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Abstract

We study the role that physicians play in driving the large regional variation of US healthcare
utilization. We estimate a simple model that separates variation in average utilization of Medi-
care beneficiaries due to physicians, non-physician supply side factors, and patient demand.
The model is identified by the migration of patients and physicians across regions, as well as
by variation in within-region matching. We find that physicians vary greatly in the intensity
with which they treat otherwise similar patients, and that at least a third of regional differ-
ences in healthcare utilization can be explained by differences in average physician treatment
intensity. Conservatively, physicians are three times as important as non-physician supply-
side factors in explaining geographic variation. Around three-fifths of physicians’ role comes
from differences across regions in physician practice styles within the same specialty, while
the other two-fifths reflects differences across regions in physician specialty mix.
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The most expensive piece of medical equipment, as the saying goes, is a doctor’s pen.

Atul Gawande (2009), “The Cost Conundrum”

1 Introduction

This paper studies the role of physicians in driving geographic variation in US healthcare utiliza-

tion. This variation has been well-documented, particularly in the over-65 Medicare population,

where the highest spending areas of the country have annual age, race, and sex-adjusted per-capita

spending that is more than double that of the lowest spending areas (Austin et al. 2020). Noting that

higher-spending areas do not tend to have better patient outcomes (Skinner 2011), both academics

and policymakers have long asked whether spending could be substantially reduced by making

healthcare practice in high-spending parts of the country more similar to that in low-spending

parts of the country (Congressional Budget Office 2008; Gawande 2009; Skinner 2011).

Whether such reductions in regional healthcare variation are possible depends crucially on

what factors cause some areas to spend more than others. One natural hypothesis is that physicians

play a key role, since they are the nucleus of the healthcare system—making diagnoses, guiding

treatment decisions, and delivering many treatments themselves. However, evidence on the role

of physicians in driving geographic variation remains limited, and where it exists it can suggest

conflicting conclusions. Cutler et al. (2019), for example, conclude that cardiologists and primary

care physicians are a key correlate of regional variation by studying the relationship between ar-

eas’ per-capita spending and the way their patients and physicians respond to treatment vignettes.

However, Molitor (2018) reaches a different conclusion for cardiologists, finding that variation in

their treatment intensity explains relatively little of the observed change in heart attack treatment

following a move across regions.1 Overall, Finkelstein et al. (2016) show that around 40 to 50

percent of geographic utilization variation reflects differences in patient demand—such as health

or preferences—while the other half reflects supply-side factors. But this study does not isolate the

portion of the supply-side component that is attributable to physicians.

Understanding the overall importance of physicians in driving geographic variation in health

care utilization is essential for understanding the potential impacts of policies aiming to reduce uti-
1And in a recent national survey, only 18% of physicians said that doctor beliefs in the value of certain treatments

contribute “a lot” to regional variation in Medicare spending. Relatedly, only 31% said they were “very confident”
they could identify their own practice styles compared to the practice style of other physicians (Patashnik et al. 2020).

1



lization in high-use areas. If physicians are indeed a driving force behind the substantial variation

in health care utilization, this could suggest a potentially important role for policies that standard-

ize physician training or incentives. If, on the other hand, other supply-side factors such as hospital

organization, ownership, or competition are the key factors, such policies could be ineffective or

counterproductive.

In this paper, we develop and estimate a simple model of annual patient health care utilization

that separates variation due to physicians, non-physician supply factors, and patient demand. The

physician component, which we refer to as physician practice intensity, includes differences within

physicians of the same specialty in their practice style, as well as differences in the mix of physician

specialties across regions. The non-physician supply component, which we refer to as practice

environment, includes differences in hospital capacity, physical capital, hospital or health care

facility ownership, the organization of health care markets, the degree of market competition, and

organizational culture and norms (Lee and Mongan 2009), which recent empirical work has also

shown to be important in affecting care delivery (e.g. Chan et al. 2022a; Duggan et al. 2022; Bloom

et al. 2015; Otero and Munoz 2022; Doyle and Staiger 2022; Frakes et al. forthcoming; Eliason

et al. 2020; Ho and Lee 2017, 2019; Craig et al. 2021).

We model utilization in two steps. In the first step, patients choose whether to seek care based

on their own demand factors (e.g. health and preferences) as well as aspects of the practice environ-

ment (e.g. wait times or travel times to nearby hospitals). If a patient does seek care, she matches

with a physician in the second step. We refer to a patient-physician match as an encounter. The

ensuing utilization in the encounter depends on patient demand, the practice environment, and the

physician’s practice intensity, which is measured by a physician’s average effect on healthcare uti-

lization per encounter. We allow for arbitrary matching between patients with different demand

and physicians with different practice intensities.

We estimate the model using claims data from a 20-percent random sample of over-65 tra-

ditional Medicare beneficiaries from 1998 through 2013. Following the literature, we focus on

variation in utilization across hospital referral regions (HRRs). We show how both the model of

encounters and the model of per-encounter utilization are identified by patient and physician migra-

tion across HRRs, with the per-encounter utilization model also leveraging within-area variation

across connected patient-physician pairs (similar to the approach of Abowd et al. 1999).
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We build support for our identifying assumptions through event-study analyses of utilization

trends in the years before and after cross-HRR moves by both patients and physicians. When

physicians move, their average utilization per encounter jumps discretely toward the average in

their destination, but this closes less than half of the origin-destination gap. Applying intuition

formalized in Finkelstein et al. (2016), this finding suggests that a substantial share of geographic

variation can be attributed to differences in factors associated with the physician (which do not

change on move). When patients move, their average annual utilization also jumps discretely,

closing roughly half of the origin-destination gap, consistent with the earlier findings of Finkelstein

et al. (2016). In both cases, the event studies show little systematic trend either before or after the

move.

Our main results leverage the model estimates of average physician, patient, and practice en-

vironment effects in each HRR. Consistent with the motivating event studies, the model estimates

indicate that physician practice intensity varies substantially across regions. Moving an otherwise-

average patient from the 10th to the 90th percentile of HRR physician practice intensity would in-

crease utilization per encounter by 33 percent. Using a sequential decomposition of the sources of

regional differences in annual per-capita healthcare utilization, we show that physician practice in-

tensity is the major supply-side factor driving geographic variation. The distribution of physicians

with different practice intensities explains at least a third of the difference in utilization between

above- and below-median utilization HRRs, while differences in the practice environment explain

less than 15 percent of these regional differences. Consistent with prior findings (Finkelstein et al.,

2016), the remaining half of variation is explained by differences in patient demand.

A key finding that underpins this decomposition is that differences across areas in any non-

random matching of patients to physicians with different practice intensities plays only a small

role in explaining geographic utilization differences. Systematic differences across areas in the

propensity for higher-intensity physicians to attract more patients, conditional on the distribution

of physicians in an area and the number of patient encounters with physicians, could contribute

to differences in utilization. Since we do not model the sorting process explicitly, we cannot

attribute any such differences in sorting separately to patients, physicians, or practice environment.

However, since the overall role of sorting is small (explaining only about 6 percent of differences

in utilization between above- and below-median utilization HRRs), different ways of attributing it
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would not substantively affect our findings. In our sequential decomposition, we first consider a

counterfactual in which we replace actual sorting patterns with random patient-physician matching.

The additional counterfactuals that define the decomposition then equalize physician, patient, and

practice environment factors in turn, maintaining the assumption of random matching.

We further decompose the role of physician practice intensity into differences in the mix of

specialties and differences in practice “style” within specialty. Prior literature shows that higher

spending areas of the US have a higher percentage of specialists relative to primary care physicians

(e.g. Chernew et al. 2009; Baicker and Chandra 2004); a higher percentage of physicians who are

specialists is also a feature of the high-spending US as a whole relative to other OECD countries

(Anderson et al. 2019). The literature has also shown that treatment decisions of physicians facing

similar patients can vary widely,2 possibly reflecting underlying differences in physician prefer-

ences, skill, or beliefs about the costs and benefits of different medical choices (e.g. Reinhardt

2019; Orszag 2011). We find that about three-fifths of the variation due to physicians reflects

within-specialty differences in practice style, while the remaining two-fifths reflects cross-region

variation in specialty mix. Areas with a higher share of specialists relative to PCPs, in particular,

tend to have a higher average physician component.

We provide additional evidence on the correlates of our physician practice intensity estimates.

Areas with higher practice intensity effects tend to be in the Southeast and Northeast, while areas

with lower effects tend to be in the Midwest and Northwest. Survey-based measures of practice

intensity from Cutler et al. (2019) are correlated in an intuitive way with our estimated effects:

areas where physicians respond to patient vignettes by recommending more follow-up care and/or

more aggressive end-of-life care have higher estimated practice intensities. Areas with a higher

average physician practice intensity also tend to have higher-quality hospitals and more hospital

beds per capita.

We also conduct separate decompositions of the relative roles of physicians, practice envi-

ronment, and patient demand in driving geographic variation in utilization for the two largest

physician specialties: primary care physicians (PCPs) and cardiologists. Both specialties have

attracted significant prior interest (see e.g. Chandra and Staiger 2007; Cutler et al. 2019; Fadlon

2See for example: Chan et al. (2022b); Currie et al. (2016); Currie and MacLeod (2020); Currie and Zhang,
forthcoming; Epstein and Nicholson (2009); Epstein et al. (2016); Fadlon and Van Parys (2020); Kwok (2019); Laird
and Nielsen (2016); Silver (2021); Sinaiko et al. (2019) ; Tu (2017); and Van Parys (2016).
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and Van Parys 2020; Molitor 2018). For primary care, we find that the role of physicians in driv-

ing geographic variation in primary care utilization is very similar (19 percent) to the full sample

within-specialty estimate (20 percent). In contrast, for cardiology utilization we find, consistent

with Molitor (2018), that physicians explain little of the geographic variation, with the practice en-

vironment playing a larger role. This finding may reflect the importance of physical capital, such

as facilities for cardiac catheterization, in determining how cardiologists practice.

Finally, while our main focus is on the role of physicians, our findings also shed further light on

the roles of the practice environment and of patient demand. We estimate that the role of practice

environment comes entirely from factors that determine the number of physician encounters, rather

than the amount of utilization per encounter. This is consistent with prior evidence showing that

the degree of fragmentation in care—the extent to which patients tend to receive care from many

distinct providers—varies systematically across areas and is a key correlate of both costs and out-

comes (Agha et al. 2019). The role of patient demand also works mainly through demand for the

number of physician encounters. This is consistent with findings from the RAND Health Insurance

Experiment that the generosity of insurance coverage affects the number of visits a patient has, but

not the intensity of utilization conditional on the visit (Newhouse and the Insurance Experiment

Group 1993).

In addition to contributing to the substantial literature on the causes of geographic variation in

healthcare utilization, our analysis adds to a growing empirical literature using quasi-experimental

changes in location or matching to separately identify individual heterogeneity from the system-

atic effects of geography or institutions. Prominent examples in the study of healthcare include

Song et al. (2010), Finkelstein et al. (2016), and Molitor (2018). Outside of healthcare, a similar

approach has been used to study determinants of many different phenomena, including wage vari-

ation (Abowd et al. 1999), wage inequality (Card et al. 2013; Card et al. 2016; Bonhomme et al.

2019), neighborhood effects (Aaronson 1998; Chetty and Hendren 2018), teacher effects (Chetty

et al. 2014), cultural assimilation (Fernandez and Fogli 2006), workplace shirking (Ichino and

Maggi 2000), brand preferences (Bronnenberg et al. 2012), healthy eating (Allcott et al. 2019),

voting behavior (Cantoni and Pons 2022), and tax reporting (Chetty et al. 2013), among other

topics.

Relative to this literature, we innovate by explicitly modeling the process that determines the
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number of encounters between cases (e.g. patients, workers) and agents (e.g. physicians, firms)

while allowing for a flexible matching process. From this perspective, our work relates to a num-

ber of recent studies in the worker-firm setting that model and estimate flexible matching processes

(e.g. Abowd et al. 2019; Bonhomme et al. 2019; Hagedorn et al. 2017). While most of this lit-

erature decomposes outcome variation in terms of two sources (e.g. patients and places, workers

and firms, teachers and students), we introduce and model a third dimension (physicians). Our ap-

proach may be useful in other settings in which multiple dimensions are important. This includes,

for example, work on education value-added that has separately studied the relative role of teachers

vs students (Chetty et al. 2014) and of students vs schools (Kramarz et al. 2015), or work on wage

setting that has separately examined the relative role of workers vs firms (e.g. Card et al. 2013),

and workers vs locations (e.g. Card et al. 2021).

The remainder of the paper is organized as follows. Section 2 describes our model, and Section

3 presents the data and descriptive results from event studies of patients moving across areas and

physicians moving across areas. Section 4 describes estimation and identification of the model.

Section 5 presents our main results. Section 6 concludes.

2 Model

We start by developing a simple model of annual per-capita healthcare utilization and the potential

roles of patient demand, physician practice intensity, and practice environments. Here we outline

the model’s general structure; in Section 4 we impose additional restrictions to bring key parame-

ters of the model to data in a tractable regression framework.

Patients stochastically receive health shocks of varying severity. For each shock, the patient

chooses whether or not to seek treatment. This decision reflects the patient’s latent demand for

healthcare, as well as aspects of the practice environment of her region which may affect the avail-

ability or accessibility of physicians. If a patient seeks treatment, she is matched to a physician.

The physician then chooses the level of healthcare utilization as a function of patient demand, the

practice environment, and the physician’s own practice intensity. The model thus has two sequen-

tial components: a process that generates encounters (or unique “matches”) between a patient and

a physician, and a process that determines utilization in each encounter. We develop each of these
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components in turn.

Consider a set of patients across different years. Patient i receives nit unobserved health shocks

in year t; each shock k has a latent severity of ψikt . This severity reflects both the objective severity

as well as the patient’s proclivity to seek treatment for a given objective level of severity. Whether

or not a health shock of a given severity generates utilization depends on its severity relative to a

region-specific threshold, γ̆ j. This threshold may reflect aspects of region j’s practice environment,

such as capacity (e.g. the number of physicians per capita) or accessibility (e.g. distance to the

nearest healthcare provider). It may also depend on characteristics of an area’s physicians, such as

their propensity to refer patients to specialists. Some of these characteristics might more appro-

priately be attributed to the role of the physician; our baseline case conservatively attributes them

to the non-physician supply-side factors (i.e. the practice environment). We discuss in Section 5

how much alternative attributions would increase our estimate of the role of physicians in driving

geographic variation.

Formally, we let Eikt = 1[ψikt > γ̆ j(it)] be an indicator for whether the shock leads the patient to

seek treatment, where j(it) indexes the region of patient i in year t. The number of treated shocks

is then given by Nit = ∑
nit
k=1 Eikt .

If a shock leads to treatment, the patient is matched to a physician d. For now we leave this

matching process unspecified, allowing it to depend arbitrarily on (i,k, t). Throughout, for sim-

plicity, we group all visits that a given patient has with a given physician in a given year into a

single “encounter.” We thus model the number of different physicians a patient sees in a year, but

do not model how utilization is distributed across different visits within a physician-patient-year.

Letting Didt = 1 if patient i matches to doctor d in year t, we can equivalently write the number of

treated shocks as the number of encounters, i.e., Nit = ∑d Didt .

We model patient i’s utility from an encounter generating utilization y as uidt(y) = aiy− 1
2(y−

hidt)
2 where hidt is an objective level of appropriate utilization and ai is a patient-specific demand

parameter. The net cost of utilization to the physician is given by cidt(y) = (cj(it)+ gidt)y, where

higher values of gidt denote higher marginal costs and may include factors such as liability concerns

(as explored in Currie and MacLeod 2020), or the opportunity cost of physicians’ time. The c j

term denotes costs that are specific to location j; these may reflect available physical capital,

the prevalence of nonprofit hospitals, the liability environment, peer effects among doctors, and
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organizational culture, among other factors (as discussed by Lee and Mongan 2009).

Each physician also has an individual parameter δd which characterizes her practice intensity.

These are our key objects of interest. Differences across physicians in δd may both reflect physician

specialty and within-specialty differences in practice style, and we will examine the relative role

of each. Within-specialty differences in turn may reflect heterogeneous beliefs about appropriate

or effective treatment (such as the “cowboy” or “comforter” approaches to care documented in the

survey evidence of Cutler et al. 2019), as well as heterogeneity in physician skill or experience (as

in Chandra and Staiger 2007).

In each encounter, the physician chooses patient utilization, yidt , to maximize a weighted sum

of patient utility and physician utility net of costs. Specifically, we assume she chooses utilization

in encounter (i,d, t) as:

yidt = argmax
y

{uidt(y)+δdy− cidt(y)}= ai +δd + cj(it)+hidt +gidt . (1)

Below we estimate the two sequential components of the model: encounter generation and

healthcare utilization conditional on an encounter. We then use the estimates of key model pa-

rameters to decompose average regional utilization into components driven by patient demand,

physician practice intensity, and practice environment.

3 Data and Preliminary Evidence

3.1 Data and Variable Definitions

We analyze a 20 percent random sample of traditional Medicare beneficiaries (“patients”) from

1998–2013. We outline the data and key variables of interest here; Appendix A provides consider-

ably more detail.

We observe all of the Medicare claims and associated physicians for each patient in the sample.

Our primary outcome of interest is healthcare utilization, which we construct following the existing

literature (e.g. Finkelstein et al. 2016; Gottlieb et al. 2010). Specifically, we use the claims data

to build an index of healthcare utilization by adjusting claim expenditures for regional variation in

administratively set prices. We also observe basic patient demographics, including age, sex, race,
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zip code of residence, and Medicaid coverage (a proxy for low income). The claims data also allow

us to impute each physician’s clinical specialty.

An important issue is how to assign claims to specific physicians. This involves some judg-

ment calls, as Medicare claims may list multiple physicians with varying degrees of involvement

in treatment. Our objective is to associate claims with the physician who is most likely responsi-

ble for the treatment decision. Most of the medical care one naturally associates with a physician

(e.g. an office visit, the ordering of a lab test, or a surgical procedure done in either an inpatient

or an outpatient setting) is contained in a file (known as the “carrier file”) which lists both a per-

forming physician and a referring physician. We assign the performing physician to the claim if

it is an evaluation and management claim—the nomenclature for a typical “office visit”—and we

assign the referring physician to all other claims (e.g. claims involving imaging, testing or proce-

dures). In practice, this means that if a physician refers a patient for a blood draw, a CT scan, or

a colonoscopy, the additional utilization is attributed back to the referring physician.3 However, if

a physician refers a patient to a different physician for evaluation (e.g. a PCP referring a patient

to a cardiologist for follow-up care), the subsequent evaluation is attributed to the new physician,

not the referring one. This approach is perhaps least well-suited to primary care physicians, whose

biggest influence on their patients’ medical spending may come through their tendency to refer

their patient to specialists for an evaluation; we therefore also undertake an alternative analysis in

Section 5 in which we instead attribute the spending from such referrals back to the referring PCP.

The remaining Medicare claims files consist of claims by hospitals for inpatient stays and outpa-

tient facility charges. Here, we assign each claim to the attending physician, since the attending

physician is defined as “the individual who has overall responsibility for the patient’s medical care

and treatment.”4

As noted above, our analysis distinguishes between the process that generates encounters be-

tween physicians and patients, and the process that generates utilization conditional on the en-

counter. We define a patient-physician encounter by aggregating all unique patient-physician in-

3The referring physician is never missing for testing and imaging claims, but is missing for about 15 percent of
procedure claims (see Appendix Table A1 Panel B). If the referring physician is missing, we assign the performing
physician (who is virtually never missing). Overall, 2 percent of our encounters (corresponding to 0.29 percent of
utilization) have a missing physician identifier; we assign them a missing physician ID unique by HRR.

4See https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/Downloads/clm104c25.pdf; down-
loaded on 03/08/2022. The attending physician is listed for over 99.9 percent of claims.
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teractions in each year. Thus, the number of encounters a patient has in a year corresponds to the

number of unique physicians she sees that year.

Our geographic unit of analysis is a hospital referral region (HRR), as defined by the 1998

Dartmouth Atlas. HRRs are collections of zip codes aggregated to approximate a tertiary hospital

market. To define a patient’s location, we follow Finkelstein et al. (2016) and use the patient’s zip

code of residence, regardless of where the claim is incurred. We categorize a patient as a “non-

mover” if her HRR of residence does not change during our sample period, and as a “mover” if her

HRR of residence changes exactly once. To match the timing at which we observe each patient’s

residence, we define all outcomes for year t to be totals of claims submitted between April 1 of

year t and March 31 of year t +1.

We define a physician’s location based on the location of the patients she treats. We categorize

a physician as a “mover” if she exhibits exactly one clear shift in location during our sample: i.e.,

when we observe the physician first in an origin location where at least 75 percent of their patients

live in a given year and subsequently in a destination location where at least 75 percent of their

patients live in a given year.5 Otherwise, the physician is categorized as a “non-mover.”

3.2 Sample Restrictions and Summary Statistics

Starting from the 16.7 million unique patients we observe between 1998–2013, we impose several

restrictions to arrive at our baseline analysis sample; these are again discussed in more detail in

Appendix A. We first focus on a 25-percent random sample of non-mover patients to simplify

computation of the model. We further exclude all patient-years where the patients are younger

than 65 or older than 99, where the patients are enrolled in Medicare Advantage, or where patients

are not subscribed to Medicare Part A and B for all months in a year. Following Finkelstein et al.

(2016), we exclude the small number of patients whose HRR of residence changes more than once,
5We discuss our algorithm for assigning physicians to HRRs in more detail in Appendix A. Overall, our objective

is to err on the side of false negatives rather than false positives. We therefore assign each physician a (potentially
missing) “focal” HRR for each year we observe them in the data, defined to be the HRR in which at least 75 percent
of their patients live. Since we are only interested in physicians who move exactly once, moving physicians must have
exactly two focal HRRs. We then ensure that, over time, the utilization pattern exhibits a clear shift from the first focal
HRR (the “origin”) to the second focal HRR (the “destination”), without shifting back to the origin. Finally, we define
the move year for each physician to be the year in which the share of patients in the origin and destination HRRs are
closest to 50 percent. As a further check that moving physicians are “settled” in their origin and destination HRRs, we
require them to have the majority of their patients live in the origin HRR for the four years before the move year and
in the destination HRR for the four years after the move year.
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along with a small number of patient movers for whom the location of observed claims does not

clearly shift from the origin location to the destination location.6 Analogously, some physicians in

our sample are observed treating patients from multiple HRRs in a given year without satisfying

the definition of a mover, likely reflecting the fact that physicians may simultaneously practice

at several facilities and that patients may travel outside of their home HRR to seek care. If a

physician treats patients located in multiple HRRs within a year (other than in a mover physician’s

move year), we treat her as a distinct physician in each HRR in that year. We do so to avoid using

such within-physician variation in location to identify physician effects.7 As we discuss in Section

5 below, our results are not sensitive to instead limiting our analysis to encounters that take place

in the HRR where the physician had the plurality of their encounters in each year.8 Finally, we

restrict to the largest connected set of physicians, places, and patients; in practice this set includes

over 99 percent of encounters.9

Our baseline analysis sample contains 159 million encounters between 3 million patients and

1.7 million physicians.10 We characterize about 650,000 patients as movers and about 75,000

physicians as movers. Table 1 provides some summary statistics for this sample.

Panel A of Table 1 shows that patient movers and non-movers are broadly similar, although

movers tend to be slightly older and less healthy, and more likely to be female, white, and living

initially in the South and West. Patients have on average around $7,600 in utilization a year, and

see about six or seven different physicians annually.

Panel B shows that physician movers and non-movers have a similar geographic distribution,

but non-mover physicians have a lower average utilization per Medicare patient of $689 compared

6Specifically, we drop any patient mover for whom the share of claims in the destination HRR as a share of claims
in either origin or destination HRRs does not increase by at least 0.75 in the years after the move.

7For example, if most of a physician’s patients are from Denver but a few are from Colorado Springs, we would
not want to use differences in the treatment of the Colorado Springs patients from the Denver patients to try to identify
the role of practice environment and patients as distinct from the role of the physician the way we use physicians who
move across areas.

8The HRR where the physician has a plurality of their encounters each year accounts, on average, for over 80
percent of the physician’s utilization in that year.

9Formally, our analysis sample is the largest set of patients and physicians who are “connected” by a path of
observed encounters within HRRs and across time. This follows Abowd et al. (2002), who study sets of workers and
firms connected by employment spells.

10However, because as noted above, we assign different “physician IDs” to physicians treating patients from mul-
tiple HRRs in the same year, we have 8 million physician IDs in our sample, and we estimate and analyze that many
physician practice intensity parameters δd . We show below that different ways of handling these physicians yield
similar results.
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with $1,084 for movers.11 Non-mover physicians see around 130 Medicare patients annually, while

mover physicians see 211.12 Appendix Table A2 further indicates that for both non-mover and

mover-physicians, the single largest physician “specialty” category is primary care, but that mover

physicians are disproportionately in primary care—33 percent of mover physicians accounting for

43 percent of mover physician utilization are in primary care, compared to 16 percent of physicians

and 36 percent of utilization for non-mover physicians.13 Appendix Table A4 shows that, where

we can observe additional physician demographics, mover physicians tend to be younger than non-

movers at the time of their move, more likely to be female and have spent fewer years practicing.

Such differences are unlikely to pose threats to our empirical strategy, which conditions on patient

and physician fixed effects.

Figure 1 shows the distribution of average annual patient utilization across HRRs. The overall

average across regions is $6,856 with a standard deviation of $763, over 10 percent of the mean.

The figure illustrates a high degree of geographic variation, with the South and Midwest outpacing

lower-utilization areas in the West and Northeast.14

To decompose the sources of the geographic variation in Figure 1, our empirical strategy lever-

ages the cross-HRR migration of both patients and physicians. Figure 2 illustrates the nature of

these moves by showing the gap in average utilization between the origin and destination HRRs

of patient movers (Panel A) and physician movers (Panel B). Both distributions appear symmetric,

indicating no systematic imbalance in moves from high- to low-utilization areas. The standard

deviations are also substantial. For example, the standard deviation of the gap in average annual

patient utilization between a patient’s origin and destination HRRs is $950, relative to an HRR-

average annual patient utilization of $6,856.

A natural question is why patients and doctors move in this sample. For patients, data from the

11We drop from the summary statistics 8 non-mover physician IDs which collect all utilization for multiple dis-
parate physicians either because their recorded ID is missing or because they were assigned a so called “surrogate”
Unique Physician Identifier Number (UPIN), used to record utilization for physicians who do not have their own
UPIN yet, e.g. because they are still residents (“OTH000”, “PHS000”, “RES000”, “SLF000”, “RET000”, “INT000”,
“VAT000”). The utilization associated with these IDs is quite large (since they contain many disparate physicians) and
skews the summary statistics for non-movers substantially.

12Appendix A.2 shows that our summary statistics on the number and average annual utilization of physicians is
broadly consistent with comparable public information on Medicare spending patterns.

13Following Fadlon and Van Parys (2020), we classify a physician as a primary care physician if they are classified
as general practice, family practice, or internal medicine.

14The geographic distribution of utilization remains fairly stable across years of our sample. For example, the rank
correlation between an HRR’s utilization in the first and second half is 0.9.
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Health and Retirement Survey and the Longitudinal Survey of Aging—both of which ask individu-

als for their reason to move—lead to similar conclusions. The most frequently reported reason for

moves among patients in the relevant age group is to be near/with children or other kin, followed

by health reasons, financial reasons, or other amenities (Finkelstein et al. 2016; Choi 1996). For

physicians, a 2012 report to the American Medical Group Association found that the most com-

mon reasons for migration include financial considerations, dissatisfaction with current practice,

and significant personal life changes.15 Our empirical strategy, as detailed below, allows the timing

of these moves to be non-random while assuming that the difference in average utilization between

the destination and origin HRR is not systematically related to underlying trends in patient health

or physician practice patterns.

3.3 Illustrative Event Studies

Before parameterizing and estimating the per-encounter utilization model from Section 2, we

present some descriptive results on average changes in utilization when physicians or patients

move across different regions. This analysis is meant to graphically illustrate a key source of the

variation we will use to estimate the model, provide some support for key identifying assumptions,

and preview our main findings on the impact of physician practice intensity. The approach we

employ here is in the spirit of earlier analysis by Finkelstein et al. (2016) and Molitor (2018), who

respectively study utilization changes for Medicare patients and cardiologists who move across

regions. We show in Appendix B.5 how these event study analyses can be motivated by restricted

versions of the model in Section 2.

For the patient mover analysis we aggregate over the set of doctors each patient sees in a year,

Dit , to obtain log patient-year utilization yit . We normalize this measure to zero for the small

portion (5.2 percent) of patient-years with zero healthcare use. Following Finkelstein et al. (2016),

we then estimate the regression

yit = α
P
i + τ

P
t +θ

P
r(i,t)∆

P
i + x′itβ

P +η
P
it , (2)

where ∆P
i is the difference in average yit between the patient’s destination and origin HRR (nor-

15See https://web.archive.org/web/20190516130533/http://www.ericksson.net/surveys.asp.
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malized to zero for non-movers). We include a vector of patient fixed effects (αP
i ) and a control

vector of patient observables xit consisting of indicators for five-year age bins, as well as indicators

for years relative to patient i’s move. Relative year r(i, t) is defined relative to patient i’s move year

and all of the relative year indicators are set to zero for non-movers. We also include a vector of

calendar year t indicators τP
t . The main coefficients of interest θ P

r are on the interactions between

relative year indicators and the difference in average log-utilization between a patient’s destination

and origin HRR; these capture how average annual patient log utilization changes in the years pre-

ceding and following a move across HRRs, as a share of the average observed difference in this

outcome between the destination and origin HRRs ∆P
i .

This specification allows for movers to differ arbitrarily from nonmovers in both levels of

log utilization (via αP
i ) and in trends in log utilization around their moves (via the relative year

indicators in xit), such as would occur if moves were associated with positive or negative health

shocks. The key assumption required to interpret the event-study jump as a causal effect of moving

to high- or low-utilization regions is that there are no shocks to utilization that coincide exactly with

the timing of the move and that are correlated with utilization in the origin and destination. We

can investigate the plausibility of this assumption in the event study results; deterioration in health

status that occurs gradually and is correlated with utilization in the destination and origin would

tend to show up as differential pre-trends in the event study analysis.

The specification also assumes that patient demand and supply-side factors are additively sep-

arable in the equation for log utilization.16 We see this as a plausible economic assumption. It

has the intuitive implication that demand and supply characteristics affect the level of utilization

multiplicatively, and thus that the (level) utilization of patients who are sick or prefer intensive care

(i.e. have high αP
i ) will vary more across places than that of patients who are healthy or rarely seek

care (i.e. have low αP
i ). We also see the log model as appealing on econometric grounds, given the

skewed cross-sectional distribution and large secular trend of utilization.

For the analyses of physician moves, we likewise aggregate over the set of patients each physi-

cian d sees in year t to obtain log doctor-year utilization ydt (again normalizing to zero the 0.6

percent of doctor-years with zero healthcare use). We take as the outcome of interest annual aver-

16See Finkelstein et al. (2016) for a formal derivation.

14



age log utilization per patient, or ydt − lnNdt . Following Molitor (2018), we estimate:

ydt − lnNdt = α
D
d + τ

D
t +θ

D
r(d,t)∆

D
d +w′

dtφ
D +η

D
dt , (3)

where ∆D
d is the difference in average ydt − lnNdt between the physician’s destination and origin

HRR (again normalized to zero for non-movers). We include a vector of doctor fixed effects (αD
d ),

calendar year t indicators τD
t , and a control vector of physician observables (wdt) consisting of

indicators for years relative to doctor d′s move year (relative years are denoted by r(d, t) and set

to zero for non-movers). The main coefficients of interest θ D
r are on the interactions between the

relative year indicators and the difference in average log utilization per patient between a physi-

cian’s destination and origin; these capture how average annual physician log utilization per patient

changes in the years preceding and following a physician’s move across HRRs, as a share of the

average observed difference in this outcome between the destination and origin HRRs ∆D
d . The

specification is similar to the patient analysis above. In particular, it allows for mover and non-

mover physicians to differ arbitrarily in both levels of average log utilization per patients (via αD
d )

and trends in this utilization around their moves (via wdt). It assumes that there are no shocks to

physician practice intensity that coincide exactly with both the timing of their move and the cor-

relation with average per-patient utilization in the origin and destination. Furthermore, it assumes

that average log utilization per patient is additively separable in physician practice intensity and

other factors (reflecting both patient demand and non-physician practice intensity).

Figure 3 shows the results from estimating the patient-mover event study in equation (2) (Panel

A) and the physician mover event study in equation (3) (Panel B). Each figure plots estimates of

the relative-year coefficients from the respective regression specifications.17 The patient-mover

event study shows that the average utilization of movers is stable in the years preceding a move,

conditional on the controls, while in the years following a move average patient utilization changes

17Observations for each relative year preceding and including relative year -6 are binned to a single indicator, as are
all observations for each relative year including and after relative year 6. This was done because, as Appendix Figure
A1 shows, we rarely observe patients in these extreme relative years. Appendix Figure A2 shows corresponding event
studies estimated on a balanced panel of patients or physicians that we observe for all relative years between -5 and
1, and a balanced panel of patients or physicians that we observe for all relative years -1 to 5. We see similarly flat
pre-trends and qualitatively similar post-event study effects, though confidence intervals for the physician analysis
grow large with the substantial reductions in the number of movers. In Appendix C.4, we show that these results are
robust to allowing for heterogeneous treatment effects by the timing of the treatment (i.e. move year) in the spirit of
recent advances in the two-way fixed effects literature (e.g. Callaway and Sant’Anna 2021; Sun and Abraham 2021).
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sharply in the direction of the observed difference in average HRR utilization. The lack of pro-

nounced pre-trends is consistent with the identifying assumption we will use to estimate the model

below.18 The jump in the event study after the move provides an initial indication of the importance

of patient demand in driving regional differences in health care utilization. When patients move,

they take with them the factors that affect their demand—such as their health and their preferences

for medical care. Therefore, if all of the regional differences in health care utilization were due

to differences in patient demand, we would expect patient utilization to remain constant after the

move. Conversely, if patient demand played no role and regional differences were entirely driven

by local supply side factors which change discretely on a move (including both regional differences

in physician practice intensity and regional differences in practice environment), we would expect

a jump of 1 as patient utilization resets to the new location’s average. Quantitatively, we estimate

an event study jump of around 0.6, similar to the earlier finding of Finkelstein et al. (2016).

The physician-mover event study in Panel B of Figure 3 shows that average per-patient uti-

lization of moving physicians is also relatively stable in the years prior to a move. Following a

move, physician utilization per patient changes sharply. Once again, the size of the jump provides

an initial indication of the role of physician practice intensity in driving regional variation, with a

smaller jump indicating a larger role for physicians relative to patient demand and practice envi-

ronment which change discretely on move. The magnitude of the jump is equal to 0.5. Of course,

this speaks to the role of physician practice intensity for a typical physician mover, who may be

different from a typical physician. For example, we previously saw that physicians who move tend

to be younger than average (Appendix Table A4).

In Appendix Figure A3, we show that the initial size of this jump varies in an intuitive man-

ner for older and younger physician movers. Specifically, younger movers exhibit a larger jump

than older movers in the years immediately after the move. This signals that younger physicians

adjust to patient and non-physician supply side factors in their destination more quickly than older

physicians do, perhaps because they are less entrenched in certain practice styles. However, the

18One possible source of bias is endogenous moves, caused by patients seeking better care due to worsening health
status. While we cannot fully rule out this possibility, the patterns we observe in the data suggest it is likely to be
small. Gradual worsening of health status that would lead to eventual relocation would tend to show up as pre-trends
in our motivating event studies. Although sudden negative health shocks that cause immediate movement to a more
intensive area might occur without causing pre-trends, such changes might lead to a spike in utilization immediately
following a move. However, we also find relatively flat post-trends in our event study analysis.
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event study jump eventually converges to about 0.5 for older physicians as well. More broadly,

we find that upweighting movers to resemble non-movers on observables such as age, gender, and

specialty does not noticeably change our results (see Appendix Figure A4 and Appendix Table

A16).

Together, the two event studies in Figure 3 suggest a meaningful role for each driver of geo-

graphic variation in utilization (patients, physicians, and non-physician supply-side factors). How-

ever, the event studies alone do not allow us to fully decompose the relative importance of each.

For example, while the relatively small jump in the physician-mover event study is indicative of a

role for physician practice intensity, it admits two very different interpretations of this physician

effect which have very different implications for counterfactuals. To the extent that the physician

effects reflect differences across physicians in the amount of utilization they produce conditional

on an encounter with a given patient (i.e. the δd’s in equation (1)), changes in the distribution of

physicians across regions would change the distribution of utilization across regions. However, to

the extent the physician effects reflect differences across physicians in their propensity to attract

high demand patients (i.e. patients with highψikt), changing the distribution of physicians across

regions need not affect the distribution of utilization. The patient and physician event studies

are also defined at different levels of aggregation—patient-year and physician-encounter, respec-

tively—so their results cannot be directly combined in a single decomposition. Our model, which

we estimate next, provides a unified framework to addresses these issues.

4 Empirical Strategy

4.1 Estimation

We make several parametric restrictions to bring the model in Section 2 to data. We first specify

the total number of physician encounters, Nit = ∑
nit
k=1 1[ψikt > γ̆it ], of patient i in year t as a Poisson

random variable, with mean

E[Nit | xit , j(it)] = exp
(

α
N
i + γ

N
j(it)+ τ

N
t + x′itβ

N
)
. (4)
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The area-specific term γN
j may reflect both practice environment factors (such as the density of lo-

cal hospitals) and the regional distribution of physician practice intensities (such as the propensity

of PCPs to refer patients to specialists).19 Equation (4) specifies a two-way fixed-effect Poisson re-

gression model, which can be estimated from the number of encounters Nit that a patient has each

year, her location j(it), and the observables xit . We discuss identification fron patient migration

below.

We will use equation (4) to study the component of encounter quantity attributable to patients,

which we denote by α̃N
it , and the component attributable to practice environment and physicians

(γ̃N
j ).20 These components are derived from the nonlinear model (equation (4)) by setting other

parameters to their average, such that differences in the components capture average marginal

effects. Thus the patient component of the encounter model α̃N
it shows how the expected number

of encounters changes in a typical HRR if we were to change the patient population only, and the

place component of the encounter model γ̃N
j shows how a typical patient’s expected number of

encounters changes if only the intensity of her HRR is allowed to vary. These are objects that we

will equalize in various counterfactuals below.

We next parameterize the per-encounter utilization model. We assume the sum of patient health

and physician cost of providing care (i.e. hidt + gidt in equation (1)) can be forecasted by a time

effect, a patient effect, a place effect, and sets of time-varying patient and physician observables xit

and wdt given encounter locations. This implies that we can express utilization yidt among realized

encounters (with Didt = 1) as

yidt = αi + τt + x′itβ︸ ︷︷ ︸
≡α̃it

+δd +w′
dtφ︸ ︷︷ ︸

≡δ̃dt

+ γj(it)︸︷︷︸
≡γ̃j(it)

+εidt , (5)

with E[εidt | x,w, j(it),Didt = 1] = 0.21 Equation (5) specifies a linear fixed effects regression for

19Appendix B.1 microfounds this assumption via parameterizations of the stochastic process that determines a
patient’s number of health shocks nit and the latent severity of each shock ψikt .

20Specifically, the patient component of the encounter model α̃N
it refers to the expected number of encounters in

a Poisson model with mean α̃N
it ≡ exp

(
αN

i + x′itβ
N + τN

t + γ̄N
)
, where γ̄N is the sample average of the place effect

estimates γN
j(it) from equation (4). Similarly, the practice environment component of the encounter model γ̃N

j refers to

the expected number of encounters in a Poisson model with mean γ̃N
j ≡ exp

(
ᾱN + x̄′β N + τ̄N + γN

j(it)

)
, where (ᾱN +

x̄′β N + τ̄N) is the sample average of the patient effect and observable estimates αN
i + x′itβ

N + τN
t from equation (4).

21Once again, Appendix B.1 provides additional details on this derivation.
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per-encounter utilization yidt in terms of a patient component α̃it , a physician component δ̃dt , and
a practice environment component (capturing non-physician supply factors) γ̃ j. Again, these are
objects that we will equalize in various counterfactuals below.22

We measure per-encounter utilization yidt as the log healthcare utilization of patient i with

physician d in year t. This is only observed (or defined) for the subset of patient-physician matches

that actually take place that year. Our specification (5) assumes that log utilization is additively

separable in patient demand, physician practice intensity, and the regional practice environment.23

Estimation of the per-encounter utilization model in equation (5) requires the assumption that

E[εidt | x,w, j(it),Didt = 1] = 0. This will be violated if this residual from the utilization equation is

correlated with the health-shock intensity residual in the encounter model (ξidt), after conditioning

on observables (specifically, on the fixed effects, x, w, and the vector of j(it)). The assumption

thus requires that any such dependence is fully accounted for by time, patient, and place effects,

along with the time-varying patient and physician controls. Our model furthermore imposes that

the patient-physician matching process depends systematically on only these same factors. As we

discuss in the next section, identification of equation (5) follows under these assumptions, given

quasi-experimental movement of patients and doctors across regions.

In our baseline specification of the encounter model and the per-encounter utilization model

(equations (4) and (5)), the patient observables xit consist of indicator variables for five-year age

bins and relative-year fixed effects ρr(i,t) for patients who move between HRRs (recall we nor-

malize ρr(i,t) to zero for non-movers). The physician observables wdt include similar relative-year

fixed effects for physician movers, again normalized to zero for non-movers. We estimate the pa-

rameters of the encounter model (equation (4)) by a two-way fixed effect Poisson regression in the

full sample of patient-years, both those with and without physician encounters.24 We estimate the

parameters of the per-encounter utilization model (equation (5)) by a three-way fixed effects linear

22The non-linearity of the Poisson encounter model requires us to transform the estimated fixed effects into average
marginal effects in order to report their variation on a meaningful scale. However, the linear per-encounter utilization
model allows for the effects to be reported directly, with the standard deviations directly interpretable as standard
deviations in average effects on log per-encounter utilization.

23As discussed in the context of similar assumptions for the event study analyses in Section 3.3, this has the
intuitive implication that these factors affect the level of utilization multiplicatively. Thus, for example, the level
of utilization for patients who are sicker or otherwise prefer more intensive care (i.e. have higher αi) will vary more
across physicians with different practice intensities (δd) than for patients who are healthy or dislike intensive treatment
(i.e. have low αi).

24Hausman et al. (1984) establish the consistency of conditional maximum likelihood estimation of such models,
which we implement using the algorithm of Guimaraes (2014).

19



regression on the full set of physician-patient matches that occur each year.

4.2 Aggregation

Our goal is to use the estimates from the encounter model in equation (4) and the per-encounter

utilization model in equation (5) to write HRR-average annual patient log utilization in terms of

the components attributable to patients, physicians, and practice environment. This will then allow

us to decompose regional utilization differences into shares due to each of these factors.

To do this, we let Dit denote the set of physicians d which patient i sees in year t, with Nit =

|Dit |. Aggregating over this set, we can write realized annual log patient utilization in terms of the

model as

yit = ln

(
∑

d∈Dit

expyidt

)
= α̃it + γ̃ j + lnNit + ln

(
1

Nit
∑

d∈Dit

exp
(

δ̃dt + εidt

))
, (6)

where we normalize annual log utilization yit to zero when Nit = 0.25

To characterize the role of physicians in per-encounter utilization, we further decompose the

final term of this equation. Let D∗(n, j, t) denote a random set of physicians of size n practicing in

area j in year t and define

δ it = E

[
ln

(
1

Nit
∑

d∈D∗(Nit ,j(it),t)
exp
(

δ̃dt + εidt

))
| Nit

]
(7)

as the typical contribution of physicians to patient i’s utilization in time t if she were to select Nit

physicians at random from her area j(it). The expectation in δ it is taken both with respect to the

random sets of physicians D∗(Nit , j(i, t), t) and the unforecastable contribution of utilization εidt .

Thus, δ it captures the typical utilization due to the regional availability of physicians with different

practice intensities, removing differences in how patients select different physicians from an area.

25The model of annual log patient utilization (equation (6)) admits an event study representation, which can be
used to visualize the components of the decomposition and assess the identifying restrictions via conventional pre-
trend checks. This complementary event study analysis, which builds on the simpler event study analysis in Section
3.3, is described in Appendix B.6. The results build confidence in the model’s key identifying assumptions by showing
flat pre- and post-trends around patient moves.
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To capture the importance of such physician selection, we further define

σit = E

[
ln

(
1

Nit
∑

d∈Dit

exp
(

δ̃dt + εidt

))
| Nit

]
−δ it (8)

as the patient’s expected difference in physician-driven utilization given her actual chosen set of

physicians Dit and a random set of the same size. We then can rewrite equation (6) as

yit = α̃it + γ̃ j + lnNit +δ it +σit +νit . (9)

where νit is a mean-zero residual.

Finally, aggregating equation (9) across patients and years, we obtain a model of the average

regional annual patient log utilization y j ≡ E[yit | j(it) = j] of HRR j:

y j = p j(α j + γ̃ j +N j +δ j +σ j) (10)

where p j = Pr(Nit > 0 | j(i, t) = j) denotes the probability of positive utilization among patient-

years in area j, α j is the average patient component (α̃it) among those with positive utilization in

area j, N j is the average number of log physician encounters among those with positive utilization

in area j, δ j is the average physician component (δ it) for patients in area j, and σ j is the average

selection component for patients in area j. Following our definition in equation (8), σ j captures

the extent to which physicians who practice more intensively in HRR j have more encounters than

what would be expected under a benchmark of random patient assignment. For example, higher

values of σ j could reflect high-utilization physicians in HRR j tending to see more patients than

low-utilization physicians.

We estimate α j by averaging the estimated α̃it from equation (9) to the HRR-level; γ̃ j is already

constant within HRRs. To estimate δ j and σ j, we average simulation-based estimates of average

physician utilization δ it in equation (7) and the selection term σit , respectively. Specifically, we

use estimates from the per-encounter utilization model (equation (5)) to form δ̃dt as defined in

equation (5), and then use the estimates of δ̃dt to form simulation-based estimates of average

physician utilization δ it in equation (7) and the selection term σit .26 Finally, we use estimates of

26More specifically, for each patient and year, we take a random draw of physicians from her HRR with the
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the encounter model (equation (4)) to compute p j and N j.27 Below, we use these estimates to

decompose regional utilization into its constituent components.

4.3 Identification

Identification of the per-encounter utilization model from equation (5) leverages the variation from

patient and physician moves across regions, as well as the within-region variation in utilization

across patient-physician pairs. Relative patient and physician utilization effects within each HRR

are identified by how utilization for a given patient varies across different doctors and how uti-

lization for a given doctor varies across patients (similar to the assumption in Abowd et al. 1999).

Quasi-experimental movement of physicians and patients across HRRs identifies the average pa-

tient and physician effects in each HRR and thus the practice environment effects.

To build intuition for the roles that movers can play in identification, consider a special case

with no time effects or time-varying controls and where a group of patients in each region sees a

representative non-moving physician d( j). Identification of (relative) combined physician-practice-

environment effects δd( j)+ γ j is then given by a “parallel trends” assumption on the utilization of

patient movers: that the unobserved trends in patient health and cost of care εidt for movers be-

tween different origin-destination pairs of HRRs are similar. Formally, the observed utilization

trend among patients who move from HRR k to HRR j between time t −1 and t can be written

Tt,k→ j ≡E[yidt | j(it) = j, j(i, t −1) = k]−E[yid,t−1 | j(it) = j, j(i, t −1) = k]

=δd( j)+ γ j − (δd(k)+ γk)+E[εidt − εid,t−1 | j(it) = j, j(i, t −1) = k]. (11)

When trends in the unobserved εidt are comparable across different origin-destination pairs, such

that the final term in this expression does not depend on ( j,k), the relative aggregate place effect

is identified by comparing the utilization trend of movers from HRR k to HRR j to the utilization

number of physicians drawn equaling her actual number of encounters for this patient and year. When we randomly
draw physicians, we draw them with probabilities equal to the share of their encounters in that HRR-year. We use
these simulated encounters averaged over 100 random draws to form estimates of δ it and σit .

27We explore the role of estimation error in our analysis in Appendix C.2.
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trend of movers from HRR j to HRR k:

1
2
(Tt,k→ j −Tt, j→k) = δd( j)+ γ j − (δd(k)+ γk). (12)

This common trends assumption would be violated if, for example, patients select into different

practice environments in response to an anticipated change in their healthcare needs. For example,

estimates of γ j − γk could be biased upwards if the patients moving from HRR k to HRR j expect

steeper increases in unobserved healthcare needs, relative to movers from HRR j to HRR k.

Just as patient migration can separate the contribution of patient utilization effects from other

factors, physician migration can separate the contribution of physicians. To again see this simply,

consider a group of physicians who move from HRR k to HRR j between time t −1 and t, treating

a representative group of non-moving patients in each period. By the same logic as above, so long

as these physicians are similar to movers from HRR j to HRR k in terms of their unobserved trends

in εidt , a comparison of average physician utilization before and after different moves identifies the

difference in αi( j)+ γ j, where α i( j) denotes the average αi of non-moving patients in HRR j. With

multiple patient (physician) movers seeing distinct groups of physicians (patients) we can thus

disentangle distinct average differences to fully separate the variation in αi, δd , and γ j.

In practice, identification of equation (5) is assisted by the inclusion of time-varying patient-

and physician-level controls xit and wdt and by within-HRR variation in the matching of patients

to physicians. Including time and patient age effects weakens the key common trends assumptions

to allow movers and matching to vary across these dimensions. Similarly, including relative year

effects for movers allows for arbitrary differences in utilization before and after a move and thus for

the above parallel trends assumption to not compare trends in εidt across movers and non-movers.

The lack of pre-trends in Figure 3 provides some support for these identifying assumptions.

While allowing for persistent unobserved patient, physician, and regional heterogeneity, the

assumption of conditionally idiosyncratic matching of patients and physicians imposes important

restrictions on the data. Most notably, it requires there to be no sudden changes in per-encounter

utilization demand that coincide with the systematic matching of patients to particular physicians.

This assumption would be violated if, for example, patients systematically respond to a negative

shock to their health by seeking out more intensive physicians.
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Identification of the encounter model (equation (4)) similarly follows from exogenous patient

migration. Specifically, as we show in Appendix B.2, conditional maximum likelihood estimates of

the practice environment effects γ j can be obtained from contrasts in log growth rates of encounters

across movers with different origin and destination pairs. Figure A5 (Panel B) provides some

support for this assumption.

5 Results

5.1 Model Estimates

Tables 2 and 3 report, respectively, the cross-HRR standard deviations and the within-HRR corre-

lation matrix of the key model components. Broadly, these estimates confirm the findings of the

motivating event studies that physicians, patients, and practice environments each play an impor-

tant role in driving regional differences in healthcare utilization.

For the encounter model, the results indicate that patients and practice environments exhibit

similar dispersion across HRRs in their impacts on encounters, and that they are positively cor-

related within HRRs. Specifically, we estimate that moving a typical patient to an HRR with a

one standard deviation higher practice environment component increases her expected number of

different physician encounters each year by 0.35 (relative to a mean number of annual encounters

of about 6.5), and increasing the average patient component by one standard deviation in a typ-

ical practice environment increases expected number of physician encounters by 0.34 (see Table

2). The practice environment and average patient components of the encounter model have a 0.47

positive correlation within HRR (Table 3), indicating that patients who demand more physician

encounters tend to be located in HRRs that induce higher numbers of encounters.

For per-encounter utilization, we find that while all three factors exhibit a high degree of ge-

ographic variation, the practice environment and physician components have substantially higher

geographic variation (with a cross-HRR standard deviation of about 0.13 for each) than the patient

component, whose cross-HRR standard deviation is only 0.02 (see bottom panel of Table 2). The

relatively low variation in average HRR patient components might at first seem surprising in light

of prior findings—which we replicate below—that the patient component explains about half of
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overall geographic variation in utilization (Finkelstein et al. 2016). However, as we show in our

counterfactual results below, most of the patient contribution comes through patient demand for

physician encounters rather than through per-encounter utilization quantity.

The model estimates also reveal that physicians display substantial differences in practice in-

tensities across HRRs. For example, we estimate that, all else equal, moving a patient to an HRR

with a one-standard deviation higher average physician component would increase utilization per

encounter by about 13 percent on average. Put differently, a patient in an HRR in the 90th per-

centile of the average physician component distribution will receive 33 percent more utilization

per encounter on average than a similar patient in an HRR in the 10th percentile of the distribution

of average physician components.28

This large variation in physician components is consistent with recent findings documenting

substantial variation in practice patterns across physicians within a particular specialty, such as

variation in prescribing anti-depressants (Currie and MacLeod 2020) and interpreting chest x-

rays (Chan et al. 2022b). We expand on these findings by documenting substantial variation in

physician practice intensities both within and across specialties (Table 4, Panel A).29 Likewise, we

find that the cross-HRR variation in the average physician component reflects both differences in

the physician component within specialty and differences in the mix of specialties across regions

(see Table 4, Panel B). 30

Finally, we note that the correlation matrix across the various components in Table 3 will be

important for understanding our counterfactual results on the role of physicians in driving geo-

graphic variation in utilization. In particular, it is noteworthy that while areas where physicians

practice more intensively—i.e. have higher average physician components—are areas with higher

patient demand (particularly on the encounter margin) and higher average practice environment

28We calculate this number by taking the difference in physician components (physician fixed effect plus relative
year) between the 90th and 10th percentiles of the HRR-average physician components distribution.

29Appendix Table A5 reports our estimates of the average physician effect for each of the 73 of specialties in our
data; they generally accord with what we would have expected. For example, we estimate that cardiac surgery and
thoracic surgery have the two most intensive physician effects, while primary care physicians rank 21st, and podiatrists
rank 55th.

30Note that we report the standard deviations of the HRR-average simulated physician component (δ̄ j) in Table
4 rather than the HRR-average of the actual physician components (δ̃dt ) as in Table 2. This allows us to difference
out the HRR-level within-specialty component, δ̄ S

j , as defined in our counterfactual analysis described in Section
5.2 and formalized in Appendix B.3. For the purposes of Table 4, these variables are nearly identical because the
simulated physician component is formed by taking the average over random draws of actual physician components
for physicians practicing in the same HRR, as discussed in Section 4.2.
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components on the encounter margin, they also exhibit a strong negative correlation with the HRR-

average practice environment component in the per-encounter utilization model.31 In other words,

regions where physicians practice with higher intensity per encounter tend to have lower intensity

per encounter practice environments but also a larger number of encounters for a given patient.32

The large negative correlation between the physician and practice environment components of

the per-encounter utilization model suggests that while physician practice intensity varies widely

across regions, a patient who moves from a low- to a high-intensity HRR need not see a large

increase in her utilization—since changes in average physician practice intensity may be offset by

changes in other supply-side factors. We now directly investigate this possibility.

5.2 Geographic Variation Counterfactuals

We use estimates of the different components in equation (10) to decompose differences in HRR-

average log patient utilization between groups of high and low-utilization HRRs in seven incre-

mental steps. These decompositions augment the analysis in Tables 2 and 3 by incorporating both

the standard deviation and correlation terms for the individual components in the per-encounter

utilization model, and by combining these estimates with estimates from the encounter model.

Each step of this decomposition is defined formally in Appendix B.3.

Table 5 presents the results.33 Specifically, it shows the decomposition for HRRs above and

below the median level of average patient utilization (columns 1-3), the top and bottom quartile
31Appendix C.2 conducts a sample-splitting exercise that confirms that estimation error plays very little role in

explaining this large and negative correlation estimate, given the large number of patient and doctor movers which
underpin our identification strategy.

32A priori, the correlation between the physician and practice environment components of the per-encounter uti-
lization model was ambiguous. One reason they might have been positively correlated is if physicians who have a
preference for more healthcare provision seek out high-intensity practice environments (e.g. Chandra and Staiger
2007). One reason for our finding that they are negatively correlated could be that places with a high share of physi-
cians practicing intensively adopt more aggressive utilization management practices in response; in addition, higher
quality physicians tend to practice less intensively (e.g., Doyle et al. 2010; Chan et al. 2022b) but may still prefer high-
intensity practice environments (e.g. those with a lot of capital and infrastructure). Another potential factor behind the
negative correlation could be that in areas with a larger degree of fragmentation—i.e. where patients tend to split their
care across more physicians—we would expect to see a larger number of encounters but less utilization per encounter.
If so, fragmentation could explain the large negative correlation between the practice environment components of the
encounter model and the utilization model, and this in turn may indirectly produce the negative correlation between
the physician and practice environment components of the per-encounter utilization model. In particular, if physicians
who practice more intensively tend to be in areas with a larger degree of fragmentation, that could explain the negative
correlation between the physician component and the practice environment component of the per-encounter utilization
model.

33We present standard errors for these estimates in Appendix Table A6.
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(columns 4-6), and the top and bottom decile (columns 7-9). In each set of columns, the first

column shows how the absolute difference in average log utilization changes as we restrict different

parts of the model, the second column shows the implied percentage change, and the third column

shows the cumulative percentage change in utilization. Since the results are qualitatively similar

across the comparisons, we focus our discussion on the above/below median HRR comparison

(columns 1-3 of Table 5), where the difference in average log patient utilization is 0.253.

We begin in row 1 by first setting σ j = 0 to simulate a counterfactual in which there are

no differences across HRRs in the systematic matching of patients to higher- or lower-utilization

physicians within each area. This shuts down any utilization differences across HRRs due to

differences in the extent to which physicians who practice more intensively in the HRR tend to

have more (or fewer) encounters than under a random patient benchmark.34 Our model does not

allow us to isolate the relative roles of the physician, patient, and practice environment in driving

σ j. In practice, however, eliminating this systematic patient-physician selection has a small effect,

reducing the above/below median gap by only 6 percent (to 0.238).

Turning to our main research question, we next evaluate the role of physicians in driving ge-

ographic variation by equalizing average physician components δ j across areas. To better un-

derstand the role of physicians, we conduct this counterfactual in two steps. In row 2, we first

simulate a counterfactual in which we set the average physician component in each region equal to

the within-specialty average physician component. This allows us to examine the role of within-

specialty differences in practice styles, while accounting for the fact that certain specialties (e.g.

cardiac surgery) are naturally more intensive than other specialties (e.g. primary care). In row

3, we then further equalize the across-specialty physician component across HRRs, to eliminate

variation in utilization due to differential sorting of different types of specialists—with different

average practice intensities—to different regions. Row 2 shows that eliminating differences across

areas in within-specialty practice styles further decreases the above/below median difference by

20 percent of the original difference, to 0.187. Row 3 shows that when we further eliminate dif-

ferences across areas in the mix of physician specialties, the difference decreases by another 15

percent, to 0.149. Over half of the effect of this specialty mix in turn reflects differences in the

34In other words, holding fixed the number of encounters each patient has and the set of patients and physicians in
each region, we assume that patients are randomly matched to physicians in each region, shutting down any differences
across regions in the tendency of higher- or lower-intensity physicians to disproportionately attract more patients.
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share of specialists relative to primary care physicians across regions (results not shown).35 Thus,

differences in physician practice intensities together explain 35 percent of the difference in uti-

lization between high- and low-utilization HRRs. In the remainder of Table 5, we sequentially

eliminate variation in patient demand and in practice environment.

We eliminate differences across regions in patient demand in two steps (rows 4 and 5). We

first equalize α j to simulate a counterfactual in which patient demand for per-encounter utiliza-

tion is equalized across areas. We then use the encounter model to equalize patient effects on the

average number of physicians seen, affecting both p j and N j. This step simulates a counterfac-

tual in which there is additionally no systematic sorting across regions of patients with different

demand for physician encounters. Together, these two steps reduce the difference in utilization

across high- and low-utilization HRRs by 46 percent of the original difference. Our estimate of

the role of patient demand is consistent with Finkelstein et al. (2016), who find that around half

of regional utilization variation arises from the non-random distribution of patients with different

demand for care. Our analyses here further indicate that essentially all of the patient component

reflects differences in patient demand for the number of unique physicians seen in a year (row 5);

eliminating patient differences in demand for per-encounter utilization has virtually no effect on

differences in utilization across regions (row 4). This is consistent with the small standard devia-

tion in HRR-average patient components from the per-encounter utilization model, documented in

Table 2. The large role for patient-driven differences in the number of encounters is also consistent

with the large overall patient demand share in Figure 3. More broadly, our findings on the de-

mand side are consistent with existing work pointing to the potential importance of fragmentation

in the delivery of healthcare—defined as a patient receiving care from a large number of distinct

providers—in increasing health care spending (Frandsen et al. 2015), and to a large role for what

we would call the practice environment in driving fragmentation (Agha et al. 2019). They are also

consistent with estimates from the RAND Health Insurance Experiment that increases in patient

demand—via increased generosity of insurance coverage—affect the number of visits a patient has

but not spending conditional on the visit (Newhouse and the Insurance Experiment Group, 1993).

Finally, we equalize practice environment components in an analogous two-step fashion: first

35Specifically, we find that equalizing the mix of non-PCP specialists (e.g. cardiologists vs dermatologists vs urol-
ogists etc.) across markets eliminates 6 percent of the difference in utilization; the remaining 9 percent is eliminated
when we equalize the mix of PCPs relative to all other specialists.
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equalizing practice environment effects on per-encounter utilization first (row 6) and then equaliz-

ing practice environment effects on the number of physicians seen (row 7). Variation in practice

environment accounts for the remaining 13 percent of cross-geographic variation in utilization. In-

terestingly, eliminating practice environment effects on utilization per encounter actually increases

utilization differences by 20 percent (row 6). This stems from the strong negative correlation of

practice environment with average physician practice intensities shown in Table 3. However, this

is offset by eliminating practice environment effects on the number of encounters, which reduces

utilization differences by 32 percent (row 7).

As discussed in Section 2, by assuming that physicians have no effect on the encounter margin,

we may understate the role of the physician in contributing to geographic variation in utilization.

Namely, one way physicians may affect utilization is through their propensity to refer their patients

to other physicians, generating additional encounters. If physician tendencies to make referrals

differ across areas, this will load onto the practice environment effect in the encounter margin.

We can therefore get an upper bound on the role of the physician by counting the entire practice

environment effect on utilization through the encounter margin toward the physician effect. To

do this, we use an alternative decomposition method detailed in Appendix B.4, for which results

are displayed in Appendix Table A7. In practice, we find that this results in 68% of utilization

differences being attributable to physicians, which is virtually identical to the result if we simply

add the share of variation due to physicians in our baseline decomposition (35%) to the share

driven by practice environment effects on the number of encounters (32%).36

Sensitivity Analyses

We conduct a number of checks to these baseline decomposition results and summarize many

of them in Appendix Table A8. Column 1 shows our baseline decomposition for above/below

median HRRs from Table 5, and the other columns show results from alternative specifications.

These all show broadly similar estimates for the role of physician practice intensity in explaining

36Naturally this is an upper bound, as it assumes that the entire practice environment effect on encounters is in fact
due to physicians. As another way of examining the potential role of physicians in influencing utilization via referral
propensity, in our analysis of primary care physicians (PCPs) below, we examine how our estimate of the role of the
PCP in driving geographic variation changes if we attribute back to the referring PCP any referrals to other physicians
for evaluation. We find this has essentially no impact on our estimate of the role of the PCP in driving geographic
variation on spending by PCPs.
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differences in utilization across areas. In column 2 we confirm that our decomposition results are

not sensitive to the way we handle physicians who practice in multiple HRRs. In our baseline

analysis, we assign separate physician IDs to physicians who practice in multiple HRRs within the

same year. As an alternative, in column 2 we assign physicians who practice across multiple HRRs

in the same year to a “primary” HRR, defined as the HRR in which she sees the most patients that

year; Appendix C.1 provides more details. We find that 99 percent of the observed differences

in utilization across HRRs can be explained by decomposing only the utilization associated with

a physician’s primary HRR. Not surprisingly, therefore, when we focus only on the drivers of

differences in primary HRR utilization, we find broadly similar shares of the utilization difference

attributed to physicians, patients, and places as in our main analysis.

In column 3, we add controls for time-varying patient health. Specifically, we add to the xit

in both the encounter model (equation (4)) and the per-encounter utilization model (equation (5))

a series of indicator variables for whether the patient has each of 21 different chronic conditions.

This is designed to address the potential concern that unmeasured, time-varying patient health

shocks are spuriously loading onto our estimates of the physician practice intensity, as patients

who become sicker may seek out physicians who practice more intensely. We do not make this

our baseline specification because of concerns that the measures of these health conditions may

partly reflect the intensity with which health care is practiced within an area (Song et al. 2010;

Finkelstein et al. 2016), but we consider it a useful robustness check. The results are reassuring:

including these time-varying patient health characteristics has essentially no effect on the share of

the geographic variation in health care utilization attributed to physician practice intensity, although

it does noticeably increase the share attributed to the patient at the expense of the role of the

practice environment. Columns 4 and 5 show that the results are similar—or if anything suggest

a somewhat larger role for physician practice intensity—when we estimate the model separately

on the first half of the data (1998-2005) and on the second half (2006-2013). The final column

shows that the results are robust to eliminating moves to Florida, California, and Arizona. We also

confirm that we obtain qualitatively similar results with alternative sequencings of the sequential

decomposition (see Appendix C.3).
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5.3 Results by Physician Specialty

Thus far we have focused exclusively on the drivers of differences across areas in overall health-

care utilization. Here, we repeat our main descriptive analyses and decompositions for healthcare

utilization for two specific physician specialties: primary care physicians (PCPs) and cardiolo-

gists. These are the two largest specialties (see Appendix Table A2) and have been the focus of

prior analyses of the role of physicians in driving geographic variation (Molitor 2018; Cutler et al.

2019).

Our findings suggest substantial heterogeneity across specialties in the role of physicians rela-

tive to other factors in driving geographic variation in utilization. An initial indication of this result

can be seen in the physician-mover event studies in Panels C and D of Figure 4. They show a much

larger—and more immediate—jump upon move for cardiologists than for PCPs, suggesting that

cardiologists may play less of a role in driving geographic variation in cardiology utilization than

PCPs do in PCP utilization. One possible explanation is that cardiologists’ practice styles are more

constrained by available physical capital (e.g., facilities for cardiac catheterization) than practice

styles of a primary care physician. Another possibility is that patient demand plays a larger role in

cardiology utilization than in PCP utilization. However, the patient event studies in Panels A and

B of Figure 4 suggest that if anything, patient demand plays a smaller role in cardiology utilization

than in PCP utilization.

The decomposition results in Table 6 are consistent with what the event studies would lead us

to expect. In particular, they indicate that for PCPs the relative roles of different factors in driving

geographic variation in utilization are very similar to what we find in the full sample of physicians,

while for cardiologists the relative roles are very different. When focusing on cardiologists, the

practice environment plays a much larger role (and physician practice style and patient demand

play much smaller roles) in driving geographic variation than when looking at overall utilization.

Specifically, the practice environment accounts for 82 percent of cardiology utilization differences

across regions, compared to only 13 percent of overall utilization differences across regions in

Table 5. At the same time, physician practice style accounts for only 3 percent of cardiology

utilization differences across regions (compared to a within-specialty role of physicians in the full

sample of 20 percent), and patient demand accounts for only 13 percent (compared to 46 percent
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for overall utilization). By contrast, the role of physicians in driving geographic differences in

healthcare utilization in the PCP subsample is very similar to the within-specialty role of physicians

in the full sample: 19 percent and 20 percent, respectively. These results are consistent with the

relatively small role for physicians found in Molitor (2018)’s analysis of cardiologist movers, but

also suggest that the role of cardiologists in driving geographic variation is not representative of

the role of the larger population of physicians.

The last two columns of Table 6 explore how our findings regarding the role of PCP practice

style in driving geographic variation in PCP-related utilization is affected if we instead “credit”

utilization generated by PCP referrals to specialists back to the referring PCP. As discussed in Sec-

tion 3, our baseline approach is to assign utilization for all evaluation and management claims to

the performing physician rather than the referring physician. The idea is that an office visit with

a cardiologist (the performing physician) may produce different amounts of utilization depending

on that cardiologist’s tendency to order various procedures and tests. But a downside to our ap-

proach is that it excludes a potentially important way that PCPs in particular influence health care

spending, namely through their propensity to refer their patients to specialists for further evalua-

tion and treatment. To explore how this affects our analysis of the role of PCP practice style in

driving geographic variation in PCP-related utilization, we also show results from an alternative

approach in which we attribute back to the PCP any evaluation and management visits from spe-

cialists to whom they referred the patient for further evaluation.37 We find that this does not have

any noticeable effect on our analysis.

5.4 Correlates of the Physician Component Across HRRs

Given our findings that physicians are the key supply-side factor driving geographic variation in

health care utilization, we explore the distribution of the physician component across HRRs, and

its correlates with other factors. Figure 5 shows the distribution of the physician component across

HRRs, as well as their correlation with HRR-average annual utilization per capita. Areas with

37Note that if the performing physician is also a PCP, we do not reassign this claim to the referring PCP; it stays
with the performing PCP. Furthermore, we do not reassign the claim to the referring PCP if the performing physician
has a “non-MD” specialty: anesthesiologist assistants, certified nurse midwives, certified registered nurse assistants,
nurse practitioners, individual certified orthotists, licensed clinical social workers, certified clinical nurse specialists,
physician assistants, and the “non-physician” specialty (e.g. clinical labs).
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more intensive physicians tend to be in the Southeast and Northeast of the country, while areas

with lower-intensity physicians tend to be in the Midwest and Northwest of the country. Areas

with higher average physician components tend to have higher average annual utilization, but there

is dispersion around this general trend. New Orleans and Manhattan have very similar utilization

per patient, for example, but New Orleans has a very low physician component while Manhattan

has a very high one. Interestingly, McAllen, TX (made famous for its high spending by Gawande

2009) has a lower physician component than is typical for an area with its spending level, while

low-spending Minneapolis and high-spending Miami—which feature heavily in the literature on

geographic variation (see e.g. Skinner 2011)—are both right on the regression line.

Figure 6 shows the correlation of the physician component with various HRR-level charac-

teristics of physicians and of the practice environment. Each row represents the coefficient from

a separate bivariate regression. All variables are standardized so that the coefficients report the

association between a one standard deviation change in the covariate and the average physician

component of the HRR. The top panel examines the relationship between the average physician

component in the HRR and measures of physician beliefs about appropriate practice style. To cap-

ture physician beliefs, we draw on survey-based measures from Cutler et al. (2019).38 They present

a sample of physicians with patient vignettes and ask them to rate the likelihood they would rec-

ommend different courses of action. We use the shares of primary care physicians and the shares

of cardiologists in each HRR who recommend levels of follow-up care greater (“high follow-up”)

or less (“low follow-up”) than clinical guidelines suggest, as well as the respective shares who

recommend aggressive (“cowboy”) or less aggressive (“comforter”) end-of-life care. The results

are shown for the 96 HRRs for which these measures are available. The correlations are all of the

expected sign: areas with a higher share of doctors who are “high follow up” or “cowboys” have

a higher average physician component, while areas with a higher share of doctors who are “low

follow up” or “comforters” have a lower average physician component. For example, the results

indicate that an HRR with a share of “cowboy” PCPs that is one standard deviation higher would

have, on average, about 7.5% higher utilization per encounter in that HRR. About half of these re-

lationships are statistically distinguishable from zero. By contrast, the relationship between these

measures of physician beliefs and either the average patient component or the average practice

38We are grateful to the authors for sharing these data.
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environment component is much smaller in magnitude and almost always statistically insignificant

(Appendix Figure A6).

The bottom panel of Figure 6 examines other area measures that are available for all 306 HRRs.

We find that areas with a higher share of physicians who are specialists (rather than PCPs) have

a higher average physician component. We also see that places with a higher average physician

component tend to have higher quality hospitals and more hospital beds per capita; there is no

relationship, however, between the average physician component and the share of hospitals in the

area that are non-profit.

6 Conclusion

Physicians play a unique role in healthcare markets, guiding most key diagnosis and treatment

decisions that affect patients. Yet little is known about the extent to which physician practice

differences are a quantitatively important factor behind the substantial geographic variation in US

healthcare utilization. We fill this gap by leveraging migration of Medicare patients and physicians

to estimate a model of encounters and of per-encounter utilization, allowing for variation in patient

demand, physician practice intensity, and other regional supply side differences.

Our findings indicate that physicians are a key driver of geographic differences in utilization.

We estimate that differences in physician practice intensities across regions explain at least a third

of geographic variation in utilization—roughly three times the importance of other supply side fac-

tors. The role of the physician reflects both differences across regions in within-specialty practice

style (about three-fifths of the physician component) as well as differences across regions in the

physician specialty mix (about two-fifths of the physician component). Taken together, these find-

ings suggest that policies that change physicians’ preferences or skills could substantially reduce

healthcare utilization in high-utilization parts of the country.

Of course, our counterfactual analyses of changing the distribution of patient, physician, or

practice environment characteristics across areas do not account for potential general equilibrium

effects of such changes; these are outside of our model and the scope of our analysis. Likewise,

policies that may affect physician practice intensity could also have general equilibrium conse-

quences which we have not considered. Nonetheless, our results suggest the importance of further
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work to understand the determinants of physician differences in practice intensity and the effects

of potential policies that might affect that practice intensity. Here, the role of physician train-

ing—both training within specialty and the availability of training for different specialties—seems

particularly important to examine.
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Figures and Tables

Figure 1: Distribution of Annual Patient Utilization Across HRRs
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Notes: The map shows the distribution of average annual patient utilization by HRR, in sextiles defined in the legend.
The histogram shows the distribution of HRRs’ average annual patient utilization. The sample is the baseline sample
of all patient-years excluding the move year for patient movers (N = 23,167,425 patient-years).
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Figure 2: Destination-Origin Gaps in Average Patient Utilization
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Notes: This figure shows the difference in HRR-average annual utilization between the origin and destination HRRs of
patient (Panel A) and physician (Panel B) movers. Note that Panel A displays differences in the HRR’s average patient-
level utilization between destination and origin, while Panel B displays differences in the HRR’s average physician
utilization per patient, so the scales are naturally quite different. The samples are all patient movers (Panel A, N =
650,440 patients) and physician movers (Panel B, N = 74,934 physicians).
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Figure 3: Patient and Doctor Mover Event Studies
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Notes: Panels A and B show the estimated θ P
r and θ D

r coefficients in equations (2) and (3) for patient and doctor
movers, respectively. The coefficients for relative year -1 are normalized to 0. The dependent variable in Panel A is
log annual patient utilization, and the control vector includes indicator variables for five-year age bins and relative-year
main effects for movers. The dependent variable in Panel B is log annual physician utilization per patient, and the
control vector includes relative-year main effects for movers. Dashed lines indicate upper and lower bounds of the
95 percent confidence intervals, clustered at the person (i.e. patient or physician) level. The sample is all patient-
years (Panel A, N = 23,663,477 patient-years) or physician-years (Panel B, N = 23,788,172 physician-years) binning
observations that are more than 6 years before the move year into a single indicator and the observations more than 6
years after the move year into a separate indicator; the coefficients on these indicators are not plotted here.
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Figure 4: Specialist Patient and Doctor Mover Event Studies
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Notes: Panels A and B show the estimated θ P
r coefficients in equation (2) based on patient movers; the dependent

variables are log annual patient utilization from encounters with primary care physicians (Panel A) and cardiologists
(Panel B), respectively. Panels C and D show the estimated θ D

r coefficients in equation (3) based on physician movers;
the dependent variables are log annual physician utilization per patient for primary care physicians (Panel C) and
cardiologists (Panel D), respectively. The coefficients for relative year -1 are normalized to 0. Observations before
and including relative year -6 are binned into a single indicator, as are all observations in relative year 6 and beyond;
the coefficients on these indicators are not plotted here. The included covariates are the same as those in the patient
or physician event studies in Figure 3. Dashed lines indicate upper and lower bounds of the 95 percent confidence
intervals, clustered at the person (i.e. patient or physician) level. The sample is N = 23,636,464 patient-years in Panel
A, N = 23,658,474 patient-years in Panel B, N = 5,954,845 physician-years in Panel C, and N = 1,161,572 physician-
years in Panel D.
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Figure 5: Distribution of Physician Component Across HRRs
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Notes: The map shows the distribution of the average physician component in each HRR (δ̄ j as defined in Section
4.2), in sextiles defined in the legend. The scatterplot plots this against the average annual log patient utilization in
each HRR. The regression line is weighted by the number of encounters in each HRR throughout the entire sample
period (1998-2013).
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Figure 6: HRR-Level Correlates With Physician Component
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Cutler et al. 2019 (96 HRRs)
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Notes: This figure plots bivariate, HRR-level regression coefficients from a regression of the average physician com-
ponent in each HRR (δ̄ j as defined in Section 4.2) against various HRR-level covariates, along with 95% confidence
intervals constructed using heteroskedasticity-robust standard errors. All covariates are standardized to have mean 0
and standard deviation 1. The first eight measures are computed on a sample of 96 HRRs for which physicians were
surveyed in Cutler et al. (2019); these regressions are weighted by the number of PCPs surveyed for the PCP measures
and the number of cardiologists surveyed for the cardiologist measures. For the last five measures, we use the sample
of all 306 HRRs, and the regressions are weighted by the number of Medicare patients we observe throughout the
entire sample period (1998-2013). Hospital Compare Score approximates hospital quality using timely and effective
care measures publicly reported by CMS. Hospital beds per capita counts hospital beds per thousand residents. Non-
profit hospitals is the percent of hospitals that are nonprofit. More detail on the construction of these variables can be
found in Finkelstein et al. (2016).
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Table 1: Sample Summary Statistics

(1) (2)
Non-movers Movers

A. Patients
Share female 0.56 0.60
Share white 0.85 0.88
Mean age first observed 71.00 72.54
Share first observed residence:

Northeast 0.20 0.17
South 0.39 0.42
Midwest 0.25 0.20
West 0.16 0.22

Number of chronic conditions:
Mean 2.98 3.27
S.D. 2.15 2.04

Annual utilization:
Mean $7,678 $7,391
S.D. $11,916 $9,599

Annual number of encounters:
Mean 6.44 6.89
S.D. 4.75 4.34

Number of patients 2,440,041 650,440

B. Physicians
Share first observed residence:

Northeast 0.23 0.21
South 0.34 0.36
Midwest 0.23 0.23
West 0.20 0.20

Utilization per encounter:
Mean $689 $1,084
S.D. $1,738 $1,599

Annual number of encounters†:
Mean 130.41 211.39
S.D. 427.71 185.62

Number of doctors 1,628,408 74,934

Notes: In Panel A, rows for female, white, age first observed, and first observed residence report the shares of patients
with the given characteristics among movers and non-movers. The sample is the baseline sample of all patient-years
excluding the move year for patient movers (N = 23,167,425 patient-years). Panel B has the analogous statistics for
the sample of physicians (N = 10,765,990 physician-years).
†: denotes that statistic has been multiplied by 5 to account for the fact that we have a 20-percent sample of Medicare
patients.
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Table 2: Standard Deviations of Model Components

HRR-Average of:

Encounter
Model

Practice environment (γ̃N
j ) 0.346

(0.005)

Patients (α̃N
it ) 0.335

(0.004)

Per-
Encounter
Utilization
Model

Practice environment (γ̃ j) 0.134
(0.002)

Patients (α̃it ) 0.023
(0.001)

Physicians (δ̃dt ) 0.133
(0.002)

Notes: This table is based on estimation of our Poisson encounter model (equation 4) (rows 1 and 2) and per-encounter
utilization model (equation 5) (rows 3-5) in the baseline sample and lists the standard deviations for the individual com-
ponents in the two models averaged to the HRR level. These individual components are defined in footnote 20 for
the encounter model and in equation (5) for the per-encounter utilization model. The estimation sample for the first
two rows is the baseline sample of all patient-years (N = 23,663,477 patient-years), and for the next three rows is
the baseline sample of all encounters (N = 159 million encounters). Standard errors (in parentheses) are clustered at
the patient level and calculated using a Bayesian bootstrap as described in Rubin (1981), with 50 repetitions. Specif-
ically, for each patient in each dataset, we draw 50 weights coming from a Dirichlet distribution. We then repeat
our estimation procedure 50 times, weighting each observation by its respective Dirichlet weight. We bootstrap the
encounter-level connected set used in the per-encounter utilization regression (equation (5)) and patient-year-level
dataset used in the Poisson encounter model regression (equation (4)) separately. We combine the estimates from the
bootstrapped-sample regressions to produce the estimates above for each draw. The reported standard errors are the
standard deviation of the resulting bootstrap estimates.
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Table 3: Correlation Matrix of Model Components

Encounter Model Per-Encounter Utilization Model
HRR-Average of: γ̃N

j α̃N
it γ̃ j α̃it δ̃dt

Encounter
Model

Practice environment (γ̃N
j ) 1.000

Patients (α̃N
it ) 0.470 1.000

(0.022)

Per-
Encounter
Utilization
Model

Practice environment (γ̃ j) -0.512 -0.264 1.000
(0.015) (0.025)

Patients (α̃it ) -0.001 -0.125 -0.041 1.000
(0.015) (0.023) (0.024)

Physicians (δ̃dt ) 0.445 0.357 -0.852 0.028 1.000
(0.018) (0.029) (0.005) (0.031)

Notes: This table is based on estimation of our Poisson encounter model (equation 4) (rows 1 and 2) and per-encounter
utilization model (equation 5) (rows 3-5) in the baseline sample and presents the correlation matrix for the individual
components in the two models averaged to the HRR level. These individual components are defined in footnote 20 for
the encounter model and in equation (5) for the per-encounter utilization model. The estimation sample for the first two
rows is the baseline sample of all patient-years (N = 23,663,477 patient-years), and in the next three rows is the baseline
sample of all encounters (N = 159 million encounters). Standard errors (in parentheses) are clustered at the patient
level and calculated using a Bayesian bootstrap as described in Rubin (1981), with 50 repetitions. Specifically, for
each patient in each dataset, we draw 50 weights coming from a Dirichlet distribution. We then repeat our estimation
procedure 50 times, weighting each observation by its respective Dirichlet weight. We bootstrap the encounter-level
connected set used in the per-encounter utilization regression (equation (5)) and patient-year-level dataset used in the
Poisson encounter model regression (equation (4)) separately. We combine the estimates from the bootstrapped-sample
regressions to produce the estimates above for each draw. The reported standard errors are the standard deviation of
the resulting bootstrap estimates.
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Table 4: Physician Practice Intensity Variation

A. Physician Level
Standard Deviation

Overall (δd) 0.904
(0.000)

Within-Specialty 0.724
(0.000)

Between-Specialty 0.540
(0.000)

B. HRR Level
Standard Deviation

Overall (δ̄ j) 0.135
(0.002)

Within-Specialty (δ̄ j − δ̄ S
j ) 0.104

(0.002)

Between-Specialty (δ̄ S
j ) 0.054

(0.000)

Notes: The overall standard deviation in Panel A is computed using the physician effects δd , as defined in equation (5).
For the “within-specialty” standard deviation, we subtract the mean of δd in each specialty and compute the standard
deviation of the difference; the “between-specialty” standard deviation is the standard deviation of these specialty-
average fixed effects. All standard deviations are weighted by the number of encounters each physician has during
the entire sample period (1998-2013). In Panel B, we compute the standard deviations of the HRR-level physician
components δ̄ j defined as the HRR average of δ it from equation (7). We report δ̄ j, δ̄ j − δ̄ S

j , and δ̄ S
j as measures of the

overall, within-specialty, and between-specialty variation, respectively, where δ̄ S
j is defined in Appendix Section B.3.

In Panel A, the sample size is N = 8,292,034 physicians. In Panel B, the sample size is 306 HRRs. Standard errors
(in parentheses) are clustered at the patient level and calculated using a Bayesian bootstrap as described in Rubin
(1981), with 50 repetitions. Specifically, for each patient in each dataset, we draw 50 weights coming from a Dirichlet
distribution. We then repeat our estimation procedure 50 times, weighting each observation by its respective Dirichlet
weight. The reported standard errors are the standard deviation of the resulting bootstrap estimates.
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Table 5: Geographic Variation Counterfactuals

Above/below median Top/bottom 25% Top/bottom 10%

Absolute

Differ-

ence

% decline

(increment)

% decline

(cumulative)

Absolute

Differ-

ence

% decline

(increment)

% decline

(cumulative)

Absolute

Differ-

ence

% decline

(increment)

% decline

(cumulative)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Observed 0.253 0.405 0.594

Patient-physician selection (1) 0.238 -6% -6% 0.378 -7% -7% 0.564 -5% -5%

Physicians 0.149 -35% -41% 0.222 -39% -45% 0.345 -37% -42%

Of which: within-specialty effects in utilization per encounter (2) 0.187 -20% -26% 0.281 -24% -31% 0.422 -24% -29%

Of which: between-specialty effects in utilization per encounter (3) 0.149 -15% -41% 0.222 -14% -45% 0.345 -13% -42%

Patients 0.032 -46% -87% 0.044 -44% -89% 0.081 -44% -86%

Of which: patient effects in utilization per encounter (4) 0.148 0% -42% 0.223 0% -45% 0.350 1% -41%

Of which: patient effects in # encounters (5) 0.032 -46% -87% 0.044 -44% -89% 0.081 -45% -86%

Practice Environment 0.000 -13% -100% 0.000 -11% -100% 0.000 -14% -100%

Of which: practice environment effects in utilization per encounter (6) 0.082 20% -68% 0.126 20% -69% 0.198 20% -67%

Of which: practice environment effects in # encounters (7) 0.000 -32% -100% 0.000 -31% -100% 0.000 -33% -100%

Notes: This table is based on estimation of equation (5), equation (4), and the counterfactuals described in Section 5.2. Each set of three columns partitions HRRs
into two groups based on percentiles of average log annual patient utilization. First, we report the observed difference in average log annual patient utilization
between the two areas at the top of each panel. Each successive row reports this difference under a particular counterfactual, along with the incremental and
cumulative percentage change relative to this baseline. Row (1) reports the counterfactual difference if there were no differential physician selection within regions.
Row (2) reports the difference if additionally there were no variation in average physician intensity in healthcare within an encounter across regions, holding fixed
the clinical specialty of the physician. Row (3) reports the difference if there were also no differential sorting of clinical specialties across regions. Rows (4) and
(5) report the difference if additionally there were no differential sorting of patients’ demand for healthcare across regions, breaking this change into two separate
sequential steps eliminating patient effects on the demand for care within an encounter and for healthcare encounters, respectively. The last two rows report the
difference if additionally there were no variation in practice environment effects on healthcare utilization, breaking this change into two separate sequential steps
eliminating practice environment effects on care within an encounter and number of encounters across regions, respectively. For details on how we define each
counterfactual, see Appendix Section B.3. The sample is all encounters (159 million encounters of 3 million patients with 1.7 million physicians).
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Table 6: Geographic Variation Counterfactuals, by Specialty

Above/below median

Cardiologists PCPs

Original Assignment Including Specialist Referrals

Absolute

Differ-

ence

% decline

(increment)

Absolute

Differ-

ence

% decline

(increment)

Absolute

Differ-

ence

% decline

(increment)

(1) (2) (3) (4) (5) (6)

Observed 0.523 0.384 0.400

Patient-physician selection (1) 0.514 -2% 0.369 -4% 0.382 -5%

Physicians (2)† 0.499 -3% 0.296 -19% 0.307 -19%

Patients 0.431 -13% 0.099 -51% 0.107 -50%

Of which: patient effects in utilization per encounter (3) 0.505 1% 0.291 -1% 0.298 -2%

Of which: patient effects in # encounters (4) 0.431 -14% 0.099 -50% 0.107 -48%

Practice Environment 0.000 -82% 0.000 -26% 0.000 -27%

Of which: practice environment effects in utilization per encounter (5) 0.406 -5% 0.115 4% 0.107 0%

Of which: practice environment effects in # encounters (6) 0.000 -78% 0.000 -30% 0.000 -27%

Notes: This table is based on estimation of equation (5), equation (4), and the counterfactuals described in Section 5.2. First, we report the observed difference in
average log annual patient utilization between HRRs above and below the median. Each successive row reports this difference under a particular counterfactual,
along with the incremental percentage change relative to this baseline. Row (1) reports the counterfactual difference if there were no differential physician selection
within regions. Row (2) reports the difference if additionally there were no variation in average physician intensity in healthcare within an encounter across regions.
Rows (3) and (4) report the difference if additionally there were no differential sorting of patients’ demand for healthcare across regions, breaking this change
into two separate sequential steps eliminating patient effects on the demand for care within an encounter and for healthcare encounters respectively. Rows (5) and
(6) report the difference if additionally there were no variation in practice environment effects on healthcare utilization, breaking this change into two separate
sequential steps eliminating practice environment effects on care within an encounter and number of encounters across regions respectively. For details on how we
define each counterfactual, see Appendix Section B.3. The sample is all encounters with cardiologists in columns 1 and 2 under the original utilization algorithm
(28 million encounters between 3 million patients and 29 thousand physicians). In columns 3 and 4, the sample is all encounters with PCPs in columns 1 and 2
under the original utilization assignment algorithm (44 million encounters between 3 million patients and 267 thousand physicians). In columns 5 and 6, we repeat
the analysis on PCPs with an alternative method of assigning some claims for robustness. The sample size is 44 million encounters between 3 million patients and
278 thousand PCPs. †: the total physician share for PCPs and cardiologists is equivalent to the within-specialty component for the full sample (row 2 of Table 5).
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A Baseline Analysis Sample

A.1 Patients
This appendix details the restrictions which lead to our baseline sample of encounters. As summa-
rized in Section 3.2, we exclude a random 75 percent of patient non-movers for ease of computa-
tion; we weight all analyses by this sampling probability. We also exclude patient-years in which
the patient is on Medicare Advantage, younger than 65 or older than 99, or not subscribed to Medi-
care Part A and Part B for all months of a year. We further exclude patients who moved more than
once and whose share of claims in the destination HRR did not exceed that in the origin HRR by
at least 0.75 after the move. We exclude patients whose HRR of residence changes multiple times.
Lastly, we restrict the sample of encounters to the largest connected set of patients and physicians.
Appendix Table A9 shows the effects of these sequential restrictions; after excluding 75 percent
of patient non-movers, the next most impactful restriction is the exclusion of patients enrolled in
Medicare Advantage, which excludes about 4 percent of the sample. The connected set restriction
is the least impactful restriction, reducing the sample size by 1 percent relative to the original raw
claims data.

Patients can exit our sample for three primary reasons: death, switching to Medicare Advan-
tage, and exiting the 65-99 age window. About a third of patients die in our sample window;
mortality is similar for movers and non-movers. About a fifth exit by switching to Medicare Ad-
vantage. We observe the average non-mover for 7.2 years and the average mover for 9.2 years; part
of this difference is mechanical, since the mover label is contingent on observing a patient for at
least 2 years. Correspondingly, we observe the average non-mover physician for 6.6 years and the
average mover physician for 9.9 years.

A.2 Physicians
Assigning Each Physician a Unique ID

We assign each physician a unique ID through a combination of their National Provider Number
(NPI) and Unique Provider Identification Number (UPIN). Until 2006, physicians were identified
in claim forms by their UPIN only. However, starting in 2006, CMS transitioned from the UPIN
to the NPI. Thus, in order to assign each physician a unique ID throughout our 1998-2013 time
period, we must match UPINs to NPIs.

To do so we rely on two main sources of information: a crosswalk produced by the National
Bureau of Economic Research (NBER) that matches UPINs to NPIs39 and has been used by other
studies (e.g. Molitor 2018; Kwok 2019), and our own construction of a claims-based crosswalk
matching UPINs to NPIs. This section details how this matching is performed.

The NBER crosswalk is based on files from the NPI Registry, which is maintained by CMS.
We exclude from the NBER crosswalk matches with group UPINs and organization NPIs, in order
to ensure that matches only occur among individuals.We also exclude cases in which (1) a UPIN
is mapped to two or more NPIs, which may occur as a product of typos in the NPI application, and

39See https://www.nber.org/research/data/national-provider-identifier-npi-unique-physician-identification-
number-upin-crosswalk.
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(2) an NPI is mapped to two or more UPINs, which may occur if a physician lists another identifier
as an additional UPIN.

The NBER crosswalk does not produce a comprehensive set of UPIN-NPI matches, because
matches are based on the voluntary provision of UPINs in the NPI application. Similar to Molitor
(2018), we therefore supplement the NBER crosswalk with a separate crosswalk that we build
using the claims data, which contains both UPIN and NPI information.

To build this claims-based crosswalk, we make use of the fact that, during the UPIN-NPI tran-
sition period (2006-2008), Medicare encouraged physicians to include both identifiers in claims,
so that providers would gain experience using the new number. As a result, as can be seen in
Figure A7, in 2007 over 50 percent of utilization was associated with claims that included both a
UPIN and an NPI. However, after the transition to NPIs was complete in 2008, UPINs were no
longer inspected for accuracy, and the inclusion of an incorrect UPIN no longer led to a claim
denial.40 Not surprisingly, therefore, there is ample evidence in the data that UPINs were often
inputted incorrectly—UPINs were frequently listed with typos (e.g. E00000 entered as F00000),
and NPIs were listed in conjunction with another physician’s UPIN from the same location. Using
Levenshtein distances41 to detect similarity between listed UPINs, we estimate that typos generate
at least 20 percent of the NPIs associated with multiple UPINs in the claims data. Furthermore,
Kwok (2019) notes that physician group practices “may have systematically entered the incorrect
physician UPIN when it was not tied to reimbursement (e.g., selecting the physician at the top of
an alphabetical list rather than the actual performing physician)”.

With these data shortcomings in mind, we produce a claims-based crosswalk that matches
UPINs to NPIs based on a majority of claims, instead of requiring a one-to-one match (as in Molitor
2018). This allows a larger set of IDs to be matched while still producing accurate matches. The
steps below summarize the algorithm:

1. Let A be the set of all UPIN-NPI combinations observed in the claims data. Consistently
with our process of assigning physicians to claims (see Appendix A.2), we utilize referring
and performing physicians for carrier claims, and attending physicians for outpatient and
inpatient claims. Thus, the set A represents the collection of potential UPIN-NPI matches.

2. Exclude from set A combinations that contain (i) a missing identifier (UPIN or NPI); (ii) a
group UPIN;42 (iii) a surrogate UPIN;43 or (iv) an organization NPI.44 This is because we are
only interested in UPIN-NPI combinations that are associated with individual physicians.

3. Define CU as the number of claims in which UPIN U is observed within set A, and define

40In fact, Medicare’s expectations were that clearinghouses would not even pass the legacy identifier to Medicare
after the NPI was fully implemented in 2008. See https://www.cms.gov/newsroom/fact-sheets/national-provider-
identifier-npi-may-23-2008-implementation and https://www.hhs.gov/guidance/sites/default/files/hhs-guidance-
documents/JA4320.pdf.

41Levenshtein distance is a measure of similarity between two strings, which can be defined as the number of
insertions, deletions, and substitutions necessary to transform a source string into a target string. For example, the
Levenshtein distance between UPINs “E12345” and “F12345” is 1, since we only need to substitute the E for an F.

42Group UPINs are identified by their first characters (W-Z). See https://www.nber.org/research/data/national-
provider-identifier-npi-unique-physician-identification-number-upin-crosswalk.

43Surrogate UPINs were used when a physician did not have a UPIN, and were used instead of leaving the UPIN
field blank. The most common ones are “OTH000” and “RES000”.

44These are identified from NPPES data, assembled by the NBER. See https://data.nber.org/data/ nppes/.
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CN analogously for NPIs. Finally, define CUN as the number of claims in which we observe
UPIN U combined with NPI N.

4. Let sUN = CUN
CU

be the share of UPIN U’s claims that are associated with NPI N, and let
sNU = CUN

CN
be the share of NPI N’s claims that are associated with UPIN U .

5. If both sUN and sNU are larger than 0.75, UPIN U and NPI N are matched. These matches
will constitute the claims-based crosswalk.

To produce a finalized crosswalk that draws on both the NBER crosswalk and the claims-based
crosswalk, we retain UPIN-NPI matches that agree between crosswalks, as well as matches that
only appear in either crosswalk. Some matches may be associated with conflicts, meaning that
either an NPI is matched to a UPIN in the claims-based crosswalk and to another UPIN in the
NBER crosswalk, or a UPIN is matched to an NPI in the claims-based crosswalk and to a different
NPI in the NBER crosswalk; we do not link UPINs and NPIs that are associated with conflicts.

Table A10 displays UPIN-NPI matching results. Panel A displays statistics for NPIs that are
part of the finalized crosswalk. Among these NPIs, most matches agree between crosswalks and,
since the claims-based crosswalk is more complete, a large share of matches are only found in
the claims-based crosswalk. Overall, we can produce 921,000 UPIN-NPI matches, accounting
for 87 percent of total 2009 utilization. Panel B, in turn, displays statistics for NPIs that are not
matched to a UPIN. We see that only a small number of NPIs are associated with conflicts,45 while
a large number of NPIs are not matched because they (and presumably the physician associated
with that NPI) enter the sample after the UPIN-NPI transition.46,47 Altogether, non-matched NPIs
correspond to only 13 percent of total 2009 utilization.

To evaluate the accuracy of the 920,000 matches in the finalized crosswalk, we validate them
against physician identifier information in the AMA Physician Masterfile, which contains both
NPIs and UPINs for the physicians in the data. Like the NBER crosswalk, the AMA data are not
comprehensive. Still, it allows us to evaluate accuracy where there is overlap. Table A11 displays
such a comparison for the NPIs that were either matched to the finalized crosswalk or associated
with a non-missing UPIN in the AMA masterfile. We see that for cases accounting for 80 percent
of total utilization in 2009, both crosswalks produce the same matching, while conflicts are rare
(accounting for less than 0.5 percent of utilization).

Using the finalized crosswalk, we assign physician IDs to each claim based on the year and
information provided (similarly to Kwok 2019). Between 1998 and 2005, we assign physician IDs
based on the listed UPIN. Between 2009 and 2013, we assign physicians based on the listed NPI.
Finally, during the transition period in 2006-2008, we also assign physician IDs based on the listed
NPI. We do so because CMS guidance indicates that claims are denied if the listed NPI cannot be
located or does not meet certain criteria, indicating that the NPI functions as a primary identifier.48

45A large share of these conflicts are due to typos, likely in the NPI registry.
46We consider NPIs to be unmatched if they are listed with at least one non-missing UPIN in the 20 percent claims

data, and we consider NPIs to have entered the sample after the transition (“post transition NPIs”) if they are not listed
with any UPINs.

47The large number of post-transition NPIs can be explained by an expansion in the number of Medicare providers
(1.05 million providers in 2006 to 1.23 million providers in 2013; see 2006 CMS statistics and 2013 CMS statistics)
and by the gradual replacement of the workforce between 2007 and 2013.

48See https://www.hhs.gov/guidance/sites/default/files/hhs-guidance-documents/JA4320.pdf
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If the NPI is missing during the transition period, we assign IDs based on the UPIN. Table A12
below shows an illustration of the UPIN-NPI crosswalk and some ID assignment examples.

Assigning Physicians to Patient Claims

We would like to match each claim to the physician who is most likely the responsible “decider” for
that care. In practice, this requires some judgment calls, since Medicare claims may list multiple
physicians that were involved in the patient care that generated the claim.

More specifically, there are three types of Medicare claim files: carrier, inpatient, and outpa-
tient. Carrier claims make up 34 percent of utilization, while inpatient and outpatient claims are
48 and 18 percent of utilization, respectively. Inpatient claims are those billed by hospitals under
Part A of Medicare for inpatient stays. Outpatient claims are filed by institutions that also bill
for Part A services, notably hospitals. Carrier claims are filed by physicians and by institutions
that do not provide inpatient services (such as clinical laboratories, or certain outpatient clinics).
Most of the medical care one naturally associates with a physician (e.g. an office visit, a surgical
procedure—whether done inpatient or outpatient—the ordering of a lab test, etc.) is contained on
the carrier file.

Although the distinction between carrier and outpatient claims is not always clear, as a gen-
eral rule physician charges are billed under carrier claims (whether they occur in an inpatient or
outpatient setting), while other (non-inpatient) services may be billed either in the carrier or out-
patient files. Non-physician charges (also called facility charges) are billed either to the outpatient
or carrier file; as a rough rule of thumb, hospitals and other inpatient facilities will bill outpatient
facility charges to the outpatient file, while physicians and free-standing clinics will bill these same
outpatient facility charges to the carrier file.49 As a concrete example, consider a patient visiting
an Emergency Room for a broken leg. She is treated by a physician and has an x-ray. The ER
physician will file a carrier claim for the physician care, the radiologist will file a carrier claim for
the x-ray, and the hospital will file an outpatient claim for the x-ray machinery and facilities.

In the inpatient and outpatient files, we observe up to three physicians for each claim—attending,
operating, and other. According to the Medicare Claims Processing Manual,50 the attending physi-
cian “is the individual who has overall responsibility for the patient’s medical care and treatment
reported in this claim/encounter,” and the operating physician—which is only filled in if there is a
surgical procedure listed on the claim—is the “individual with the primary responsibility for per-
forming the surgical procedure(s).” Practically speaking, therefore, although over 99.9 percent of
claims have an attending physician, about 80 percent of outpatient claims and 40 percent of inpa-
tient claims are missing an operating physician (the “other” physician is also frequently missing).
Thus, we assign the attending physician to each claim.

In the carrier files, we observe both a performing physician and a referring physician. The
performing physician is rarely missing, but the referring physician is missing on about 15 percent
of claims. The carrier files include claims for many different types of services, and whether the
performing or referring physician is the one who “decided” on the treatment likely varies across
these different types of services. For example, for an office visit with a primary care physician
(PCP) or a specialist, we suspect that the performing physician has considerable discretion over

49See https://resdac.org/videos/using-carrier-and-outpatient-files and https://healthcaredelivery.cancer.gov/seermedicare/medicare/claims.html.
50See https://www.cms.gov/Regulations-and-Guidance/Guidance/Manuals/Downloads/clm104c25.pdf; down-

loaded on 03/08/2022.
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treatment decisions. However, for other services such as an MRI or an electrocardiogram, the
decision to get this service was likely made by the referring physician, while the physician who
actually “performs” is merely implementing, with little if any discretion. Naturally, other cases
may fall somewhere in between these extremes.

To get a better sense of this, we categorize carrier file services using Berenson-Eggers Type
of Service (BETOS) codes, which divide claim lines into seven groups: Evaluation and Man-
agement (E&M),51 Procedures, Imaging, Tests, Durable Medical Equipment, Other, and Excep-
tions/Unclassified.52 Claims for ambulance services also appear in the carrier files, but we exclude
these from our data and analysis. Table A1 displays carrier claims summary statistics by BETOS
code groups. Panel A indicates that about 40 percent of carrier utilization is related to E&M ser-
vices and about 30 percent is related to procedures. 20 percent of utilization is related to testing or
imaging, and the remaining 10 percent is related to other services.

Table A1 Panel B displays, by BETOS group, the share of claims in which (i) the performing
and referring physicians match, (ii) the referring physician is different from the performing (but
not missing), (iii) only the referring physician is missing, (iv) only the performing physician is
missing and (v) both referring and performing physician are missing. For our baseline analysis,
we assign the performing physician for E&M codes, and use the referring physician for all other
codes, unless it is missing, in which case we assign the performing physician (who is virtually
never missing). As seen in Table A1, the referring physician is almost never missing for testing
and imaging claims, but is missing for about 15 percent of procedure claims. If both performing
and referring physicians are missing, we assign a missing physician ID unique by HRR; these
missing physician IDs account for only 0.29 percent of utilization.

This approach is relatively clear cut for testing and imaging claims and for Evaluation and
Management (E&M claims) which together make up about three-fifths of utilization. For testing
and imaging, the referring physician is missing in less than 0.5 percent of claims, and the referring
physician differs from the performing physician in 70 to 80 percent of claims. Moreover, over
half of testing claims are “performed” by physicians with a clinical laboratory specialty code (not
shown). This suggests that these services are performed by providers with little discretion, at
the request of the referring physician. By comparison, for E&M claims, in about 20 percent of
claims the referring physician is missing, and in another 40 percent the referring physician and the
performing physician are the same; this suggests that performing physicians for E&M claims often
have significant discretion in treatment.

There is more ambiguity regarding the appropriate physician assignment when the BETOS
group is for procedures (which are about 30 percent of utilization) or other (about 10 percent).
To see this, consider two procedures we observe in the data: anesthesia and pacemaker insertion.
For anesthesia claims, it is reasonable to assume that the referring physician (who is typically the
surgeon performing the surgery) is responsible for treatment decisions, instead of the anesthetist
that administers the anesthesia. However, for pacemaker insertions, we see that PCPs often re-
fer patients to cardiologists. In these cases, there is more ambiguity in which physician is most
responsible for treatment decision—the PCP who referred for pacemaker or the cardiologist who
performs the insertion. In practice, we would attribute the pacemaker utilization to the PCP.

51E&M BETOS code services include office visits, hospital visits, ER visits, nursing home visits and specialist
consultations.

52For a full list of BETOS codes, see https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-
Trends-and-Reports/MedicareFeeforSvcPartsAB/downloads/BETOSDescCodes.pdf.
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Note that, in this baseline definition, if a PCP refers a patient for testing, the tests will be
assigned to the PCP. But if a PCP refers a specialist for an E&M visit, that specialist care will
be assigned to the specialist. This makes sense as the specialist likely has considerable discretion
at this point. However, one way that a PCP can be a “high utilization” PCP is by having a high
propensity to refer to a specialist, or to refer to high intensity specialists, and this will not be
attributed to the PCP in our baseline approach.

Identifying Physician Movers and Physician Location

In each year, we begin by defining a physician’s potential location(s) as any HRR in which a
patient with whom they have an encounter resides (see the previous subsection for how we assign
physicians to patient claims). Note that because physicians may treat patients residing in different
HRRs in a given year, they may have multiple potential locations in a given year. We define
a physician to be a mover if they exhibit exactly one clear shift in location during our sample.
Our objective is to define movers as physicians who can be reliably traced to an origin HRR
and subsequently traced to a destination HRR, with a clear shift in utilization between these two
locations at some point in time. Furthermore, our mover algorithm is designed to err on the side
of false negatives, to increase our confidence that any physician whom we label a mover is very
likely to be one.

Physician Movers We begin by restricting our attention to physicians who are mainly located in
exactly two HRRs over time. For each physician-year, we define their “focal HRR” as the HRR
that accounts for over 75 percent of the physician’s encounters that year. If no HRR accounts for
at least 75 percent of encounters, no focal HRR is assigned to that physician-year. Our initial step
is to restrict the set of potential movers to physicians with exactly two focal HRRs between 1998
and 2013.

The next step is to ensure that each potential mover is initially located in the origin HRR and
then moved to the destination HRR, without moving back to the origin. To do so, let a “focal HRR
event” be the range of years in which an HRR is assigned as the focal HRR for a given physician.
We restrict to physicians whose two focal HRR events do not overlap—that is, the last year of
one focal HRR event must come before the first year of the other focal HRR event. The HRRs
associated with the first and second focal events (in calendar time) are considered the origin and
destination HRRs, respectively.

Given the origin and destination focal HRR events, we can determine the move year. Let tpre
be the last year in which the origin HRR is the focal HRR, and let tpost be the first year in which
the destination HRR is the focal HRR. In the set of years between (and including) tpre and tpost ,
our objective is to set the move year as the year in which the physician provided care most evenly
across origin and destination. Hence we define the move year as the year in which the number
of encounters in the destination, as a share of the number of encounters in both the origin and
destination, is closest to 50 percent. Ties are broken by assigning the move year to the latest
year,53 and the move year is assigned relative year 0.

53Ties are decided this way because most of them consist of total utilization in the origin HRR in tpre and total
utilization in the destination HRR in tpost = tpre +1.
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As a last step, we try to ensure that movers are clearly settled in the origin and destination
HRRs before and after the move, respectively. To do so, we restrict to physicians with more than
50 percent of encounters associated with the origin in each of the final four pre-move years, or
starting from when the physician is first observed if the physician enters the sample three or fewer
years before the move year. Similarly, we restrict to physicians with more than 50 percent of
encounters associated with the destination in each of the first four post-move years, or until the
physician is last observed.54 We also restrict to physicians that, in the move year, had at least 75
percent of their encounters in either the origin or destination HRR.

Overall, this algorithm designates movers as physicians that (1) are reliably settled in the origin
HRR for at least four years before moving, (2) move to the destination HRR, (3) are reliably settled
in the destination for at least four years, and (4) do not subsequently move to any other HRR
(including moving back to the origin). Figure A8 displays the average share of encounters a mover
physician has in the origin HRR (Panel A) and in the destination HRR (Panel B), by relative year.
It confirms that movers are well-anchored in the origin and in the destination in the pre-move and
post-move years, respectively.

Physician Locations Any physician who is not a mover is a non-mover. We restrict each physi-
cian to have only one location in each year (unless it is a mover physician in their mover year).
To accomplish this, we assign a separate physician ID to each non-mover physician-HRR combi-
nation. For movers, we assign a single physician ID for all encounters in the origin HRR during
pre-move years, in origin and destination HRRs during the move year, and in the destination HRR
during post-move years. Other encounters are assigned a separate, physician-HRR specific physi-
cian ID. These encounters occur either (i) in an HRR other than the origin or destination, (ii) in
the destination HRR before the physician moved, or (iii) in the origin HRR after the physician
moved.55

Assigning Physician Specialties

To determine a physician’s specialty, we use Health Care Finance Administration (HCFA) codes,
which are present for each claim in the carrier file. Specifically, we first assign each claim in the
carrier files to the performing physician. Next, we proceed as follows:

1. Drop all claims filed under “non-physician” specialty codes, such as “clinical laboratory”.56

2. Following Fadlon and Van Parys (2020), classify all claims filed under HCFA codes for
(i) general practice, (ii) family practice, or (iii) internal medicine as belonging to the same
specialty, which we define to be the PCP specialty.

54Physicians that are not observed in one of the pre-move or post-move years (after entering and before leaving the
sample) are assigned as non-movers, since we cannot confidently anchor them in the origin or destination HRRs.

55Note that since each patient-physician match constitutes a single encounter per year, the encounter “occurs”
where the patient lives that year.

56The full list of non-physician specialty codes is as follows: hospice and palliative care, mammography, indepen-
dent diagnostic testing facility, ambulatory surgical center, other medical supply company, medical supply company
with registered pharmacist, ambulance service, public health or welfare agency, voluntary health or charitable agency,
portable X-ray supplier, clinical laboratory, single or multi-specialty clinic or group practice, mass immunization
roster, radiation therapy center, slide preparation facilities, all other suppliers, unknown provider, unknown supplier,
unknown physician specialty, hospital, pharmacy, and centralized flu clinic.
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3. Determine which specialty code (or group of specialty codes, in the case of the PCP spe-
cialty) is responsible for the plurality of each physician’s claim amounts. This is defined to
be the physician’s specialty.

4. If any physicians only filed claims under a “non-physician” specialty code, they are assigned
a single catch-all specialty. This would be assigned, for example, to a physician who only
files claims under the HCFA code for “clinical laboratory” as well as a physician who only
files claims under the HCFA code for “mass immunization roster”. This “non-physician”
specialty accounts for just 0.27 percent of total utilization.

5. Finally, if a physician is only present in the inpatient and/or outpatient files and not in the
carrier files, they are assigned a “missing” specialty (since this assignment algorithm is based
on carrier file claims only). This “missing” specialty code accounts for 1.15 percent of total
utilization.

This results in a unique specialty for every physician in the sample.

Assigning Additional Physician Demographics From the AMA Masterfile

To get additional demographic information on physicians—in particular, age, gender, and years of
experience—we use the American Medical Association (AMA) Physician Masterfile. The AMA
Masterfile aims to be a census of all allopathic and ostheopathic physicians in the US, including
both AMA members and non-members, going back to 1906. Information for the Masterfile comes
from a variety of primary sources, including medical schools, post-graduate medical programs,
state licensing agencies, state and federal disciplinary actions, the Educational Commission for
Foreign Medical Graduates, the American Board of Medical Specialties, the Federal Drug En-
forcement Administration, and post-graduate surveys of individual physicians. The institutions
involved in the data collection effort provide all relevant information directly to the AMA.57 As a
result, the Masterfile is considered to be a near-census of physicians in the US and is frequently
used in designing sampling frames for physician surveys (DesRoches et al. 2015). At the end of
each year, the Masterfile is “frozen” so as to provide a historical snapshot of US physicians in that
year (Kletke et al. 2000).

We match the 2014 AMA Masterfile records to our baseline analysis sample based on physician
identifiers as defined in Section A.2. Our baseline sample consists of about 1.7 million physicians
(Table 1). We match 43 percent of them (about 726,000) to their records in the AMA Masterfile.

Table A4 presents summary statistics on this matched sample. It shows that mover physicians
tend to be, on average, younger and more likely to be female. We measure age and experience at
the year of the move for mover physicians and a randomly generated “move” year for non-movers,
where the “move” years for non-movers are sampled, so as to preserve the probability distribution
of move years for movers.

There are two reasons why we are sometimes unable to match physicians in our baseline file
to their corresponding AMA data. First, 51 of the physicians in our baseline sample have neither
NPIs nor UPINs that can be found in the AMA Masterfile. These “no-match” physicians are

57Information based on the AMA’s own description is available at https://www.ama-assn.org/about/masterfile/ama-
physician-masterfile.
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likely a combination of a few disparate groups. First, our baseline sample likely includes non-
physician medical providers, e.g. nurse practitioners, anaesthesiologists, and institutions with their
own NPI or UPIN. These entities are not part of the Masterfile, but appear in the claims data.
Second, the “no-match” physicians likely include some mistakenly entered NPIs and UPINs. For
instance, while the median physician in our analysis sample is observed for five years, the median
for the “no-match physicians” is 3 years, with 28 percent appearing for a single year. This strongly
suggests that many of the identifiers among the “no-match” physicians are used infrequently or
even sporadically, so some of them may be mistakenly entered. Also, the “no-match” physicians
likely include some physicians who are not included in the Masterfile. For instance, previous
studies comparing various US physician databases have found that the Masterfile includes a very
high, but not complete fraction of the physicians identified in other databases (e.g. the CMS’s
National Provider Enumeration System) (DesRoches et al. 2015; White et al. 2020).

Benchmarking our Implied Aggregate Statistics on Physicians

We compare the number of physicians and their annual spending in our data against public infor-
mation on Medicare spending patterns (Appendix Table A13). Specifically, we compare estimates
in our data from 2013 against roughly comparable information on physicians in Medicare in 2013
published by the Medicare Payment Advisory Commission (MedPAC) and the U.S Department of
Human and Health Services (HHS).58

In our data, average annual physician spending in 2013 is approximately $219,000. This av-
erage reflects total annual physician spending of $204 billion and a total number of physicians of
around 930 thousand. The published Medicare report shows slightly lower average annual physi-
cian spending of $209,500, with a higher total annual physician spending of $257 billion partly
offset by a higher number of physicians (of around 1.2 million). The higher total annual physician
spending figure and lower physician count in our data likely stem from our patient sample restric-
tions (e.g. the age-based restrictions, the exclusion of patients who move multiple times or who do
not experience a clear shift in claims upon move, and other restrictions described in Section 3.2).

Given the complexity of our data construction procedure and the closeness of the estimates
reported in the two columns of Table A13, we take these numbers as evidence that the physician
spending measure we obtain is reasonable and consistent with external sources.

B Econometric Appendix

B.1 Derivation of the Parametric Encounter Quantity and Per-Encounter
Utilization Models in Section 4.1

We can derive our Poisson specification for the number of physician encounters per patient-year
in equation (4) from an underlying model of the stochastic process that determines a patient’s
number of health shocks nit and the latent severity of each shock ψikt . Specifically, we model
the number of health shocks nit that patient i receives in year t as a Poisson random variable:

58Specifically, we benchmark our estimates against the statistics in Medicare Payment Advisory Comission (2021)
and U.S. Department of Health and Human Services (HHS) (2014), which contain information on overall spending on
physician fees and number of physicians billing Medicare fee-for-service claims in 2013.
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nit | xit , j(it)∼Poisson(exp(αn
i + x′itβ

n)), with an arrival rate that depends on a patient-specific time
invariant effect αn

i and a set of time-varying patient observables xit . We next model the severity of
each shock as ψikt = ᾰi+x′it β̆ +ζikt , with a patient component that again includes a fixed effect ᾰi
and the time-varying controls, and assume the residual satisfies ζikt | xit , j(it) ∼ exp(1). The total
number of encounters Nit = ∑

nit
k=1 1[ψikt > γ̆it ] is then conditionally distributed as a Poisson random

variable, with mean

E[Nit | xit , j(it)] = exp
(

α
N
i + γ

N
j(it)+ τ

N
t + x′itβ

N
)

(13)

for αN
i = ᾰi +αn

i , γN
j =−γ̆ j, and β N = β̆ +β n.

Likewise, we can derive the per-encounter utilization model in equation (5) by assuming that
the sum of patient health and the physician cost of providing care (i.e. hidt + gidt in the model
of per-encounter utilization in equation (1)) can be forecasted by a time effect, a patient effect, a
place effect, and sets of time-varying patient and physician observables xit and wdt given encounter
locations. That is, we define ξidt ≡ hidt + gidt and assume E [ξidt |x,w, j(it),Didt = 1] = τ̇t + α̇i +
γ̇ j(it)+ x′it β̇ +w′

dt φ̇ . This implies that we can express utilization yidt among realized encounters
(with Didt = 1) as

yidt = αi + τt + x′itβ︸ ︷︷ ︸
≡α̃it

+δd +w′
dtφ︸ ︷︷ ︸

≡δ̃dt

+ γj(it)︸︷︷︸
≡γ̃j(it)

+εidt , (14)

with E[εidt | x,w, j(it),Didt = 1] = 0, where αi = ai + α̇i, τt = τ̇t , γ j = c j + γ̇ j, β = β̇ , and φ = φ̇ .
Note that α̇i and x′it β̇ can be arbitrarily correlated with the corresponding components of shock
severity, ᾰi and x′it β̆ .

B.2 Mover Identification of the Poisson Encounter Model
This appendix shows how the Poisson fixed effects model identifies causal effects under a “com-
mon growth rates” assumption, similar to the common trends assumption identifying effects in
linear regression models. Suppose

yit ∼ Poisson(λit) (15)

where lnλit = x′itβ . Suppose t ∈ {0,1} and x′itβ = αi + τTit + γDit , for binary Dit and where
Tit = 1{t = 1}. Let ci = ∑t yit . Following Hausman et al. (1984), the population log-likelihood
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first-order condition for τ and γ can be written

0 =E
[

ci ∑
t

[
Tit
Dit

](
yit

ci
− exp(τ∗Tit + γ∗Dit)

∑s exp(τ∗Tis + γ∗Dis)

)]
=

∞

∑
c=1

cpcE
[
∑
t

[
Tit
Dit

](
yit

∑t yit
− exp(τ∗Tit + γ∗Dit)

∑s exp(τ∗Tis + γ∗Dis)

)
| ci = c

]

=
∞

∑
c=1

cpc

p0→1|c

(
S1

0→1,c −
exp(τ∗)

1+exp(τ∗+γ∗)

)
+ p1→0|c

(
S0

1→0,c −
exp(γ∗)

exp(τ∗)+exp(γ∗)

)
p0→0|c

(
S1

0→0,c −
exp(τ∗)

1+exp(τ∗)

)
+ p0→1|c

(
S1

0→1,c −
exp(τ∗+γ∗)

1+exp(τ∗+γ∗)

)  (16)

+
∞

∑
c=1

cpc

p1→1|c

(
S0

1→1,c −
exp(γ∗)

exp(γ∗)+exp(τ∗+γ∗)

)
+ p1→1|c

(
S1

1→1,c −
exp(τ∗+γ∗)

exp(γ∗)+exp(τ∗+γ∗)

)
p1→0|c

(
S1

1→0,c −
exp(τ∗)

exp(τ∗)+exp(γ∗)

)
+ p1→1|c

(
S1

1→1,c −
exp(τ∗+γ∗)

exp(β ∗)+exp(τ∗+γ∗)

)  ,
where pc = Pr(ci = c), p j→k,c = Pr(Di0 = j,Di1 = k | ci = c), and

St
j→k,c = E

[yit

c
| Di0 = j,Di1 = k,ci = c

]
. (17)

First suppose, as in a canonical difference-in-differences setting, that all individuals are un-
treated in period t = 0 and some individuals switch into treatment in period t = 1. Then equation
(16) simplifies to

0 =

 ∑
∞
c=1 cpc p0→1|c

(
S1

0→1,c −
exp(τ∗)

1+exp(τ∗+γ∗)

)
∑

∞
c=1 cpc p0→0|c

(
S1

0→0,c −
exp(τ∗)

1+exp(τ∗)

)
+∑

∞
c=1 cpc p0→1|c

(
S1

0→1,c −
exp(τ∗+γ∗)

1+exp(τ∗+γ∗)

) . (18)

Note that ∑
∞
c=1 cpc p0→1|cS1

0→1,c = E[yi1 | Di1 = 1], ∑
∞
c=1 cpc p0→0|cS1

0→0,c = E[yi1 | Di0 = 1], and

∞

∑
c=1

cpc p0→1|c = Pr(Di1 = 1) = 1−Pr(Di1 = 0) = 1−
∞

∑
c=1

cpc p0→0|c. (19)

Solving out for the estimands thus yields

τ
∗ = ln

(
E[yi1 | Di1 = 0]
E[yi0 | Di1 = 0]

)
(20)

γ
∗ = ln

(
E[yi1 | Di1 = 1]
E[yi0 | Di1 = 1]

)
− ln

(
E[yi1 | Di1 = 0]
E[yi0 | Di1 = 0]

)
. (21)

The treatment coefficient γ∗ is the difference in log growth rates among those treated and untreated
in period 1. Let yit(0) and yit(1) denote untreated and treated potential outcomes of individual i in
time t, respectively, and consider an assumption of common log growth rates:

E[yi1(0) | Di1 = 1]
E[yi0(0) | Di1 = 1]

=
E[yi1(0) | Di1 = 0]
E[yi0(0) | Di1 = 0]

. (22)

63



Under this assumption, we have

γ
∗ = ln

(
E[yi1(1) | Di1 = 1]
E[yi1(0) | Di1 = 1]

)
. (23)

This shows that in the simple difference-in-differences setting, the Poisson fixed effect regression
identifies the log percentage effect of treatment on the treated under common log growth rates.

A similar result holds for the simplest mover design, in which individuals either switch out of
or into treatment in t = 1. Specifically, it can be shown that the treatment coefficient satisfying
equation (16) simplifies in this case to

γ
∗ =

1
2

(
ln
(

E[yi1 | Di1 = 1]
E[yi0 | Di1 = 1]

)
− ln

(
E[yi1 | Di0 = 1]
E[yi0 | Di0 = 1]

))
. (24)

Thus, under the same common log growth rate assumption as above,

γ
∗ =

1
2

(
ln
(

E[yi1(1) | Di1 = 1]
E[yi0(0) | Di1 = 1]

)
− ln

(
E[yi1(0) | Di0 = 1]
E[yi0(1) | Di0 = 1]

))
=

1
2

(
ln
(

E[yi1(1) | Di1 = 1]
E[yi0(0) | Di1 = 1]

)
− ln

(
E[yi1(0) | Di1 = 1]
E[yi0(0) | Di1 = 1]

))
+

1
2

(
ln
(

E[yi1(0) | Di0 = 1]
E[yi0(0) | Di0 = 1]

)
− ln

(
E[yi1(0) | Di0 = 1]
E[yi0(1) | Di0 = 1]

))
=

1
2

(
ln
(

E[yi1(1) | Di1 = 1]
E[yi1(0) | Di1 = 1]

)
+ ln

(
E[yi0(1) | Di0 = 1]
E[yi0(0) | Di0 = 1]

))
(25)

which is the average log percentage treatment-on-the-treated effect across the two time periods.

B.3 Decomposition of Geographic Variation
This appendix formalizes our counterfactual analysis of how differences in average annual log
patient utilization in each HRR, as represented in equation (10), change as we equalize the various
underlying sources of utilization differences. This analysis proceeds in seven incremental steps:
first by shutting down patient-physician selection and then exploring sequentially the effect of
eliminating variation due to physicians, patients, and the practice environment.

Our first counterfactual sets σ̄ j = 0:

ȳ(1)j = p j(ᾱ j + γ j +N j + δ̄ j) (26)

The regional distribution of this quantity captures how the geographic distribution of healthcare
utilization would change if there were no systematic differences in the allocation of patient en-
counters to physicians with different practice intensities, holding fixed the number of physicians
each patient sees and the set of patients and physicians in each region.

We then remove regional variation in average physician intensity due to different physician
practice styles within the same specialty by setting δ̄ j to the average value of δ̄ S

it across HRRs δ̄ S
j ,
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where δ̄ S
it is defined as:

δ̄
S
it = E

ln

 1
Nit

∑
d∈D∗S(N1

it ,...,N
S
it)

exp(δd +w′
dtβ + εidt


where D∗S(n1, ...,nS) gives a random set of physicians drawn from the entire country consisting of
ns physicians from each specialty s = 1, ...,S, and Ns

it denotes the number of physicians in specialty
s that individual i sees in year t. The regional distribution of

ȳ(2)j = p j(ᾱ j + γ j +N j + δ̄
S
j ) (27)

captures how the geographic distribution of healthcare utilization would change if there were no
systematic differences in the average within-specialty physician practice styles across regions.

The next counterfactual eliminates differential practice intensity variation of physicians across
specialties. Define

δ̄
U
it = E

[
ln

(
1

Nit
∑

d∈D∗(Nit)

exp(δd +w′
dtβ + εidt

)]
where D∗(n) gives a random set of n physicians drawn from the entire country and Nit denotes
the number of physicians individual i sees in year t. Letting δ̄U be the average of δ̄U

it across all
patient-years in the sample, write

ȳ(3)j = p j(ᾱ j + γ j +N j + δ̄
U). (28)

The difference between ȳ(3)j and ȳ(2)j captures how much utilization differences across regions are
affected by the sorting of physicians of different specialties across regions.

The next two counterfactuals eliminate regional variation due to patients:

ȳ(4)j = p j(ᾱ + γ j +N j + δ̄
U) (29)

ȳ(5)j = p̈ j(ᾱ + γ j + N̈ j + δ̄
U). (30)

Here ȳ(4) sets ᾱ j to its average ᾱ , thus eliminating regional variation due to patient effects on
utilization per encounter. ȳ(5)j leverages the encounter model (equation (4)) to eliminate regional
variation coming from patient effects on the number of encounters. Specifically we define, in
contrast to p j,

p̈ j = 1−E[exp(−α
N
i − γ

N
j − x′itβ

N)], (31)

where here E[·] is understood as averaging over all individuals. Thus p̈ j captures the share of
individuals with any healthcare utilization in region j, given a random geographic reallocation
of patients. This is a known function of the encounter model parameters αN

i , γN
j , and β N . We

similarly define N̈ j as the average log number of physicians seen in region j, when non-zero, under
random patient reallocation.

Following these four counterfactuals, the only regional variation left is that due to practice
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environment effects on utilization per encounter and number of encounters. We separate these two
factors through our final counterfactual, which sets γ j to its regional average γ̄:

ȳ(6)j = p̈ j(ᾱ + γ̄ + N̈ j + δ̄
U) (32)

The only regional variation in ȳ(6)j is due to practice environment effects on the number of physi-
cians seen, via p̈ j and N̈ j (which we then eliminate in a final step, y(7)). Taken together, ȳ j and
ȳ(1)j − ȳ(6)j thus provide a full accounting of the partial equilibrium role that each of the primary
factors of interest (physicians, practice environment, and patients) play in the geographic variation
in utilization.

The results from the counterfactual calculations are naturally not invariant to the order in which
the steps are performed. In Section C.3 below, we show that our results are robust to different
orderings of these steps.

B.4 Alternative Decomposition of Geographic Variation
This appendix formalizes an alternative counterfactual analysis of how differences in average an-
nual log patient utilization in each HRR, as represented in equation (10), change as we equalize the
various underlying sources of utilization differences. Each object is defined as in Appendix B.3.
The key departure from our baseline analysis is that we now label the practice environment effect
on the number of encounters as part of the physician component.

The first step of the decomposition is the same: starting with the average annual log patient
utilization ȳ j in each HRR, we equalize the effect of selection by setting σ̄ j = 0:

ȳ(1)j = p j
(
ᾱ j + γ j + N̄ j + δ̄ j

)
(33)

Note, however, that it no longer makes sense to decompose the effects of physicians, patients, and
then the practice environment if we want to count the practice environment effect on the number
of encounters as part of the physician role. Instead, we first equalize the effect of patients on the
utilization per encounter by setting ᾱ j to its average ᾱ:

ȳ(2)j = p j
(
ᾱ + γ j + N̄ j + δ̄ j

)
(34)

Next, we equalize the patient effect on the number of encounters by replacing p j and N̄ j with p̈ j
and N̈ j, respectively:

ȳ(3)j = p̈ j
(
ᾱ + γ j + N̈ j + δ̄ j

)
(35)

We then find the within-specialty physician effect on utilization by simultaneously equalizing the
within-specialty physician effect on utilization per encounter by setting δ̄ j to δ̄ S

j and the practice
environment effect on the number of encounters by setting p̈ j and N̈ j to their respective averages
p̄ and N̄:

ȳ(4)j = p̄
(

ᾱ + γ j + N̄ + δ̄
S
j

)
(36)

Next, we compute the between-specialty physician effect on utilization per encounter by setting
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δ̄ S
j to δ̄U :

ȳ(5)j = p̄
(
ᾱ + γ j + N̄ + δ̄

U) (37)

Lastly, we equalize the practice environment effect on utilization per encounter by setting γ j to its
average across HRRs, γ̄:

ȳ(6)j = p̄
(
ᾱ + γ̄ + N̄ + δ̄

U) (38)

Comparing ȳ(5)j to ȳ(3)j gives the role of physicians if we count what was originally the practice
environment effect on the number of encounters toward the physician effect. The results of this
exercise are displayed in Table A7. Compared to the original decomposition in Table 5, the results
are intuitive: the role of patients is about the same, while the role of physicians jumps from 35%
to 68%—the approximate result if we added the original physician effect (35%) to the practice
environment effect on the encounter margin (32%). The practice environment share is now negative
20%, consistent with the original practice environment effect on utilization per encounter.

B.5 Event Study Decomposition
This appendix first shows how the event studies estimated in Section 3.3 can be derived from
restricted versions of the model in Section 2. We then present a more general event study repre-
sentation obtained from estimates of the model components.

We derive equation (2) under the assumption that the final two terms in our patient-level uti-
lization model (equation (6)) are additively separable in patient and practice environment effects;
i.e., that

lnNit + ln

(
1
N ∑

d∈Dit

exp
(
δd +w′

dtφ + εidt
))

= α i + γ
D
j
+η

P
it (39)

where ηP
it is a mean-zero residual. Note that then equation (6) for patient movers can be rewritten

yit = α
P
i + τ

P
t +

(
1[r(i, t)> 0]SP

i
)

∆
P
i + x′itβ

P +ρ
P
r(i,t)+η

P
it , (40)

where, with o(i) and d(i) indexing the origin and destination HRR of patient i, respectively, we
define αP

i = αi +α i + γo(i), τP
t = τt , and SP

i = (γd(i)+ γ
d(i)

− (γo(i)+ γ
o(i)

))/∆P
i . This SP

i denotes
the share of the observed difference in utilization between a patient mover’s destination and origin
HRR both due to the practice environment effects γ j and the component of doctor-driven utilization
due to practice environment, γD

j
. Equation (40) shows that the patient event study jump estimated

in Section 3.3 captures an average of this SP
i share under the restriction (equation (39)). We also

explicitly include the main relative-year effects ρP
(i,t) in the equation above by splitting it off from

the vector of time-varying patient observables xit for the purpose of clarity.
A similar restriction motivates the physician event study regression (equation (3)). Aggregating

the model of utilization for each physician in each year, we obtain

ydt =δd + τt + γj(d,t)+w′
dtφ + lnNdt + ln

(
1

Ndt
∑

i∈Pdt

exp
(
αd + x′itβ + εidt

))
. (41)

Suppose the final term of this expression is additively separable in physician and practice environ-
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ment effects; i.e., that

ln

(
1

Ndt
∑

i∈Pdt

exp
(
αd + x′itβ + εidt

))
= δ d + γ

P
j
+η

D
dt (42)

where ηD
dt is again a mean-zero residual. Now, we obtain for physician movers

ydt − lnNdt = α
D
d + τ

D
t +

(
1[r(i, t)> 0]SD

d
)

∆
D
d +ρ

D
r(d,t)+η

D
dt , (43)

where, with o(d) and d(d) indexing the origin and destination HRR of doctor d, respectively, we
define αD

d = δd +δ d +γo(d), τD
t = τt , and SD

d = (γd(d)+γ
d(d)

−(γo(d)+γ
o(d)

))/∆D
d . This SD

d denotes
the share of the observed differences in utilization between a physician mover’s destination and
origin HRR due to both the practice environment effects γ j and the component of patient-driven
utilization due to practice environment γP

j
. Equation (43) shows that the doctor event study jump

estimated in Section 3.3 captures an average of this SP
i share under the restriction in equation (42).

We again explicitly re-label the main relative-year effects ρD
r(d,t) from wdt in the specification above

for the purpose of clarity.

B.6 Full Event Study Decomposition
This appendix derives an enriched event study decomposition of the different drivers of geographic
variation in patient healthcare utilization, which does not leverage the restriction in Appendix B.5.

Consider equation (9). Note that lnNit is directly observed and that δ it and σit may be estimated
by first-step estimates of the physician-level parameters δd and φ and an assumption on the dis-
tribution of residual utilization variation εidt (for example, that εidt is iid given (x,w, j)). Then, by
subtracting estimates of lnNit +δ it +σit from observed utilization yit , we obtain a model like equa-
tion (40) which does not impose the restriction in equation (39). In particular, this suggests that a
patient-level event study using this adjusted yit − (lnNit + δ it +σit) as an outcome may capture a
weighted average of practice environment effect shares SP∗

i = (γd(i)− γo(i))/∆P
i , by taking into ac-

count the potentially non-additive predicted change in physician availability, sorting, and number
of encounters. The difference between this adjusted event study and the motivating patient-level
event study in Figure 3 can furthermore be evaluated by performing event studies on each of the
subtracted components lnNit , δ it , and σit . These auxiliary event studies replace yit in equation (2)
with each of these components, with the sum of event study coefficients θr across specifications
equaling, by construction, the difference between the adjusted and original event study jumps. A
large event study jump in a regression of δ it would, for example, suggest that a sizable proportion
of the aggregate event study jump in Figure 3 is due to differences in the availability of physicians
with different utilization effects across different HRRs. Similarly, event study jumps in lnNit or
σit would suggest that some of the aggregate event study jump in Figure 3 arises from systematic
differences in the number of encounters or matching of patients to physicians across HRRs.

We use the parameters from our encounter-level estimation to perform this decomposition.
We first form simulation-based estimates of the average physician utilization and selection terms
δ it and σit .59 We then use these estimates as components in estimating the enriched event study

59Specifically, for each patient and year, we take a random draw of physicians from her HRR with the number
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decomposition (equation 40).60

The results from this event study decomposition are presented in Appendix Figure A5. In
Panel A, we reproduce the patient-level event study using adjusted annual log utilization yit −
(lnNit +δ it +σit) as the outcome. As discussed above, the height of the resulting event study jump
estimates a weighted average of the share of practice environment effects in average log utilization
differences, net of any potential contribution of physicians to geographic utilization differences.
The figure shows that netting out the contribution of physicians to annual utilization differences
alters the event study substantially. While the unadjusted event study shows that the place share
including physician utilization differences is around 50 percent (Figure (3), Panel A) netting out
the contribution of physicians decreases the estimated jump to around 10 percent (Appendix Figure
A5, Panel A), which is very similar to the estimated role of the practice environment in Table 5.

Panels B-C of Appendix Figure A5 decompose the 40 percentage point difference in the size
of the jump between the simple patient-level event study in Figure 3 (Panel A) and the enriched
analysis in Panel A of Appendix Figure A5. Around half of this difference in the event study jump
is due to an effect on the increased number of physicians seen (Panel B), with the half due to more
intense practice of the available physician stock (Panel C). The event study on the residual selection
term σit (Panel D) is flat, suggesting that none of the variation in utilization across HRRs is due to
the differential sorting of patients to physicians with different demand and practice intensities.

of physicians equaling her actual number of encounters for this patient and year. We use these simulated encounters
averaged over 100 random draws to form estimates of δ it and σit .

60For the 6 percent of patient-years that have no utilization, we set δ it and σit equal to 0 since there is no actual
patient-physician encounter.
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C Robustness Analysis

C.1 Physicians Practicing in Multiple HRRs
This appendix investigates the sensitivity of our findings to how we handle physicians who practice
in multiple HRRs. As described in our sample construction procedure, we assign a separate physi-
cian ID to each physician-HRR combination for physician non-movers, and for physician-movers
for utilization outside of either their origin or their destination. Since this procedure creates mul-
tiple fixed effects for each physician in the sample, a natural concern is that the high degree of
variation in physician practice intensities we find, as well as our estimates of its contribution to
geographic variation in utilization, are driven by this fragmentation.

To evaluate the impact of physician fragmentation, we divide physician-HRR combinations
into “primary” and “non-primary” categories each year (where the primary HRR is the one where
the physician sees the majority of her patients that year) and perform separate utilization decom-
positions by these groups. Reassuringly, we find that physician utilization in the primary HRR
accounts for almost all of the difference in utilization across HRRs. Thus, unsurprisingly, we find
broadly similar shares of the utilization differences attributed to physicians, patients, and places in
the subsample of primary HRR utilization as in our main analysis.

Primary and Non-Primary HRRs

We define a physician’s primary HRR in a given year as the HRR from which she sees the most
patients (with ties broken by total utilization in that HRR-year). Any other HRR from which she
sees patients is considered non-primary. We expect that a physician’s primary HRR is the HRR
where she is most likely to reside and to see the majority of her patients. A non-primary HRR
is likely to arise from a combination of factors such as data entry errors, lags in updating patient
address information, and patients crossing HRR boundaries to seek care.

While fragmentation is relatively common, most utilization occurs in a physician’s primary
HRR. As noted above, we have 1.7 million original physicians in our sample (defined by a com-
bination of UPIN and NPI identifiers). HRR-based fragmentation results in 8 million estimated
physician IDs in our empirical analysis. About 66 percent of the original 1.7 million physicians
are “fragmented” (i.e. are non-movers who see a patient from more than one HRR in some year)
due to our sample construction procedure. The average physician among the original 1.7 million
has 80 percent and 82 percent of her annual patients and utilization, respectively, in her primary
HRR for that year.61

Decomposition of Differences in Primary HRR Utilization

Our fragmentation procedure could present a problem for our analysis if it induces a correlation
between the independent variables in our per-encounter utilization regression and the unobserved
component of per-encounter utilization. For instance, if a physician’s encounters with patients from
high-utilization HRRs tend to occur when the unobserved utilization shock for those encounters is
also high, our procedure would create additional high-utilization physician IDs and the contribution

61For the purposes of our analysis, we assign the unique HRR in which we observe the remaining 34 percent of the
original 1.7 million physicians as their primary HRR.
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of physicians to cross-HRR variation in utilization would be overestimated. If, on the other hand,
fragmentation occurs largely due to, e.g., data entry errors, this would tend to create physician IDs
roughly equivalent to the primary ID whose distribution is orthogonal to cross-HRR utilization
patterns, and whose influence on our counterfactual results should be negligible.

To evaluate these possibilities, we conduct a robustness check which repeats our decomposition
of per-encounter utilization just on encounters in primary HRRs. Specifically, we first estimate a
version of the encounter model which takes as its outcome the number of encounters a patient has
each year with physicians in their primary HRR. We next decompose HRR-average utilization y j
into a component due to utilization with physicians in their primary HRR ȳp

j and physicians not in
their primary HRR ȳnp

j . Finally, we apply to ȳp
j a decomposition analogous to equation (10),

yp
j = pp

j (α
p
j + γ

p
j +N p

j +δ
p
j +σ

p
j ) (44)

where pp
j now denotes the probability of positive utilization with a physician in their primary HRR,

α
p
j is the average patient-year component (αi + τt + x′itβ ) among those with positive utilization

with a physician in their primary HRR, N p
j is the average number of log primary HRR physician

encounters among those with positive utilization, δ
p
j is the average physician component (δ it)

among physicians in their primary HRR, and σ
p
j is the corresponding average selection component.

As in Table 5, we use the model estimates to sequentially eliminate cross-HRR differences in these
components of yp

j .
Column (2) of Appendix Table A8 shows the results. The sum of the rows indicate that 99

percent of the observed differences in utilization across HRRs can be explained by factors driving
utilization by physicians in their primary HRR yp

j . Therefore, not surprisingly, it shows that if we
focus only on primary HRR utilization, we find broadly similar shares of the utilization difference
attributed to physicians, patients, and places as in our main analysis.

The first row shows that the observed difference in utilization between above and below median
HRRs is roughly the same with our alternative decomposition. Specifically, the observed difference
in ȳp

j + ȳnp
j between HRRs with above- and below-median utilization is 0.206, which is similar

to the corresponding difference in ȳ j in Table 5 (at 0.253).62 The next rows of the table show
that counterfactuals affecting yp

j drive most of the observed difference in utilization across HRRs,
with only 1 percent of this difference being due to utilization by physicians in their non-primary
HRRs. In other words, physician utilization in their non-primary HRR seems to be independently
distributed “noise”.

Not surprisingly, therefore, focusing only on encounters in primary HRRs yields a similar
decomposition of the drivers of differences in utilization across HRRs as our baseline analysis.
For example, we find that differences in δ

p
j explain 33 percent of the difference in utilization

between above- and below-median utlization HRRs, similar to the 35 percent in Table 5.

C.2 Split-Sample Estimates
We construct split-sample standard deviations and correlations in Appendix Table A14 in order
to purge any potential mechanical biases from correlated estimation error across the patient and

62The sum of ȳp
j and ȳnp

j is approximately ȳ j. Approximation error comes from the fact that we model log patient-
year utilization, which is not additive in log primary and non-primary per-encounter utilization.
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practice environment components in the encounter model as well as the patient, physician, and
practice environment components in the per-encounter utilization model. Comparing Appendix
Table A14 with Table 3 suggests such bias is minimal. Qualitatively, these tables are extremely
similar; almost all of the split-sample correlations are within two bootstrapped standard errors of
the full-sample correlations.

To construct Appendix Table A14, we first randomly split the sample of patients in half, strat-
ifying on origin and destination HRRs (or home HRR, for non-movers). We then find the largest
connected set of patients and physicians for each split sample and fit the encounter and per-
encounter utilization models on both connected sets. We then compute the average patient and
place components in each HRR for the encounter model, as well as the average patient, physician,
and place components in each HRR for the per-encounter utilization model. The connected sets in
the first and second half contain 1,514,920 and 1,480,093 patients, respectively.

The across-sample covariance of each of the HRR-level estimates yields an unbiased estimate
of the true HRR-level covariance under iid patient sampling. Formally, with κ̂

(n)
c denoting the

estimate of HRR-level parameter κc for

c ∈ {patientencounter,environmentencounter,patientutilization,physicianutilization,environmentutilization}

in sample n ∈ {1,2}, the sample covariance of κ̂
(1)
c and κ̂

(2)
c yields an unbiased estimate of the

variance of κc while the sample covariances of κ̂
(1)
c1 and κ̂

(2)
c2 or κ̂

(2)
c1 and κ̂

(1)
c2 for c1 ̸= c2 yield

unbiased estimates of the covariance of κc1 and κc2; we average the latter two covariance estimates.
We then translate our unbiased estimates of the full covariance matrix of

(κpatientencounter
,κenvironmentencounter,κpatientutilization

,κphysicianutilization
,κenvironmentutilization)

to standard deviations and correlations, to match Table 3.

C.3 Counterfactual Order Robustness Check
This appendix investigates the robustness of the decomposition results shown in Table 5 to changes
in the order in which we perform the utilization counterfactual steps detailed in Section B.3. Table
A15 shows the result from varying the counterfactual step order. In all cases, we always eliminate
the physician selection term first and, for the purposes of brevity and clarity, combine the patient
and practice environment effects on number of encounters and utilization per encounter into sin-
gle patient and practice environment effects respectively. Similarly, we combine the within- and
between-specialty physician effects into a single physician effect.

Each row of the table corresponds to a utilization factor in the order in which they were pre-
sented in Table 5. Each column then shows the incremental contribution of each factor (in percent-
age terms) to overall geographic variation in utilization (defined as the difference in average patient
utilization for HRRs above and below the median as in Table 5) if we were to perform the coun-
terfactual steps in the order indicated by the column heading. For example, row 2 of column (1)
shows that physician practice intensity is responsible for 35 percent of overall geographic variation
in utilization if we were to eliminate variation coming from physicians first, followed by patients
and practice environment respectively (the same order as in the baseline analysis). Row 2 of col-
umn (2) then shows that this contribution remains unchanged if we were to eliminate variation
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from physicians first and then practice environment and patients respectively.
Overall, the table indicates that the results from our counterfactual utilization analysis are re-

markably consistent across different orderings of the counterfactual steps. Physicians account for
about 35 percent of variation in most cases, patients for about 45 percent, and the practice envi-
ronment for about 20 percent. While there is some variation across columns in these numbers, the
basic conclusion that patients account for about half of all utilization variation and that there is a
significant role for both physician practice intensity and for practice environment in accounting for
the rest remains unchanged and consistent with the baseline analysis of the paper.

C.4 Heterogeneous Treatment Effects in Patient/Physician Event Studies
Recent literature on two-way fixed effect regressions have shown that in the presence of staggered
treatment and heterogeneous treatment effects, event study coefficients may recover a weighted
average of these heterogeneous effects that involve negative weights (see e.g. Sun and Abraham
2021). We therefore explored the sensitivity of our event study analyses to allowing for heteroge-
neous effects by the timing of move, and found that this does not affect our results.

Recall that for the patient event study, we estimated the equation

yit = α
P
i + τ

P
t +θ

P
r(i,t)∆

P
i + x′itβ

P +ρ
P
r(i,t)+η

P
it (45)

where yit represents log patient-year utilization, ∆P
i is the difference in average yit between patient

i’s destination and origin HRR (equal to zero for non-movers), and xit contains indicators for 5-
year age bins. Also, αP

i ,τ
P
t , and ρP

r(i,t) denote fixed effects for patients, calendar years, and years
relative to the move, respectively. We observe movers throughout our sample period. As a result,
for each move year tM ∈ {1999,2000, ...,2013}, we can obtain a set of move-year specific event
study coefficients θ

P,tM

r(i,t) by estimating the equation

yit = α
P,tM

i + τ
P,tM

t +θ
P,tM

r(i,t)∆
P
i + x′itβ

P,tM
+η

P,tM

it (46)

on the sample of patients who move in year tM and non-movers only. Note that unlike equation
(45), equation (46) does not contain relative year fixed effects (ρP

r(i,t)). This is because all movers
move in year tM, meaning that relative years and calendar years are collinear.

By stacking all of the samples for each move year and interacting each covariate in equation
(46) with a sample indicator, we can estimate the equation

yit =
2013

∑
tM=1999

α̌
P
i × ItM(i)+

2013

∑
tM=1999

τ̌
P
t × ItM(i)+ θ̌

P
r(i,t)∆

P
i + x′it β̌

P +µ
P
tM(i)+ η̌

P
it (47)

where ItM(i) is an indicator for whether patient i belongs to the sample used to estimate equation
(46) for calendar year tM, and µP

tM(i) denotes a set of sample indicators. This guarantees that for

each relative year r, the event study coefficient θ̌ P
r(i,t) will be a convex, regression-weighted average

of the coefficients θ
P,tM

r(i,t) in equation (46) estimated using the individual move year samples.
In practice, this exercise is extremely computationally intensive. Since there are over 15 mil-
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lion patient-year observations belonging to non-movers and 15 separate move years, stacking all
15 samples results in a dataset with over 200 million observations. Furthermore, with 3 million
patients, the interaction terms in equation (47) result in an extremely large number of covariates.
To alleviate this issue, we remove non-moving patients from the sample used to estimate equation
(47)63. Since there are movers in every move year, the original equation (45) is identified off of the
sample of moving patients only. As a result, we can exploit this feature of the data so that equation
(47) is identified as well. Panel A of Figure A9 displays the point estimates and 95% confidence
intervals for three sets of event study coefficients: (1) our original estimates of θ P

r(i,t) in equation
(45), which we presented in Figure 3, (2) estimates of θ P

r(i,t) in equation (45), restricting the sample

to consist of moving patients only, and (3) estimates of θ̌ P
r(i,t) in equation (47) using the sample of

moving patients only. All three sets of coefficients are similar for each year relative to the move.
In particular, including the sample of non-movers leads to almost no difference in the estimates of
equation (45), suggesting that our estimates of θ

P,tM

r(i,t) would have been similar had we been able to
stack the non-mover sample as well. This indicates that our patient event study results are robust
to the possibility of negatively-weighted heterogeneous treatment effects across move years.

On the physician side, we follow an extremely similar approach. Recall that we estimated the
equation

ydt − lnNdt = α
D
d + τ

D
t +θ

D
r(d,t)∆

D
d +ρ

D
r(d,t)+η

D
dt (48)

where ydt − lnNdt represents physician d’s log utilization per patient, and ∆D
d is the difference in

average ydt − lnNdt between physician d’s destination and origin HRR (equal to zero for non-
movers). As before, αD

d ,τ
D
t , and ρD

r(d,t) denote fixed effects for physicians, calendar years, and
years relative to the move, respectively. Panel B of Figure A9 presents estimates of θ D

r(d,t) in
equation (48) with and without including non-movers in the sample. The figure also presents
estimates of θ̌ D

r(d,t) in our stacked event study

ydt − lnNdt =
2013

∑
tM=1999

δ̌
D
d × ItM(d)+

2013

∑
tM=1999

τ̌
D
t × ItM(d)+ θ̌

D
r(d,t)∆

D
d +µ

D
tM(d)+ η̌

D
dt (49)

where ItM(d) is an indicator for whether physician d moves in calendar year tM, and µD
tM(d) denotes

a set of move year fixed effects.64 Again, non-movers are excluded to make estimation feasible.
Since all three sets of coefficients are nearly identical, this implies that our physician event study
is robust to heterogeneous treatment effects as well.

C.5 Reweighted Physician Event Study Robustness Check
The by-age physician event study results in Panel B of Figure A3 indicate that if there is het-
erogeneity in age between physician movers and non-movers—which Table A16 suggests is the
case—our event study estimates may not generalize to the broader population of physicians. In this

63Note that this implies that µP
tM(i) is equivalently interpreted as a set of move-year fixed effects.

64Note that our algorithm for detecting moving physicians technically allows a very small number of physicians to
move in 1998, the first year of our data. However, we exclude these physicians from this analysis since relative year
-1 cannot be normalized to zero for such movers.
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appendix, we check robustness of our doctor event study results to this possibility by re-weighting
physician movers so that greater weight is placed on movers who resemble non-movers on observ-
ables. We construct weights based on four sets of observables: (1) indicators for physician gender,
(2) indicators for 5-year bins of each physician’s age at move, (3) indicators for physician specialty,
and (4) all three sets of indicators combined. Specifically, we run a probit regression of an indicator
for being a mover on each of these four sets of observables.65 We then use the resulting coefficients
to predict a probability that each physician is a mover. We then re-estimate equation (3), weighting
movers by the inverse of these predicted probabilities and non-movers by 1. The resulting event
study coefficients are displayed in Figure A4, and the averages of the five post-move coefficients
under each weighting scheme are displayed in Table A16. The results indicate that the size of the
event study jump remains at about 0.5 with all four weighting schemes. This is evidence that our
results are robust to movers being unrepresentative of the general physician population.

65To ensure that the predicted probabilities of being a mover are not too small, we bin all physicians who move be-
fore age 30 into a single indicator and all physicians who move after age 60 into a separate indicator. Furthermore, we
bin together all specialty indicators for which the share of physicians in that specialty who move is below 6%. These
specialties are geriatric psychiatry, the non-physician specialty, speech language pathology, oral surgery, registered di-
etician, the missing specialty, licensed clinical social worker, audiology, maxillofacial surgery, chiropractics, certified
nurse midwife, clinical psychology, anesthesiologist assistant, certified registered nurse anesthetist, occupational ther-
apy, psychology, nuclear medicine, physical therapy, certified clinical nurse specialist, diagnostic radiology, addiction
medicine, preventative medicine, optometry, pediatric medicine, allergy immunology, pathology, anesthesiology, plas-
tic and reconstructive surgery, interventional radiology, podiatry, neuropsychiatry, psychiatry, obstetrics/gynecology,
nurse practitioners, and sleep medicine.
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D Appendix Figures and Tables

Figure A1: Distribution of Mover Relative Years

A. Patients
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Notes: Panels A and B of this figure show the distributions of relative years for which we observe moving patients and
physicians, respectively. The sample size is 6,011,508 patient-years (Panel A) and 728,907 physician-years (Panel B).
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Figure A2: Patient and Physician Mover Event Studies (Balanced Panels)

A. Patients, Balanced on Relative Years -5 to 1 B. Patients, Balanced on Relative Years -1 to 5
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C. Physicians, Balanced on Relative Years -5 to 1 D. Physicians, Balanced on Relative Years -1 to 5
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Notes: This figure shows the estimated θ P
r (Panels A and B) and θ D

r (Panels C and D) coefficients in equations (2)
and (3) for patient and doctor movers, respectively. The coefficients for relative year -1 are normalized to 0. In Panels
A and C, only patients and physicians who are observed in every relative year between -5 and 1 are included in the
sample if they are movers; all non-movers are included. Similarly, the sample used in Panels B and D only contain
mover patients and physicians who are observed in every relative year between -1 and 5, as well as all non-movers.
Observations outside of these relative years are dropped. The dependent variable in Panels A and B is log annual
patient utilization, and the control vector includes indicator variables for five-year age bins and relative-year main
effects for movers. The dependent variable in Panels C and D is log annual physician utilization per patient, and the
control vector includes relative-year main effects for movers. Dashed lines indicate upper and lower bounds of the
pointwise 95 percent confidence intervals, clustered at the person (i.e. patient or physician) level. The sample size is
18,941,719 patient-years in Panel A, 18,945,198 patient-years in Panel B, 23,176,816 physician-years in Panel C, and
23,274,858 physician-years in Panel D.
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Figure A3: Doctor Event Study by Age at Move

A. All Physicians in AMA Masterfile
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Notes: This figure displays estimates of θ D
r in equation (3) computed on various samples. Panel A shows that the event

study results are very similar when estimated on the full sample of physicians (N = 23,788,172 physician-years) and on
the sample of physicians who can be matched to ages in the AMA Masterfile (N = 16,277,075 physician years). Panel
B compares the latter result to the coefficients estimated using the sample of movers who move when they are below
the median age at move (N = 15,928,782 physician years) and the sample of movers who move when they are above
the median age at move (N = 16,055,616 physician-years). All three samples contain all non-movers who are present
in the AMA Masterfile. The coefficients for relative year -1 are normalized to 0. Observations before and including
relative year -6 are binned into a single indicator, as are all observations in relative year 6 and beyond; the coefficients
on these indicators are not plotted here. The dependent variable is log annual physician spending per patient and the
control vector includes relative-year main effects for movers. The shaded regions indicate upper and lower bounds of
95 percent confidence intervals computed using standard errors clustered at the physician level.78



Figure A4: Reweighted Doctor Event Studies

A. Reweighting on Gender B. Reweighting on Age
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Notes: This figure displays estimates of θ D
r in equation (3), where movers are weighted to resemble non-movers along

various dimensions (for more detail on the reweighting scheme, see Appendix Section C.5). Panel A displays results
reweighting movers so that they resemble nonmovers based on gender. Panel B presents results reweighting movers
so that they resemble non-movers based on their age at move. Panel C presents results reweighting movers so that
they resemble non-movers based on specialties. Panel D presents results reweighting movers so that they resemble
non-movers along all three dimensions. The coefficients for relative year -1 are normalized to 0. Observations before
and including relative year -6 are binned into a single indicator, as are all observations in relative year 6 and beyond;
the coefficients on these indicators are not plotted here. The dependent variable is log annual physician spending per
patient and the control vector includes relative-year main effects for movers. The shaded regions indicate upper and
lower bounds of 95 percent confidence intervals computed using standard errors clustered at the physician level. The
sample is all physicians matched to the AMA Masterfile (N = 16,277,075 physician-years).
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Figure A5: Mover Event Study Decomposition

A. Adjusted Average Per-Encounter Log Utilization C. Average Physician Intensity
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B. Log Encounters D. Physician Selection
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Notes: This figure shows the coefficients θr estimated from the enriched event study decomposition described in
Section B.6 for patient movers. The coefficient for relative year -1 is normalized to 0. The dependent variable is
adjusted annual utilization yit − (lnNit +δ it +σit) in Panel A, the log number of encounters logNit in Panel B, average
physician component δ̄it in Panel C, and average physician-patient selection σit in Panel D; xit consists of indicator
variables for five-year age bins (Panel A) and relative-year effects (Panel A and Panel B). The dashed lines are upper
and lower bounds of the pointwise 95 percent confidence intervals computed using standard errors clustered at the
patient level. Observations six years before the move and six years after the move are binned into separate indicators.
The sample size is (N = 23,672,671 patient-years).
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Figure A6: HRR-Level Correlates With Physician, Patient, and Place Components

Physician Characteristics from
Cutler et al. 2019 (96 HRRs)
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Notes: This figure plots bivariate, HRR-level regression coefficients from a regression of the average physician, patient,
and place component in each HRR (δ̄ j, ᾱ j, and γ j as defined in Section 4.2, respectively) against various HRR-
level covariates, along with 95% confidence intervals constructed using heteroskedasticity-robust standard errors. All
covariates are standardized to have mean 0 and standard deviation 1. The first eight measures are computed on a
sample of 96 HRRs for which physicians were surveyed in Cutler et al. (2019); these regressions are weighted by
the number of PCPs surveyed for the PCP measures and the number of cardiologists surveyed for the cardiologist
measures. For the last five measures, we use the sample of all 306 HRRs, and the regressions are weighted by the
number of Medicare patients we observe throughout the entire sample period (1998-2013). Hospital Compare Score
approximates hospital quality using timely and effective care measures publicly reported by CMS. Hospital beds per
capita counts hospital beds per thousand residents. Non-profit hospitals is the percent of hospitals that are non-profit.
More detail on the construction of these variables can be found in Finkelstein et al. (2016).
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Figure A7: Share of Utilization by Year and Missing Identifier Status
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Notes: This figure shows the share of utilization by UPIN and NPI missing status between 1998 and 2013. The
utilization sample reflects the baseline encounter sample in the 20-percent random share of Medicare claims, before
applying any patient restrictions.
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Figure A8: Average Mover Physician Encounter Shares, by Relative Year and HRR Type

A. Origin HRR

0

.25

.5

.75

1

-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Relative Year

Average Encounter Share in Origin HRR

B. Destination HRR

0

.25

.5

.75

1

-15-14-13-12-11-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Relative Year

Average Encounter Share in Destination HRR

Notes: This figure displays the average physician-year share of encounters in the origin HRR (Panel A) and destination
HRR (Panel B), by relative year for mover physicians. Movers are assigned according to the algorithm described in
Appendix Section A. Move years are assigned relative year 0, and these shares are computed on a sample of 74,934
movers.
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Figure A9: Stacked Patient and Doctor Mover Event Studies

A. Patients
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Notes: Panel A of this figure shows estimates of θ P
r in equation (2) with and without non-moving patients in the sample,

as well as estimates of θ̌ P
r in equation (47). Likewise, Panel B shows estimates of θ D

r in equation (3) estimated with
and without non-moving physicians, as well as estimates of θ̌ D

r in equation (49). The coefficients for relative year
-1 are normalized to 0. Observations before and including relative year -6 are binned into a single indicator, as are
all observations in relative year 6 and beyond; the coefficients on these indicators are not plotted here. Vertical bars
denote upper and lower bounds of the pointwise 95 percent confidence intervals clustered at the individual (patient
or physician) level. In Panel A, the sample size is N = 23,663,477 patient-years for the original event study and N
= 6,011,508 patient-years for the stacked/movers only event studies. In Panel B, the sample size is N = 23,788,172
physician-years for the original event study, 728,907 physician-years for the movers only event study, and 696,277
physician-years for the stacked event study.
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Table A1: Utilization Summary Statistics by BETOS Code Group

A. Carrier claim spending share

BETOS Code Group Spending Share

Evaluation and Management 39.5%

Procedures 28.9%

Imaging 12.0%

Other 10.5%

Testing 8.7%

Durable Medical Equipment 0.3%

Exceptions/Unclassified 0.1%

Total 100%

B. Referring/performing physician match statistics (percent of claim lines)

Performing and

Referring Match

Different Referring

Physician

Only Referring

Physician Missing

Only Performing

Physician Missing

Both Physicians

Missing

Total

Evaluation and Management 37.9% 38.5% 21.9% 1.2% 0.5% 100%

Procedures 23.9% 58.1% 15.1% 2.2% 0.8% 100%

Imaging 14.6% 83.0% 0.3% 2.0% 0.1% 100%

Other 39.0% 26.3% 32.1% 1.3% 1.4% 100%

Testing 25.0% 69.7% 0.1% 5.1% 0.0% 100%

Durable Medical Equipment 19.9% 61.7% 14.4% 3.3% 0.7% 100%

Exceptions/Unclassified 26.4% 53.5% 8.5% 10.0% 1.6% 100%

Notes: BETOS code groups are defined as in https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-
Trends-and-Reports/MedicareFeeforSvcPartsAB/downloads/BETOSDescCodes.pdf. Ambulance services are ex-
cluded from the calculations. Columns in Panel B are mutually exclusive; “Performing and Referring Match” and
“Different Referring Physician” only contain non-missing matches/mismatches. The sample is all carrier claims be-
tween 1998 and 2013. Note that claims can be further subdivided into claim lines. For example, in a claim for visiting
a doctor’s office, two separate procedures (e.g. a blood draw and a vaccination) would constitute distinct claim lines.
Each claim line may have its own BETOS code; as a result, our statistics in Panel B cover the share of claim lines
rather than the share of claims.
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Table A2: Distribution of Physician Specialties

Non-movers Movers
Specialty Group Share of Utilization Share of Physicians Share of Utilization Share of Physicians
Primary Care 36.21% 15.50% 42.61% 33.19%
Cardiology 9.42% 1.69% 9.23% 3.08%
Orthopedic Surgery 6.53% 1.75% 5.93% 2.87%
General Surgery 5.02% 1.84% 5.03% 3.19%
Ophthalmology 3.90% 1.45% 2.52% 2.07%
Nephrology 3.10% 0.54% 2.35% 0.90%
Hematology/Oncology 3.01% 0.55% 2.70% 0.89%
Podiatry 2.62% 1.20% 0.41% 1.28%
Urology 2.41% 0.76% 1.96% 1.13%
Pulmonary Disease 2.24% 0.66% 2.44% 1.33%
Emergency Medicine 2.18% 2.59% 4.64% 10.05%
Gastroenterology 1.68% 0.87% 1.33% 1.40%
Thoracic Surgery 1.57% 0.20% 1.30% 0.26%
Physical Medicine and Rehabilitation 1.39% 0.58% 1.94% 1.09%
Neurosurgery 1.36% 0.37% 1.32% 0.56%
Cardiac Surgery 1.33% 0.13% 1.81% 0.25%
Missing Specialty 1.24% 18.80% 0.11% 1.74%
Dermatology 1.15% 0.84% 0.77% 1.20%
Medical Oncology 1.13% 0.20% 1.00% 0.28%
Vascular Surgery 1.08% 0.18% 1.46% 0.40%
Neurology 1.07% 1.00% 1.10% 1.61%
Psychiatry 0.83% 2.47% 0.58% 2.41%
Obstetrics/gynecology 0.81% 2.70% 0.55% 2.94%
Radiation Oncology 0.77% 0.29% 0.89% 0.55%
Otolaryngology 0.76% 0.73% 0.64% 1.10%
Optometry 0.61% 2.58% 0.22% 1.58%
Nurse Practitioner 0.59% 5.78% 0.46% 5.20%
Rheumatology 0.58% 0.30% 0.41% 0.48%
Physician Assistant 0.44% 4.20% 0.52% 6.18%
Chiropractic 0.39% 4.22% 0.09% 1.07%
Anesthesiology 0.38% 2.65% 0.26% 1.30%
Endocrinology 0.36% 0.35% 0.28% 0.61%
Infectious Disease 0.36% 0.36% 0.33% 0.53%
Diagnostic Radiology 0.33% 2.11% 0.26% 0.88%
Geriatric Medicine 0.31% 0.12% 0.45% 0.32%
Critical Care 0.29% 0.13% 0.30% 0.28%
Non-physician 0.29% 4.52% 0.01% 0.12%
Plastic and Reconstructive Surgery 0.28% 0.45% 0.15% 0.35%
Colorectal Surgery 0.28% 0.09% 0.25% 0.14%
Hematology 0.19% 0.05% 0.21% 0.07%
Gynecological/Oncology 0.18% 0.06% 0.15% 0.08%
Pathology 0.13% 0.98% 0.06% 0.56%
Surgical Oncology 0.13% 0.05% 0.12% 0.07%
Clinical Psychology 0.13% 1.84% 0.03% 0.38%
Interventional Pain Management 0.11% 0.09% 0.15% 0.18%
Pediatric Medicine 0.10% 0.81% 0.10% 0.26%
Allergy Immunology 0.10% 0.27% 0.05% 0.20%
Hand Surgery 0.09% 0.07% 0.08% 0.12%
Physical Therapy 0.08% 3.91% 0.03% 1.81%
Licensed Clinical Social Worker 0.08% 1.91% 0.01% 0.26%
Pain Management 0.05% 0.06% 0.07% 0.12%
Interventional Radiology 0.05% 0.08% 0.04% 0.06%
Cardiac Electrophysiology 0.05% 0.02% 0.10% 0.07%
Osteopathic Manipulative Therapy 0.04% 0.06% 0.08% 0.10%
Certified Registered Nurse Anesthetist 0.04% 1.77% 0.01% 0.41%
Peripheral Vascular Disease 0.04% 0.01% 0.05% 0.01%
Oral Surgery 0.02% 0.40% 0.00% 0.04%
Certified Clinical Nurse Specialist 0.02% 0.21% 0.01% 0.11%
Maxillofacial Surgery 0.02% 0.14% 0.00% 0.04%
Nuclear Medicine 0.01% 0.05% 0.00% 0.02%
Preventative Medicine 0.01% 0.04% 0.01% 0.02%
Occupational Therapy 0.01% 0.49% 0.00% 0.11%
Neuropsychiatry 0.01% 0.01% 0.00% 0.01%
Addiction Medicine 0.01% 0.01% 0.00% 0.01%
Audiology 0.00% 0.42% 0.00% 0.05%
Sports Medicine 0.00% 0.01% 0.00% 0.02%
Psychology 0.00% 0.04% 0.00% 0.01%
Certified Nurse Midwife 0.00% 0.14% 0.00% 0.03%
Speech Language Pathology 0.00% 0.05% 0.00% 0.00%
Anesthesiologist Assistant 0.00% 0.03% 0.00% 0.01%
Registered Dietitian 0.00% 0.14% 0.00% 0.01%
Geriatric Psychiatry 0.00% 0.00% 0.00% 0.00%
Sleep Medicine 0.00% 0.00% 0.00% 0.00%

Notes: This table shows the share of utilization and physicians that belong to each specialty for non-movers (columns 1
and 3) and movers (columns 2 and 4). Physicians are assigned to specialties based on the HCFA code that corresponds
to the plurality of their claims; see Appendix Section A.2 for details.
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Table A4: Sample Summary Statistics (AMA Doctors)

Non-movers Movers
Share first observed residence:

Northeast 0.23 0.20
South 0.34 0.37
Midwest 0.23 0.23
West 0.20 0.20

Annual utilization:
Mean $1,075 $1,308
S.D. $2,156 $1,660

Annual number of encounters:
Mean 194.87 238.63
S.D. 250.13 189.26

Doctor age in move year:
Mean 49.13 41.50
S.D. 14.88 10.27

Doctor experience in move year:
Mean 21.78 13.72
S.D. 15.14 9.76

Share female 0.26 0.30
Number of doctors 674,973 51,213

Notes: This table displays doctor summary statistics for the subsample of physician movers and non-movers that can
be matched to the 2014 AMA Physician Masterfile. Share first observed residence, annual utilization, and annual
number of encounters are defined as in Panel B of Table 1. Doctor age and doctor experience in the move year are
derived by using the year of birth and year of graduation from medical school in the Masterfile. The move year for non-
movers is randomly generated, where the “move” years for non-movers are sampled, so as to preserve the probability
distribution of move years for movers. Share female is derived by using the gender indicator in the Masterfile. The
sample matched to the 2014 AMA Masterfile has 726,000 physicians.
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Table A5: Average Physician Fixed Effect By Specialty

Specialty Rank Mean Standard Error Share of Utilization Share of Physicians
Cardiac Surgery 1 1.073 0.008 1.37% 0.13%
Thoracic Surgery 2 0.905 0.007 1.54% 0.21%
Neurosurgery 3 0.723 0.004 1.35% 0.38%
Hematology/Oncology 4 0.611 0.002 2.98% 0.57%
Hematology 5 0.599 0.009 0.19% 0.05%
Medical Oncology 6 0.588 0.004 1.12% 0.21%
Gynecological/Oncology 7 0.547 0.011 0.17% 0.06%
Physical Medicine and Rehabilitation 8 0.535 0.003 1.44% 0.60%
Surgical Oncology 9 0.495 0.011 0.13% 0.05%
Colorectal Surgery 10 0.477 0.006 0.28% 0.09%
General Surgery 11 0.475 0.002 5.02% 1.90%
Orthopedic Surgery 12 0.453 0.001 6.48% 1.80%
Nephrology 13 0.421 0.002 3.04% 0.56%
Licensed Clinical Surgical Worker 14 0.407 0.005 0.07% 1.83%
Geriatric Medicine 15 0.402 0.005 0.33% 0.13%
Interventional Pain Management 16 0.379 0.007 0.12% 0.10%
Radiation Oncology 17 0.357 0.005 0.78% 0.31%
Vascular Surgery 18 0.340 0.004 1.11% 0.19%
Pain Management 19 0.329 0.009 0.05% 0.07%
Rheumatology 20 0.311 0.003 0.57% 0.31%
Primary Care 21 0.287 0.001 36.73% 16.29%
Gastroenterology 22 0.279 0.001 1.65% 0.90%
Hand Surgery 23 0.242 0.006 0.09% 0.07%
Plastic and Reconstructive Surgery 24 0.222 0.004 0.27% 0.45%
Critical Care 25 0.215 0.005 0.29% 0.14%
Pulmonary Disease 26 0.211 0.002 2.25% 0.69%
Peripheral Vascular Disease 27 0.148 0.015 0.04% 0.01%
Osteopathic Manipulative Surgery 28 0.137 0.011 0.05% 0.06%
Endocrinology 29 0.133 0.003 0.36% 0.36%
Neurology 30 0.105 0.001 1.08% 1.02%
Neuropsychiatry 31 0.105 0.025 0.01% 0.01%
Psychologist 32 0.070 0.027 0.00% 0.03%
Psychiatry 33 0.068 0.002 0.81% 2.47%
Clinical Psychologist 34 0.031 0.004 0.12% 1.77%
Sports Medicine 35 0.027 0.037 0.00% 0.01%
Ophthalmology 36 0.019 0.001 3.79% 1.48%
Urology 37 0.013 0.001 2.37% 0.78%
Infectious Disease 38 0.004 0.003 0.35% 0.36%
Cardiology 39 -0.037 0.001 9.40% 1.75%
Geriatric Psychiatry 40 -0.051 0.072 0.00% 0.00%
Interventional Radiology 41 -0.124 0.015 0.05% 0.08%
Cardiac Electrophysiology 42 -0.187 0.016 0.05% 0.02%
Dermatology 43 -0.205 0.001 1.12% 0.85%
Sleep Medicine 44 -0.221 0.102 0.00% 0.00%
Obstetrics/Gynecology 45 -0.265 0.002 0.79% 2.71%
Speech Language Pathologist 46 -0.275 0.039 0.00% 0.05%
Allergy Immunology 47 -0.299 0.005 0.09% 0.27%
Emergency Medicine 48 -0.305 0.001 2.38% 2.92%
Otolaryngology 49 -0.335 0.002 0.75% 0.75%
Addiction Medicine 50 -0.339 0.055 0.00% 0.01%
Anesthesiology 51 -0.419 0.002 0.37% 2.59%
Certified Clinical Nurse Specialist 52 -0.445 0.007 0.02% 0.21%
Nuclear Medicine 53 -0.457 0.018 0.01% 0.05%
Chiropractic 54 -0.485 0.003 0.37% 4.08%
Podiatry 55 -0.501 0.001 2.44% 1.21%
Optometry 56 -0.545 0.001 0.58% 2.54%
Nurse Practitioner 57 -0.656 0.001 0.58% 5.75%
Maxillofacial Surgery 58 -0.656 0.011 0.01% 0.14%
Oral Surgery 59 -0.727 0.008 0.02% 0.39%
Physician Assistant 60 -0.752 0.001 0.45% 4.29%
Anesthesiologist Assistant 61 -0.778 0.027 0.00% 0.03%
Pediatric Medicine 62 -0.788 0.007 0.10% 0.78%
Certified Registered Nurse Anesthetist 63 -0.835 0.003 0.04% 1.71%
Certified Nurse Midwife 64 -0.931 0.015 0.00% 0.14%
Missing Specialty 65 -0.978 0.001 1.15% 18.04%
Occupational Therapist 66 -0.986 0.005 0.01% 0.47%
Physical Therapist 67 -1.034 0.002 0.08% 3.82%
Diagnostic Radiology 68 -1.053 0.003 0.32% 2.06%
Pathology 69 -1.320 0.001 0.13% 0.96%
Preventative Medicine 70 -1.407 0.024 0.01% 0.04%
Non-Physician Specialty 71 -2.076 0.003 0.27% 4.33%
Registered Dietitian 72 -2.161 0.029 0.00% 0.14%
Audiologist 73 -2.472 0.015 0.00% 0.40%

Notes: This table displays the average physician fixed effect, δd as defined in equation (5), by specialty. The means
and standard errors are computed by weighting each physician by their number of encounters throughout the entire
sample period (1998-2013).
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Table A6: Geographic Variation Counterfactuals (with Standard Errors)

Above/below median Top/bottom 25% Top/bottom 10%

Absolute

Differ-

ence

% decline

(increment)

% decline

(cumulative)

Absolute

Differ-

ence

% decline

(increment)

% decline

(cumulative)

Absolute

Differ-

ence

% decline

(increment)

% decline

(cumulative)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Observed 0.253 0.405 0.594
(0.000) (0.000) (0.001)

Patient-physician selection (1) 0.238 -6% -6% 0.378 -7% -7% 0.564 -5% -5%
(0.000) (0%) (0%) (0.001) (0%) (0%) (0.001) (0%) (0%)

Physicians 0.149 -35% -41% 0.222 -39% -45% 0.345 -37% -42%
(0.003) (1%) (1%) (0.005) (1%) (1%) (0.008) (1%) (1%)

Of which: within-specialty effects in utilization per encounter (2) 0.187 -20% -26% 0.281 -24% -31% 0.422 -24% -29%

(0.003) (1%) (1%) (0.005) (1%) (1%) (0.008) (1%) (1%)

Of which: between-specialty effects in utilization per encounter (3) 0.149 -15% -41% 0.222 -14% -45% 0.345 -13% -42%

(0.003) (0%) (1%) (0.005) (0%) (1%) (0.008) (0%) (1%)

Patients 0.032 -46% -87% 0.044 -44% -89% 0.081 -44% -86%
(0.004) (1%) (2%) (0.006) (1%) (2%) (0.010) (1%) (2%)

Of which: patient effects in utilization per encounter (4) 0.148 0% -42% 0.223 0% -45% 0.350 1% -41%

(0.004) (1%) (1%) (0.005) (1%) (1%) (0.009) (1%) (1%)

Of which: patient effects in # encounters (5) 0.032 -46% -87% 0.044 -44% -89% 0.081 -45% -86%

(0.004) (1%) (2%) (0.006) (1%) (2%) (0.010) (1%) (2%)

Practice Environment 0.000 -13% -100% 0.000 -11% -100% 0.000 -14% -100%
(0.000) (2%) (0%) (0.000) (2%) (0%) (0.000) (2%) (0%)

Of which: practice environment effects in utilization per encounter (6) 0.082 20% -68% 0.126 20% -69% 0.198 20% -67%

(0.002) (1%) (1%) (0.004) (1%) (1%) (0.006) (2%) (1%)

Of which: practice environment effects in # encounters (7) 0.000 -32% -100% 0.000 -31% -100% 0.000 -33% -100%

(0.000) (1%) (0%) (0.000) (1%) (0%) (0.000) (1%) (0%)

Notes: Refer to the notes in Table 5 for the estimation procedure. The observed difference between above/below median HRRs is in average log patient annual
utilization. Relative to Table 5, we include the standard errors of our estimates. Standard errors (in parentheses) are clustered at the patient level and calculated
using a Bayesian bootstrap with 50 repetitions. We bootstrap the encounter-level connected set used in the per-encounter utilization regression (equation (5))
and patient-year-level dataset used in the Poisson encounter model regression (equation (4)) separately. We combine the estimates from the bootstrapped-sample
regressions to produce the counterfactuals above for each draw. The reported standard errors are the standard deviation of the resulting bootstrap estimates.
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Table A7: Geographic Variation Counterfactuals Counting Practice Environment Encounter Mar-
gin Toward Physician Effect

Above/below median

Absolute

Differ-

ence

% decline

(increment)

% decline

(cumulative)

(1) (2) (3)

Observed 0.253

Patient-physician selection (1) 0.238 -6% -6%

Patients 0.122 -46% -52%
Of which: patient effects in utilization per encounter (2) 0.237 0% -6%

Of which: patient effects in # encounters (3) 0.122 -45% -52%

Physicians -0.050 -68% -120%
Of which: within-specialty effects in utilization per encounter

(4)

-0.016 -54% -106%

Of which: between-specialty effects in utilization per encounter

(5)

-0.050 -14% -120%

Practice Environment (6) 0.000 20% -100%

Notes: This table is based on estimation of equation (5), equation (4), and the counterfactuals described in Section
5.2. First, we report the observed difference in average log annual patient utilization between HRRs above and below
the median. Each successive row reports this difference under a particular counterfactual, along with the incremental
and cumulative percentage change relative to this baseline. Row (1) reports the counterfactual difference if there
were no differential physician selection within regions. Rows (2) and (3) report the difference if additionally there
were no differential sorting of patients’ demand for healthcare across regions, breaking this change into two separate
sequential steps eliminating patient effects on the demand for care within an encounter and for healthcare encounters
respectively. Row (4) reports the difference if additionally there were no variation in average physician intensity in
healthcare within an encounter across regions, holding fixed the clinical specialty of the physician. Row (5) reports the
difference if there were also no differential sorting of clinical specialties across regions. Row (6) reports the difference
if additionally there were no variation in practice environment effects on healthcare utilization. For details on how
we define each counterfactual, see Appendix Section B.4. The sample is all encounters (159 million encounters of 3
million patients with 1.7 million physicians).
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Table A8: Robustness Checks for Geographic Variation Counterfactuals

Above/below median

Baseline Primary HRR
Time-Varying

Health
1998-2005 2006-2013

No Moves
to/from

AZ/CA/FL
(1) (2) (3) (4) (5) (6)

Observed difference 0.253 0.206 0.253 0.251 0.242 0.246

Patient-physician selection (1) -6% -5% -6% -5% -7% -7%

Physicians -35% -33% -35% -43% -62% -41%
Of which: within-specialty effects in utilization per encounter

(2)
-20% -23% -22% -28% -47% -26%

Of which: between-specialty effects in utilization per encounter
(3)

-15% -10% -13% -15% -15% -15%

Patients -46% -38% -60% -51% -59% -46%
Of which: patient effects in utilization per encounter (4) 0% -1% -3% -1% -2% -2%

Of which: patient effects in # encounters (5) -46% -37% -57% -49% -57% -44%

Practice Environment -13% -23% 1% -1% 29% -6%
Of which: practice environment effects in utilization per

encounter (6)
20% 24% 22% 20% 50% 23%

Of which: practice environment effects in # encounters (7) -32% -47% -21% -21% -21% -29%

Notes: This table is based on estimation of equation (5), equation (4), and the counterfactuals described in Section 5.2. Each column of this table presents the
percent decline in the difference in average log utilization for HRRs above and below the median utilization as we equalize components of the model. Column
(1) displays the baseline increments, column (2) separates utilization from each physician’s primary HRR and non-primary HRRs, decomposing ȳp

j as defined in
equation (44), and column (3) adds indicators for having each of 21 chronic conditions, as well as an additional indicator for having just entered the sample (in
which case the chronic condition indicators are set to zero). Columns (4) and (5) restrict the sample to encounters occurring between 1998-2005 and 2006-2013,
respectively. Column (6) removes patient and physician movers who moved to or from Arizona, California, or Florida. The sample size is 159 million encounters
between 3 million patients and 1.7 million physicians in columns (1)-(3), 77 million encounters between 2.2 million patients and 1 million physicians in column
(4), 82 million encounters between 2.2 million patients and 1.4 million physicians in column (5), and 124 million encounters between 2.4 million patients and 1.5
million physicians in column (6).
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Table A9: Patient Sample Restrictions (1998-2013)

Patients Patient-Years Encounters

N Reduction

(%)

N Reduction

(%)

N Reduction

(%)

16,700,441 140,819,152 763,713,408

Unique patients in the 20% Medicare claims sample 5,303,053 68 48,019,228 66 266,927,568 65

Exclude 75% random sample of non-mover patients

Exclude patient-years where patients are: 4,722,835 3 42,270,648 4 234,264,928 4

Younger than 65 or older than 99

Enrolled in Medicare Advantage 4,101,594 4 32,674,782 7 217,079,424 2

Not subscribed to Medicare Part A & B for all months in a year 3,741,866 2 29,681,748 2 204,799,712 2

Exclude multiple movers 3,466,888 2 26,950,282 2 184,376,992 3

Exclude movers with insufficient destination claim share 3,093,133 2 23,672,672 2 160,367,168 3

In connected set of observations 2,996,555 1 22,311,618 1 159,081,232 0

Notes: This table shows the impact of each of our restrictions on the sample size in terms of patients, patient-years, and encounters, respectively. In each case
we show two columns: one (“N”) displaying the sample size after applying the restriction and another (“Reduction (%)”) displaying the marginal reduction in
percentage terms due to the restriction. The encounter count includes patient-year zeros.
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Table A10: Claims-Based Crosswalk Match Comparison with NBER Crosswalk

A. Finalized Crosswalk Matched NPIs
Number of NPIs

(thousands)
Share of Total

Utilization (2009)
Matched in Both Crosswalks 517 61.1%
Only Matched in NBER Crosswalk 88 10.0%
Only Matched in Claims-Based Crosswalk 316 15.7%
Total 921 86.7%

B. Non-Matched NPIs
Number of NPIs

(thousands)
Share of Total

Utilization (2009)
Associated With Conflicts 13 1.2%
Unmatched NPIs 120 7.4%
Organization NPIs 41 1.1%
Post-transition NPIs 716 3.6%
Total 890 13.3%

Notes: This table compares all 1,810,474 NPIs observed in the 20 percent Medicare claims data between 1998 and
2013. The total 2009 utilization is computed from the baseline encounter sample, before applying patient restrictions.
Conflicts represent cases in which an NPI is associated with more than one UPIN between crosswalks, or a UPIN is
associated with more than one NPI. We consider NPIs to be unmatched if they are listed with at least one non-missing
UPIN in the claims data, and we consider NPIs to have entered the sample after the transition (“post-transition NPIs”)
if they are not listed with any UPINs. Organization NPIs are determined from NPPES data entity type information.

Table A11: Finalized Crosswalk Match Comparision With AMA Data

Number of NPIs
(thousands)

Share of Total
Utilization (2009)

Matched to the Same UPIN 562 79.8%
Only Matched in AMA Data 55 3.1%
Only Matched in Finalized Crosswalk 356 6.6%
Associated With Conflicts 3 0.3%
Total 976 89.8%

Notes: The sample is the 976,445 individual NPIs that were either matched by the finalized crosswalk or associated
with a non-missing UPIN in the AMA Physician Masterfile. Conflicts represent cases in which an NPI is associated
with more than one UPIN between crosswalks, or a UPIN is associated with more than one NPI. The total 2009
utilization is computed from the baseline encounter sample, before applying patient restrictions. The utilization sample
includes organization NPIs, NPIs that entered the sample after the UPIN-NPI transition, and individual NPIs that were
not matched by either crosswalk; these NPIs correspond to 9.2 percent of utilization.
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Table A12: Example Crosswalk and Claims

UPIN NPI Physician ID
A 1 A_1
B 2 B_2
C 3 C_3
(a) Crosswalk Illustration

Year UPIN NPI Preferred Identifier Physician ID
2003 D D D_
2007 A A A_1
2007 A 1 1 A_1
2007 1 1 A_1
2010 A 2 2 B_2
2010 B 2 2 B_2
2010 3 3 C_3
2010 4 4 _4

(b) ID Assignment to Claims Example

Notes: this table presents examples of how we construct physician IDs from UPINs and NPIs (Panel A) as well as how
we match UPIN/NPI pairs in the claims data to these IDs (Panel B). For more detail on this process, see Appendix
Section A.2.

Table A13: Physician Sample Comparison

Statistic
Estimates from our

2013 sample
Published reports from 2013

Medicare data
(1) (2)

Mean annual spending per physician $219,088 $209,500
Total annual physician spending (billions) $204 $257
Number of doctors 930,446 1,226,728

Notes: This table compares our sample summary statistics on physician spending to public information on Medicare
spending patterns. Note that “spending” is equivalent to “utilization” in this context because it is aggregated across
all patients in the entire country, meaning that our purging of geographic variation in administratively set prices to
construct “utilization” is no longer relevant. In column (1), row 1 we show average physician spending for 2013.
Average physician spending is the ratio of total spending and the total number of physicians in our sample in 2013.
We show these separate components in rows 2 and 3 respectively, accounting for the 20 percent patient sampling in
our data. We then show comparable estimates for the same three numbers coming from information published by the
Medicare Payment Advisory Commission and the Centers for Medicare & Medicaid Services (CMS). Annual physi-
cian spending in column (2) is taken from Chart 1-13 in Medicare Payment Advisory Comission (2021), calculated as
the sum of spending on inpatient hospitals, outpatient hospitals, and physician fees. The number of doctors in column
(2) is taken from Table II.8 in U.S. Department of Health and Human Services (HHS) (2014). All values are for 2013.
Non-physician practitioners account for 308,994 of the 1,226,728 providers.
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Table A14: Split-Sample Standard Deviation and Correlation Matrices of Utilization Components

HRR-Average of: Standard Deviation Correlation Matrix

Encounter Model
Practice environment (γ̃N

j ) 0.336 1.000

Patients (α̃N
it ) 0.318 0.580 1.000

Per-Encounter
Utilization
Model

Practice environment (γ̃ j) 0.132 -0.536 -0.291 1.000

Patients (α̃it ) 0.019 0.020 -0.174 -0.009 1.000

Physicians (δ̃dt ) 0.131 0.464 0.392 -0.852 0.056 1.000

Notes: This table displays the adjusted correlation matrix between utilization components from the encounter model
(rows 1-2, equation 4) and per-encounter utilization model (rows 3-5, equation 5) across split samples. Details of how
these correlations are computed are reported in Appendix Section C.2.
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Table A15: Utilization Counterfactuals (Rearranged Step Order)

Physicians →
Patients →

Practice Environment

Physicians →
Practice Environment →

Patients

Patients →
Physicians →

Practice Environment

Patients →
Practice Environment →

Physicians

Practice Environment →
Physicians →

Patients

Practice Environment →
Patients →

Physicians

(1) (2) (3) (4) (5) (6)

Patient-Physician Selection (ȳ(1)j ) -6% -6% -6% -6% -6% -6%

Physicians (ȳ(2)j , ȳ(3)j ) -35% -35% -16% -36% -36% -36%

Patients (ȳ(4)j , ȳ(5)j ) -46% -39% -46% -46% -39% -39%

Practice Environment (ȳ(6)j , ȳ(7)j ) -13% -20% -32% -13% -19% -19%

Notes: This table shows the relative contribution of each factor in overall geographic utilization variation under different orderings of the utilization counterfactual
steps. In all cases, we eliminate physician selection first. For simplicity, we combine patient and practice environment effects on the number of encounters and
utilization per encounter into single patient and practice environment effects, respectively. We also combine within- and between-specialty physician effects into
a single physician effect. Each row corresponds to a utilization factor listed in the row heading. Each column then shows the incremental contribution of said
factor (in percentage terms) to overall geographic variation in utilization (defined as the difference in average patient log utilization for HRRs above and below the
median) if we were to perform the counterfactual steps in the order indicated by the column heading. The sample is the baseline sample of all encounters (N = 159
million encounters).
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Table A16: Average of Reweighted Post-Period Doctor Event Study Coefficients

Variables Used to Create Weights Average of Post-Period Coefficients
None 0.507

(0.080)
Gender 0.517

(0.081)
Five-Year Age Bins 0.529

(0.094)
Specialties 0.537

(0.094)
Gender, Age Bins, and Specialty 0.549

(0.110)

Notes: This table displays results from re-estimating the doctor event study (equation (3)), reweighting moving
physicians so that they are better matched to non-movers on observables based on the procedure described in
Appendix section C.5. The first column gives the observables used to construct each set of weights, while the second

column displays the value and standard error (in parentheses) of the estimates of ∑
5
r=1 θ D

r
5 . The sample is all

physician-years for physicians matched to the AMA Masterfile (N = 16,277,075 physician-years).
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