37 per-
centage points in the UKFSST and PLCO trials. These estimated
reductions are significantly different from zero and substantial
in relative terms, amounting to roughly 20% of mean CRC
incidence in the control groups (reported in column 1 of Table 2).

As with the corresponding reduced-form estimates, first-stage
adherence (reported in column 3 of Table 2) varies considerably
across trials. The IV estimates shown in column 4 of the table
adjust for nonadherence by dividing reduced-form estimates by
the corresponding first-stage estimates. The fact that IV estimates,
at around 0.0045, on average, are larger than ITS estimates
boosts the case for screening as a cancer mitigation strategy. The
LATE interpretation of IV implies that the population induced
to screen by efforts to promote screening can expect to enjoy
cancer risk reductions given by the larger IV estimates rather
than the diluted ITS effects. In other words, when weighing
trade-offs presented by screening, IV estimates capture the benefit
most relevant for patients and their doctors. Moreover, from a
public health perspective, the number needed to screen among
NordICC compliers is 227, roughly half the number needed to
invite to screening (455) reported in ref. 7.

Importantly, IV flattens much of the cross-trial variation in im-
pact. Focusing again on the contrast between NordICC and UK-
FSST, for which ITS estimates differ by a factor of two, the cor-
responding IV estimates differ by only 0.08 percentage points—a
much smaller and statistically insignificant gap. Likewise, the gap
between average ITS for the two Norwegian trials and average
ITS for the relatively precisely estimated UKFSST and PLCO
trials falls from a statistically significant 0.16 points (P = 0.007)
to a statistically insignificant 0.08 points (P = 0.52) for IV. We
return to this pattern in the discussion of IV tools, below.

In two of the five trials, old-fashioned as-treated and per-
protocol analysis omitting never-takers miss the IV impact
estimate. This is shown in columns 5 and 6 of Table 2: old-
fashioned per-protocol effects, amounting to 0.21 and 0.24
percentage points in the NordICC trial, are much closer to the
ITS estimate than to the markedly larger IV estimate of 0.44
percentage points. Likewise, old-fashioned per-protocol analysis
of NORCCAP data yields estimates around 0.24 percentage
points, close to the ITS effect of 0.22, while the corresponding IV
estimate is 59% larger (0.35). This shortfall in as-treated estimates
may be explained by the fact that experimental subjects who take
up screening are older and more likely to have risk-elevating
health concerns than the overall study population.

Discrepant per-protocol estimates for NordICC and NOR-
CCAP may also reflect differences in the way these samples
were recruited (both drew subjects from population registries,
while other trials identified relevant subjects using surveys.) Old-
fashioned per-protocol estimates for the three other trials are
similar to the corresponding IV estimates, suggesting selection
bias is not a foregone conclusion. Without IV estimates as a
point of comparison, however, we’d never know for sure. IV

‡‡Except for PLCO, for which we obtained anonymized microdata, estimates and SEs
reported here are computed using published trial results. See SI Appendix, section 2 for
details.

adjusts for nonadherence without risk of selection bias from both
unobserved or observed factors.

3. Establishing Clinical Relevance: An IV Toolkit
A regression of the reduced-form ITS estimates in column 2
of Table 2 on the corresponding first-stage estimates (reported
in column 3) yields an R2 of around 0.63. This descriptive
fact hints at the possibility that adherence explains much of
the variance in ITS effects. Three IV tools—visual instrumental
variables (VIV), overidentification testing, and the distribution
of complier characteristics—help examine this claim. The results
of this examination support the external validity, and therefore
the clinical relevance, of IV estimates of CRC screening effects.

A. Visualizing IV. The IV toolkit is applied to estimates from
five trials and to estimates for experimental strata in three of
the trials. The parameters to be reconciled are pairs of reduced-
form and first-stage coefficients (�j,�j) indexed by j = 1, . . . , J .
The corresponding estimates are denoted by �̂j and �̂j. Within-
trial results are the reduced-form and first-stage estimates for
three NordICC countries (Poland, Norway, and Sweden), two
NORCCAP regions (Oslo and Telemark), and 10 PLCO centers.
Adding full-sample estimates for SCORE and UKFSST, while
deleting data points for the full NordICC, NORCCAP, and
PLCO samples to avoid duplication, leaves a total of J = 17
pairs of estimates.

VIV provides a graphical summary of the variation in (�̂j, �̂j)
along with an overall estimate of screening effects. Note first that
if screening effects are similar across trials, reduced-form and
first-stage parameters are roughly proportional:

�j ≈ ��j; j = 1, ...J ; [7]

where � is the common LATE for screening compliers. This pro-
portionality hypothesis motivates a linear regression of estimated
reduced forms on estimated first stages, with no intercept:

�̂j = ��̂j + �j. [8]

Regression residual �j reflects estimation error in �̂j and �̂j, as
well as approximation error when the proportionality restriction
fails due to screening effect heterogeneity.§§

VIV plots �̂j against �̂j, along with the line of best fit suggested
by Eq. 8. The slope of this line is an estimate of the common
LATE for screening. This estimate is consistent for � when
the proportionality restriction Eq. 7 holds exactly, since �j is a
function of estimation error with probability limit zero as sample
sizes grow. Otherwise, �̂VIV estimates a weighted average of trial-
and strata-specific LATEs given by �j = �j/�j.

When the VIV slope is estimated by weighted least squares
with weights proportional to the sample size times the within-trial
variance of Zi, �̂VIV is a two-stage least squares (2SLS) estimator
of �.¶¶ 2SLS is a powerful and flexible estimation strategy that
combines multiple instruments to produce a single, more precise
IV estimate than would be obtained using the instruments one
at a time. 2SLS also accommodates covariates—in this case, a set
of dummy variables indicating the observations contributed by

§§Applications of VIV to model validation include Angrist (34) and Angrist et al. (35). Angrist
and Pischke (36) sketches the underlying econometric theory.
¶¶SI Appendix, section 3 details 2SLS and derives these weights. Intuitively, 2SLS weights
reflect the fact that, under classical regression assumptions, the variance of the reduced-
form estimate for each trial is inversely proportional to trial size times the within-trial
variance of the instrumental variable, Zi .
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each trial and stratum in a data set that stacks data from all trials
and strata.

Fig. 1A shows a VIV plot for the 17 groups examined here;
whiskers in the plot indicate 95% CIs for reduced-form estimates.
While some reduced-form estimates are more precise than others,
overall, they tend to decline linearly with estimated first-stage
adherence rates (The reduced-form and first-stage estimates
plotted in this figure appear in SI Appendix, Table 1, along with
estimated SEs). Fit with no intercept and using 2SLS weights,
the VIV regression line in the figure has slope �̂VIV = −0.0047,
with an estimated SE of 0.0019. This estimate of the effect of
screening on CRC incidence is close to the median of the group-
specific IV estimates in Table 2.

The VIV line fits both cross-trial and within-trial estimates
remarkably well. Low NordICC adherence, for instance, is
associated with modest cancer reductions while high PLCO
adherence is associated with larger CRC declines. NORCCAP,
SCORE, and UKFSST, with middling adherence, also yield
middling CRC impact. This consistent pattern is especially
striking in view of the fact that NordICC assigned initial
colonoscopy screening, while other trials offered sigmoidoscopy.
It is also noteworthy that within NordICC the leftmost blue
triangle marks low adherence and impact for Poland, with both
impact and adherence roughly twice as large for Norway. A very
noisy estimate for Sweden (reflecting a small sample size) sits well
above the VIV line but is not statistically distinguishable from
it. A few outlying screening effects for PLCO likewise have CIs
covering the 2SLS line.

In marked contrast with reduced-form ITS estimates, IV
estimates of CRC screening LATEs are unrelated to adherence.
This is documented in Fig. 1B, which plots �̂j = �̂j/�̂j against
first-stage adherence. The line fit to these points (again using
2SLS weights, though now allowing for an intercept) has a slope
of indistinguishable from zero with a SE of 0.0039. In other
words, adjusting ITS estimates for differential adherence fully
explains the strong negative relationship between adherence and
impact seen in Panel A.

B. Overidentification Testing. The VIV line plotted in Fig. 1A
yields a good though imperfect fit. Under the proportionality hy-
pothesis expressed by Eq. 7, anything less than a perfect fit is due
to sampling variance in the underlying estimates. Can the fact that
the VIV fit is imperfect indeed be put down to sampling variance
alone? An overidentification test statistic answers this question.

In the context of the estimates in our VIV plot, the overiden-
tification test is a goodness-of-fit statistic that can be written:

T̂ =
∑

j
(1/�̂2

j )(�̂j − �̂VIV �̂j)2, [9]

where �̂2
j denotes the estimated sampling variance of �̂j−�̂VIV �̂j.

Under the proportionality null hypothesis, T̂ has an asymptotic
chi-square distribution with degrees of freedom given by the
number of restrictions being tested. A single trial is enough
to compute one LATE; two trials can be used to estimate two
LATEs. The proportionality restriction implying that these are
equal yields 2− 1 = 1 degree of freedom. More generally, when
data from J trials and strata are used to estimate a single �, we’re
imposing (and therefore testing) J − 1 restrictions. The null
hypothesis is rejected when the overidentification test statistic is
surprisingly large relative to a �2(J − 1) distribution. In other
words, the test rejects when deviations from the VIV line in
Fig. 1A are too large to be attributed to sampling variance in the

PLCO NordICC NORCCAP UKFSST
PLCO centers NordICC countries NORCCAP regions SCORE

Visual Instrumental Variables
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Fig. 1. Panel A of this figure plots reduced-from estimates of effects of
screening invitations on colorectal cancer (CRC) diagnosis against first-stage
estimates for 17 groups derived from 5 pragmatic trials. Panel B plots the
corresponding IV estimates of screening effects. The mediating variable
for IV is screening participation. Samples are for 3 NordICC countries, 2
NORCCAP regions, 10 PLCO centers, and for all randomized participants in
each of UKFSST, NORCCAP, SCORE, NordICC, and PLCO. These trials randomly
offered participating subjects sigmoidoscopy or colonoscopy screening, in
populations that are otherwise unlikely to screen. CRC incidence is measured
10 to 12 y after random assignment. Regression lines plotted in the figures
are weighted by Njpj(1 − pj) where Nj is the sample size and pj is the offer
rate. The VIV line in Panel A is fit without an intercept. Whiskers mark 95% CIs.

estimates (Ref. 36 details the theory behind overidentification
testing. In an antecedent of the overidentification test applied
here, Glasziou (37) tests for homogeneity of IV estimates in a
meta-analysis of the effects of mammography in five breast cancer
screening trials).

Over-identification test statistics, reported in Table 3, along
with associated degrees of freedom and P-values, indicate that the
proportionality hypothesis fits the reduced-form and first-stage
estimates well (SI Appendix, section 4 details the calculation of
these test statistics). The first row of the table reports test results
for all groups used to fit the VIV line in Fig. 1, yielding a test value
of around 12 and a P-value of 0.74. Test statistics in remaining
rows evaluate the proportionality restriction across the five trials
while pooling strata within trails, and for estimates across strata
within NordICC, NORCCAP, and PLCO. Consistent with
the impression made by the figure, no test weighs against the
hypothesis of a stable per-protocol screening effect. By contrast,
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Table 3. Overidentification tests
Test statistic D.f. P-value

(1) (2) (3)

All sites 12.03 16 0.74
All studies 1.79 4 0.77
NordICC countries 0.60 2 0.74
NORCCAP regions 0.05 1 0.83
PLCO centers 10.08 9 0.34

Notes: This table reports overidentification test statistics computed as described in
SI Appendix, section 4, along with the associated degrees of freedom and P-values.
The NordICC overidentification test statistic compares IV estimates for 3 countries
(Poland, Norway, and Sweden). The NORCCAP overidentification test statistic compares
IV estimates for 2 regions (Oslo and Telemark). The PLCO overidentification test statistic
compares IV estimates across 10 PLCO screening centers.

an analogous comparison of reduced-form ITS estimates (testing
whether these are constant across 5 trials) generates a P-value
of 0.06; dropping the relatively imprecise SCORE reduced form
sharpens the rejection of constant ITS effects further (P = 0.03).

C. Characterizing Compliers. IV overcomes the problem of
selection bias in old-fashioned per-protocol estimates, but self-
selection into adherence can still limit the clinical relevance of
IV estimates. If, for instance, a particular demographic group is
substantially under-represented among compliers, LATEs might
be seen as being of limited value for this group. On the other hand,
when all groups of interest are well-represented among LATE
compliers, IV estimates of screening effects are more likely to pre-
dict screening effects beyond the trials that produced them. Our
third IV tool is a simple estimators of complier characteristics.

With no always-takers, complier characteristics are revealed by
the characteristics of screened participants. To be precise, con-
sider a screening trial that collects data on subject characteristics,
such as demographic information, socioeconomic background,
and baseline health, summarized in a covariate vector with generic
element Xi. In general, the complier mean of this characteristic
is defined as E [Xi | Ci = 1]. When S0i = 0 for all i and Zi is
independent of Xi, E [Xi | Ci = 1] = E [Xi | Si = 1]. This point
parallels the result highlighted in Section C, showing that LATE
equals the average screening effect on the screened in a trial with
no control-group crossovers.##

Allowing for control-group crossovers, we must contend with
the fact that Ci = S1i − S0i is unobserved, since only one of the
two potential adherence variables is seen for each subject. Even
so, complier means are easily estimated. To see this, consider
an IV estimand (reduced form divided by first stage) with SiXi
replacing the outcome variable Yi. Because Xi is independent of
Zi, this new IV estimand can be simplified as:

E [SiXi | Zi = 1]− E [SiXi | Zi = 0]
E [Si | Zi = 1]− E [Si | Zi = 0]

=
E [S1iXi]− E [S0iXi]
E [S1i]− E [S0i]

=
E [(S1i − S0i)Xi]
E [S1i − S0i]

= E [Xi | Ci = 1]. [10]

Complier mean Xi equals LATE for the effects of Si on
dependent variable SiXi.

##When treatment assignment rates differ within strata, as in the NORCCAP trial studied
here, screening offers are independent of Xi only within strata. A consequence of this is
that complier means may diverge from treated means even without always-takers. This
point is fleshed out in SI Appendix, section 5, which shows how to compute complier means
in stratified trials.

In the five CRC trials considered here, compliers have demo-
graphic characteristics broadly representative of trial participants
at large. This is documented in Fig. 2, which compares complier
means with the average Xi in full study samples for dummy
variables indicating female and younger participants, and, for
NORCCAP, a dummy indicating Oslo residents. Although
there are some differences (compliers tend to be older and are
more likely to be male), both demographic groups are well-
represented among compliers in each study. Oslo residents are
somewhat underrepresented among NORCCAP compliers, but
not dramatically so. A similar computation comparing baseline
health of PLCO compliers with those in the overall study sample
also shows these groups to be comparable.

4. Summary and Conclusions
IV analysis of cancer screening trials offers an easily navigated path
from ITS effects of screening invitations to credible per-protocol
estimates of the causal effects of screening itself. Applied to five
CRC screening trials with substantial nonadherence, IV methods
reconcile divergent ITS effects with an estimated CRC incidence
reduction from screening of nearly half a percentage point. Efforts
to promote CRC screening would do well to feature this as the
expected benefit for subjects who screen. It is also noteworthy
that the US Preventive Services Task Force (USPSTF) marks trial
evidence down due to “inconsistency of findings across individual
studies” (https://www.uspreventiveservicestaskforce.org/uspstf/
about-uspstf/methods-and-processes/grade-definitions). IV esti-
mates showing consistent effects on subjects actually screened
may therefore prompt an evidence quality upgrade.

Economists have long used IV to address nonadherence and
other sources of selection bias in wide-ranging settings. Although
IV ideas have also filtered into medical statistics, dissemination on
the clinical side has been surprisingly slow. The gap across disci-
plines partly reflects missing data. For instance, a fair proportion
of the PLCO control-group appears to have been screened some
time after random assignment. Yet, estimates using PLCO data
(including ours) ignore this fact since information on screening
for the full study sample is unavailable (38). Kowalski’s (2) IV
analysis of the CNBSS mammography screening experiment uses
information on screening among controls, but CNBSS appears to

0
.2

.4
.6

.8
P

ro
po

rt
io

n

NordICC NORCCAP SCORE UKFSST PLCO

Female Young Female Young Oslo Female Young Female Female Young

Full study sample Compliers

Fig. 2. This figure compares the sex, age, and region distribution for full
study samples and screening compliers. Complier means are computed as
described in the text. Bars show sample proportions (dummy variable means)
in the groups indicated on the x-axis. Young refers to age group 50 to 54 for
NORCCAP and to 55 to 59 for NordICC, SCORE, and PLCO.

8 of 9 https://doi.org/10.1073/pnas.2311556120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
A

SS
A

C
H

U
SE

T
T

S 
IN

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 M

IT
 L

IB
R

A
R

IE
S 

on
 D

ec
em

be
r 

20
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

18
.2

9.
37

.1
08

.

https://www.pnas.org/lookup/doi/10.1073/pnas.2311556120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2311556120#supplementary-materials
https://www.uspreventiveservicestaskforce.org/uspstf/about-uspstf/methods-and-processes/grade-definitions
https://www.uspreventiveservicestaskforce.org/uspstf/about-uspstf/methods-and-processes/grade-definitions


be the only trial cited in the USPSTF mammography guidelines
that identifies all such always-takers.

Short-sighted data collection is not limited to cancer screening;
the landmark mRNA COVID-19 vaccine trial likewise neglects
information on post-randomization vaccination among most
controls (39). In addition to promoting use of IV, we hope
that our work encourages routine monitoring of treatment status
for all trial subjects, identifying treatments received in both
experimental and control groups, whether treated per protocol
or not.

Data, Materials, and Software Availability. Data used here are drawn from
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