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I Introduction

The gender gap in average science and math achievement by the end of high school has

narrowed significantly in recent decades and is qualitatively small today.1 However, girls

are underrepresented among high-achieving math students in middle and high school and

this may contribute to their underrepresentation in STEM fields, both in college majors

and the workforce.2 These gaps have been shown to vary with potentially manipulable

environmental factors such as local culture and the presence of same-gender instructors.3

To the extent that there is a role for policy in addressing female underrepresentation in

STEM, several natural questions arise: at what point in students’ development do these

gaps occur, how do they evolve over time, and why?

This paper takes advantage of a new panel dataset on American Mathematics Compe-

tition (AMC) participants to examine the dynamics of the gender gap over the high school

years within a large population of very high-achieving US math students. The AMC tests

are much better than commonly studied tests at identifying and distinguishing among very

high-achieving students, and are taken by many of the very best math students in the US.

The panel dataset used for the first time in this paper allows us to analyze the development

of math achievement by seeing how students perform on tests of similarly high difficulty in

9th, 10th, 11th, and 12th grades. It also lets us examine dropouts from and new entry into

real-world competition by high-achieving boys and girls. An important limitation of this

setting is that our study population consists of students who have chosen to participate in

a competition. They are presumably more interested in competition, and we only see them

perform in a competitive environment.4 This is relevant to interpreting the finding of this

paper that the high achievement gender gap is already large by 9th grade (Niederle and

Vesterlund, 2010). We hope that this limitation is less relevant to the dynamic analysis

that we mostly focus on in this paper. The estimates of the dynamics compare subsequent

outcomes for boys and girls who have in common that they selected into competing and
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achieved identical scores in year t.

Section II presents institutional facts on the AMC contests and summary statistics on

the dataset. It then presents two basic observations that motivate the rest of the paper.

One is that there is already a substantial gender gap among high-achieving 9th graders.

The other is that the gender gap widens substantially over the high school years. The

first observation motivates examining the individual-level persistence in high scores: if it

is substantial (which we find), then the 9th grade gap is a large contributor to the end-

of-high-school gap and merits further study. The second observation motivates a richer

examination of the dynamics of achievement among high-achieving high school students

and the gender-related differences in these dynamics. Many potential explanations have

been discussed to account for the single fact that boys outnumber girls among high math

achievers. A fuller understanding of the dynamics can provide a much larger set of facts

that proposed explanations for the end-of-high-school gender gap would need to explain.

Section III takes a step back from the focus on gender to provide some initial observa-

tions on the dynamics of high achievement in high school. We present several observations

on the environment in which high-achieving high school students are investing in their

math skills. One is that performance is highly persistent even when we subdivide the top

percentile very finely. Another is that high-achieving students must improve their mastery

of the precalculus mathematics and problem solving skills tested by the AMC contests sub-

stantially to maintain their position year-to-year, and the probability of making substantial

gains relative to one’s cohort is low.

Section IV then explores gender-related differences in the dynamics to identify factors

that lead to the widening gender gap. Studies of other environments have identified several

factors that could affect patterns of entry, exit, and improvement in the AMC. Preferences

for competition and differences in how boys and girls allocate their effort across coursework

in different subjects and extracurricular activities could be particularly relevant here.5
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Our analyses uncover several gender-related differences. High-achieving girls improve

by less from year to year on average than do boys with similar initial performance. The

variance of the girls’ improvements is lower. Girls at each performance level are more

likely to drop out of participating. And girls are underrepresented among the high-scoring

entrants. To clarify the relative importance of these patterns, we propose a method for

decomposing the net change in the fraction female among high scoring students into several

components. The decomposition suggests that the most important gender-related dynamic

difference is that fewer girls are making large enough increases from year to year to move

up into the top rank groups.

Section V ventures into assessing potential explanations for the gender gap in a more

causal-inference style, looking at whether a portion of the gap may be attributable to

gender-related differences in reactions to disappointment. We note that high-achieving

students will be quite disappointed if they fall short of a threshold score needed to move

on to a second stage exam, and that this disappointment can be viewed as a treatment

that is applied at a different cutoff level of performance on different tests. We use a variant

of a regression-discontinuity design to examine a narrow window around the cutoff for

progressing to the second stage exam and find strong evidence that both boys and girls are

more likely to drop out of participating in future years if they score just below the cutoff.

We also find that the tendency to drop out after experiencing disappointment may be more

common among girls.

Section VI recaps results and presents conclusions and implications for future research.

Our investigation is related to a number of literatures. A number of papers, including

our own, have noted that girls are underrepresented among the high scorers on standard

math assessments and math contests both in the US and in many other countries.6 While

the dynamics of the gender gap are less studied, there are several previous studies docu-

menting an increasing gender gap.7 Relative to this literature, we add a number of new
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observations about the gender gap. This includes both our initial observations that ex-

treme gender gaps among very high achievers are already present by 9th grade and that

the gender gap among high achievers widens over the course of high school, and the many

observations about the dynamics of achievement that we are able to make due to our unique

panel data on high-achieving boys and girls.

Our paper is also related to the literature on gender-differences in attitudes toward

competition. Niederle and Vesterlund (2007) and Niederle et al. (2013) found a clear gender

gap in willingness to enter contests in laboratory experiments. This may be particularly

relevant to our application, as Buser et al. (2017) find that the gender gap in the preference

for competition is highest for high-ability students.8 Prior experimental and real world

evidence has also demonstrated that men and women react differently to losing contests:

Gill and Prowse (2014) find that women who lose a contest score lower in subsequent

contests; Buser (2016) finds that men (but not women) react to losing by seeking greater

challenges; Buser and Yuan (2018) find that, even within populations who have already

opted into competing, women are more likely to react to losing by ceasing to compete;

and Cai et al. (2019) find that women’s performance suffers more than men’s in response

to negative performance shocks on earlier exams taken on the same day. Our real world

evidence on students’ reactions to disappointment are consistent with there being a similar

gender gap, although our message is not entirely aligned in that we find that boys also

react to disappointment by dropping out of future competition.9

Our Section V analysis is very closely related to Buser and Yuan’s (2018) regression

discontinuity analysis of students near the threshold for advancing to the second round of

the Dutch Math Olympiad. They document a small and insignificant 1 percentage point

dropout effect for boys, and a large and marginally significant 11 percentage point dropout

effect for girls. Our much larger sample allows us to use narrower windows and get more

precise estimates.10 We find estimates of 3.4-3.7 percentage points for boys and 4.2-5.6
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percentage points for girls with standard errors of 1.2 percentage points at most. We find

marginally suggestive evidence for Buser and Yuan’s (2018) finding that girls are relatively

more likely to react by dropping out, but document that the effect among boys is also

substantial and that the differential effect for girls relative to boys in the United States

contest is not nearly as large as their point estimates for the Netherlands.

More broadly, our paper is motivated in several respects by the rich literature on gender

gaps in wages and career development. As summarized in Blau and Kahn (2017), gender

gaps in mathematics and career-oriented college majors declined substantially between the

1960s and 1980s, but there has been less progress since.11 Of particular relevance is the

subset of the literature that pertains to the dynamics of the gender gap in pay and workforce

participation (Bertrand et al., 2010; Goldin et al., 2017).

II The High-Achievement Gender Gap in AMC Scores

In this Section, we bring out some basic facts about the gender gap among AMC high

scorers. Ellison and Swanson (2010) noted a large gender gap at high achievement levels

and that the gaps are much wider at very high achievement levels above those that can be

reliably measured with more commonly used standardized tests. Among the new obser-

vations here are that the high-achievement gender gap is already quite large and has the

same distinctive pattern by the time students are in 9th grade, and that the gap grows

wider over the high school years.

A Background and data

The primary subject of our analysis is a database of scores on the Mathematical Association

of America’s AMC 10 and AMC 12 contests from 1999 to 2007. The tests are 25-question,

multiple choice tests designed to identify and distinguish among students at very high
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performance levels. They are administered to over 200,000 students in about 3,000 US

high schools. The AMC 10 is open to students in grades 10 and below. The AMC 12 is

open to students in grade 12 and below.

Several features make the AMCs well suited to studying the dynamics of high math

achievement over the high school years. One is that the tests are reliable even for very

high-achieving students.12 A second is that the tests are very popular among the very best

US math students.13 A third is that many high-achieving students take the tests annually

over a four year period, which lets us track the year-to-year improvement. The benefits and

costs of participating in the AMC contests are myriad and vary across students. Immediate

benefits and costs include the psychic benefit (enjoyment) or cost (stress) associated with

the competition itself (Niederle and Vesterlund, 2007); extrinsic benefits such as praise,

AMC and school prizes, and credentials for college applications; and intrinsic satisfaction

or disappointment from performing well or poorly. Future benefits include the knowledge

gained by studying and access to more elite levels of competition.

By 2007, the AMC offered four tests per year: the AMC 10A and 12A were offered

on one date in early February, and the AMC 10B and 12B were offered two weeks later.

One motivation was to accommodate students whose school was on vacation or cancelled

due to snow on the A-date. But schools can offer both the A-date and B-date tests and

some students choose to take a test on both dates. In 2007, about 3 percent of A-date

takers also took a B-date test.14 The test multiplicity necessitates rescaling scores from the

various year t tests to make them comparable to other tests from the same year. In the

years 2000-2006, the way in which we do this is to think of year t scores as predictors of

year t+ 1 AMC 12 scores. We run separate linear regressions of year t+ 1 AMC 12 scores

on scores on each year t test and consider two year t scores to be equivalent if the predicted

year t+ 1 AMC 12 score is the same. This year-ahead prediction is not possible in the final

year of our data, so in 2007 we instead normalize scores by comparing the performance of
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students who take both an A test and a B test in 2007. 15

Our normalization is not designed to put year-t and year-t′ scores on a common scale.

Instead, we mostly avoid the difficulties inherent in comparing scores across calendar years

by focusing on students’ ranks within the set of students who participated in a given year.

In Section III.A we present evidence that transforming scores to log ranks produces a

measure in which the additive improvement in performance from year to year is similar

over a wide range of (high) initial performance levels. This ability to renormalize scores in

such a way is another attractive feature of the AMC environment.

Our raw data consists of separate files of student-level scores on each test in each

year. The records contain a school identifier, the state in which the school is located, an

anonymization of the student’s name, and the student’s gender, grade, age, and home ZIP

code. We create a student-level panel data set by merging these files assuming that two

scores belong to the same student if the name and school match and the age, grade, and

gender are consistent, or if the name and state are the same and the city, home ZIP code,

age, grade, and gender are consistent.16

In the full pre-2007 dataset, we match 43 percent of 9th to 11th grade student-years to a

score in the subsequent year. Note that failures to match result both from students who do

not participate in the following year and the limitations of our matching procedure; e.g., we

will miss students who report their name inconsistently, students who skip a grade, most

students who move, etc. One would expect high-achieving students to be more likely to

take the AMC in subsequent years. Our match rates are consistent with this. For example,

among 9th to 11th grade students who were among the 500 highest scoring students in

their cohort, the subsequent-year match rate is 80 percent.

In our analyses of the evolution of students’ scores we define a student’s AdjustedScore

in year t to be the rescaling of the score that they received on the first test offered by their

school in that year. Note that, at schools that offer both the A-date and B-date tests,

7



students who only take the B-date test in year t are coded as not participating in that

year. The primary reason for this decision is that we think doing otherwise would lead to

miscounts of high-scoring students.17

B Summary statistics and the gender gap in AMC participation

In this Section, we present some summary statistics on AMC scores and participation

rates. Gender differences in participation rates are not large, but there is some evidence of

gender-related selection into the contests.

Table 1 summarizes participation and scores by grade and gender. The top panel

contains information for female students. Female participation grows substantially from

9th to 10th grade, from an average of about 19,000 9th grade girls per year to about 28,000

10th grade girls per year. One reason for the growth may be that some teachers hesitate to

recommend the AMC tests to 9th graders, regarding the tests as too advanced. Awareness

of the AMCs also presumably diffuses over time. Female participation remains roughly

constant from 10th to 11th grade. It then drops by about 18 percent from 11th to 12th

grade.18 One reason may be that 12th grade scores and awards come out too late to be

listed on college applications.

The bottom portion of the Table reports comparable statistics for boys. Male partici-

pation is about 11 percent higher than female participation in 9th grade. Its growth from

9th grade to 10th grade is similar to that for girls. The series then diverge a bit more,

as male participation continues to grow from 10th grade to 11th grade, and has an 11th-

to-12th grade decline that is less than half as large as that for females. The pool of 12th

grade AMC takers is about 43 percent female. While the gender gap in AMC participation

increases over the course of high school and we will later investigate differential dropout

rates in detail, a first takeaway is that participation rates among high-achieving girls and

boys are not too different for the AMC 12. Most AMC takers presumably come from the
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high end of the SAT population, and the population of students with SAT scores of 600 or

above is also 43 percent female.

The Table also provides summary statistics on normalized AMC scores. The AMC

tests are not a good source for insights on average performance given the highly-selected

populations, so we will not say much about them. Our previous papers focused on counts of

students achieving scores above certain high thresholds, for which we think selection is less

of an issue. Scoring 100 on the AMC 12 can be thought of as roughly similar in difficulty to

scoring 780 or 800 on the math SAT. Among 12th graders scoring at this level or higher, we

find a male-female ratio of about 3.4:1. The male-female ratio among students achieving

comparable scores on the SATs is about 2:1. The gender gap could be different on the

AMC and SAT due to differences in what is being tested and to the fact that the SAT

is a cruder instrument. But the magnitude of the difference suggests that there are some

gender-related differences in participation rates, as would be expected given the literature

on gender differences in attitudes toward competition.

Scoring 120 on the AMC 12 represents a much higher level of achievement – roughly in

the 99.99th percentile of the full US 12th grade population. Here, we think that selection

into test-taking is less important. Our primary reason for saying this is that reaching the

highest levels of performance on the AMC 12 requires a great deal of natural ability and

effort directed toward mastering high school mathematics, and we feel that it is unlikely

that students not interested in participating in math competitions would exert the effort

necessary to excel at these levels. We see this as analogous to saying that there are unlikely

to be many high school students who can throw a curveball and a 90mph fastball who are

not participating in competitive baseball. Note that the male-to-female ratio is much larger

among students reaching the 120 level. This is part of a larger pattern noted in Ellison and

Swanson (2010).
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C The gender gap in high math achievement over the high school

years

In this Section, we illustrate how the gender gap among AMC high scorers changes over

the course of high school. Two important observations are that the gender gap is already

large in 9th grade and widens substantially over the high school years.

Figure 1 reports the percentage of AMC high scorers in each grade who are female for

various definitions of high scoring. The top line in the Figure uses the least restrictive

definition, examining the 5,000 highest-scoring students in each grade-year. These are very

high-achieving students, but not extremely unusual ones: one could think of them as on

a trajectory to score 780 or 800 on the math SAT by the end of high school. At the left

endpoint we see that there is a substantial gender gap in 9th grade: only 30.5 percent

of the high-scoring 9th graders are female. Looking from left-to-right along this line, the

gender gap widens in each subsequent year. By 12th grade, only 21.8 percent of the top

5000 high-scorers are female. The drop from 9th grade to 10th grade is the largest, but the

decline is fairly steady.

The lower series present comparable estimates using more and more stringent definitions

of high-achieving, going all the way to a definition that is two orders of magnitude more

demanding and examines just the top 1 percent of our initial high-achieving pool. That each

of the curves slopes downward indicates that the finding that the gender gap widens over

the course of high school is quite robust to how one defines high-scoring. In proportional

terms, the decline in the percent female from 9th grade to 12th is between 29 percent and

35 percent along every curve except the lowest one.19

Ellison and Swanson (2010) highlighted that the gender gap is much larger when one

examines more extreme high achievers. A comparison of the leftmost points of the series

in Figure 1 shows clearly that this pattern is already present by 9th grade. Girls comprise
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30.5 percent of the top 5000 9th graders, but only 8.4 percent of the top 50 9th graders.

One implication is that, if performance is highly persistent (which we find), then the larger

gender gap observed among extreme high achievers relative to ordinary high achievers can-

not be primarily driven by things that are happening during high school. The subsequent

analyses in this paper investigate the second fact visible in the slopes in this figure: the

gender gap widens over the high school years among ordinary high achievers, extreme high

achievers, and everyone in between.

III Dynamics of Achievement Among High Achievers

In this Section, we take a step back from gender-related issues and present some more

general evidence on the dynamics of achievement among high-achieving math students.

Among our observations are that the distribution of mathematical achievement is suffi-

ciently spread out so that the top 9th graders are already very high in the overall score

distribution, that high-achieving students must substantially improve from year to year to

keep up with their cohort, that there is substantial performance persistence, and that it is

unlikely that students will greatly improve their within-cohort rank.

A Growth and variation in absolute performance

Although it is becoming increasingly common to take calculus in the junior year and the

AMC contests only cover precalculus topics, top students are increasing their command

of the AMC material and problem-solving techniques over the course of high school.20 To

give some sense of performance improvement, Table 2 lists the average overall rank that a

student needed to have in order to be in the grade-specific top 50, top 100, top 500, etc.

For example, to rank among the top 100 9th graders, one only needs to score in the top

1,173 overall, whereas a 12th grader needs to score in the top 241 overall to be in the top
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100 in their cohort.

One immediate observation is that some students have already reached very high

achievement levels by 9th grade. For example, the 500th best 9th grader is already well

within the top 5000 12th graders, and hence is already at the level where we would expect a

nearly perfect SAT score. The 50th best 9th grader is well within the top 500 12th graders.

While some 9th graders are already very good, the Table also makes very clear that

students must improve substantially from year to year to maintain their within-cohort

position. The right panel reports the percentage reduction in the overall rank that students

in various positions must make to maintain their within-grade rank. High scoring 9th

graders will need to improve their overall rank by roughly 40-60 percent in order to achieve

the same position relative to their peers as a 10th grader. High scoring 10th graders will

need to improve their overall rank by about 50 percent. The required improvement between

11th and 12th grades is somewhat smaller, but still notable given that most high scoring

12th graders will be studying calculus or something more advanced.

The similarity of the percentage change numbers within each column is striking given

that the stringency of the definition of high achievement varies by two orders of magnitude

from the top to the bottom. This suggests that the log of a student’s rank is a natural

cardinal measure of performance to use when analyzing high-achieving students. We see

this as another feature of the AMC environment that makes it attractive to study.21

One simple way to get a feel for what year-to-year improvement is typical at the indi-

vidual level is to examine the distribution of log(Ranki,t+1)− log(Rankit) among students

who take the test in both years t and t + 1. This variable has a mean of -0.28 for 9th

graders, -0.39 for 10th graders, and -0.26 for 11th graders. These are substantial increases

in performance.

The degree to which students improve from year to year likely differs for students in

different parts of the distribution. For example, the effort that students are putting into
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improving their knowledge and problem solving skills will differ. AMC performance in any

given year is a noisy measure of a student’s underlying achievement level, which we think

of as the average score they would get if given similar tests multiple times. This standard

measurement error problem implies that one cannot estimate average achievement gains

as a function of initial achievement via an OLS regression. Assuming this is classical

measurement error, however, we can use instrumental variable (IV) regressions to estimate

this relationship when some instrument for year t achievement is available. Table 3 presents

estimates of improvement as a function of initial performance obtained from IV regressions

of log(Ranki,t+1) − log(Rankit) on −(log(GradeRankit) − log(5000)), using the log of a

student’s within-grade rank in year t − 1 as an instrument.22 The negative coefficient

estimates on the term reflecting initial achievement levels indicates that students at higher

achievement levels in the initial year are expected to make even larger improvements in log

rank.

The constant term in these regressions can be thought of as the average improvement

for a student who has the 5000th best score in their cohort in year t. The estimates

suggest that these improvements in log rank are -0.50 for 10th graders and -0.33 for 11th

graders. If we convert the mean improvements in Rank needed to maintain a given within-

grade rank in Table 2 to changes in log(Rank), they would be approximately -0.74 in 10th

grade and -0.32 in 11th grade. Hence, a 10th grader who ranks 5000th in his grade must

improve by substantially more than the expected amount in order to maintain his or her

rank. Intuitively, this reflects that there are many more students ranked below the 5000th

student than above. If the 5000th ranked student makes the average improvement, then

there will be more students jumping ahead of her due to above-average gains than falling

behind due to below-average gains.

Standard deviations of the full sample increases in log rank are 0.73, 0.86, and 0.96 for

9th to 10th, 10th to 11th, and 11th to 12th grades, respectively. Note that these will reflect
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both the measurement error of the test as a measure of students’ underlying achievement

levels in both years, and also true variation in the growth in achievement from year to

year. Online Appendix B presents a calculation examining changes over multiple years to

estimate the relative importance of the two components. It suggests that the measurement

error component is larger than the variation in achievement growth component, but that

there is still substantial heterogeneity in students’ true year to year achievement growth.23

B Persistence and mobility in relative-to-cohort performance

We now focus on how students move up and down within their cohort from year to year.

Figure 2 presents a graphical view of the estimated rank-to-rank transition matrix. For

example, the height of the darkest shaded portion at the bottom of the left-most bar

indicates that there is a 36 percent chance that a student who is among the top 50 in their

cohort in year t will again rank in the top 50 in year t+ 1, and the portion of the same bar

just above this indicates that there is an additional 16 percent chance that such a student

will rank from 51 to 100 in year t+ 1.24

One clear observation from the Figure is that performance in year t is a strikingly

strong predictor of performance in year t+ 1, even when making comparisons that rely on

incredibly fine distinctions in year t performance. Comparing students who were ranked in

the top 50 in their grade in year t to those ranked 51-100, for example, the higher-ranked

students are more than twice as likely to achieve a top 50 score in year t + 1 (36 percent

vs. 16 percent), and less than half as likely to score outside the top 500 (10 percent vs. 25

percent). Similar patterns are visible over and over in the other bars. Students who were

ranked from 51-100 are more than twice as likely to achieve a top 100 score in year t + 1

than are students who were ranked 101-200 at t. Students ranked from 101-200 at t are

more than twice as likely to achieve a top 200 score at t+ 1 than are students who ranked

201-500, and so on.
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A second observation is that it is possible to move up in the distribution, but substan-

tial improvements are quite unlikely. To help visualize this, we have outlined boxes that

correspond to the diagonal of the transition matrix using dashed lines. Some substantial

improvements are present. For example, 14 percent of those ranked 101-200 within their

grade in year t move into the top 100 in year t+ 1, including some moving into the top 50.

But the chances of improving by even one rank group is never above 16 percent and the

chances of all of the three-or-more group improvements are sufficiently small as to be very

hard to see in the Figure.

A third observation is that dropping out of participation is relevant even among high-

achieving students. The heights of the white outlined boxes at the top of each bar corre-

spond to the percentage of students whom we were not able to find in the year t+ 1 data.

Among students who are ranked from 1001-5000 in their grade in year t, we are unable to

match 35 percent to a year t+ 1 score. The fact that the unmatched rate is 35 percent for

students with ranks from 1001-5000 and just 14 percent for students with ranks from 1-50

suggests that at least 20 percent of the students in the 1001-5000 truly do not participate

in year t. Dropping out appears to be less and less likely as one moves up in the ranks.

The majority of the unmatched students in the top group are probably unmatched because

of the limitations of our dataset rather than due to the students actually dropping out.25

One final comment on the Figure is that we feel it bolsters the case that the AMC is an

interesting measurement tool. While we always encourage readers to look up old test ques-

tions online, with the belief that many will feel that the test seems nicely designed to test

problem solving skills and students’ command of core precalculus topics, such impressions

cannot tell us how noisy a test is as a measure of some student capability, nor how much

we should care about the capability being measured. The level of persistence in Figure 2

makes very clear that the AMC test is a sufficiently accurate and consistent measure of

some capability related to high achievement such that it is a good predictor of year-ahead
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performance. And our earlier results on students’ gains from year to year indicate that

the capability being measured is something that builds over the high school years, versus

something more stable like differential quickness or accuracy in performing calculations.

We also present here a longer horizon backward-looking transition matrix. The bars in

Figure 3 show the fraction of students who achieved the rank corresponding to that bar

in 12th grade who were in each rank category in 9th grade. At the very highest levels of

achievement, the performance persistence we noted earlier remains striking. For example,

we can see in the first bar that there are more holdovers from the 9th-grade top 50 in the

12th-grade top 50 (about 25 percent) than there are students who have moved up from the

entire 201-40,000 range (about 21 percent). Only 5 percent scored outside the top 1000 as

9th graders. Although there are a substantial fraction, 35 percent, whom we were unable

to match to a 9th grade score, given how few students manage to move up from the 1000+

range into the top 50, we imagine that many of these students are students whom we failed

to match rather than true entrants. Some causes of matching failures, including students

who switch high schools or skip grades, will likely be more frequent here as we are matching

across a three year span.

At the still extremely high level of students who rank 201-500 among 12th graders,

there is more heterogeneity in 9th grade origins. Students moving down from the top 200,

holdovers from the 9th grade 201-500 group, and students moving up from the 501-1000

group each comprise about 10 percent of this group. We also see a much larger number of

students who had not done as well in 9th grade, with 25 percent coming from outside the

top 1000 ranges.

At the lower (but still high) levels of 12th grade achievement in the Figure, improvement

since 9th grade plays an even more prominent role. Only about 5-9 percent of these students

in the 12th-grade 501-1000 and 1001-5000 rank groups are students who have dropped down

from a higher 9th grade rank group. Meanwhile, 12 percent and 19 percent, respectively,
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are students who have moved into these groups after having scores that placed them outside

the top 5000 9th graders. These students have improved by enough to overcome both their

initial disadvantage and the substantially higher score needed to make the within-grade top

5000 as a 12th grader. The fraction of students that we cannot match to a 9th grade score

is also much larger in these groups at 53 percent and 62 percent, respectively. The fact

that the failure-to-match rate is so much larger here than it was for the top 50 students

suggests that a substantial number of the unmatched 12th graders in these groups are true

entrants who had not participated in 9th grade.

Early in this Section, we noted that the gender gap among high-achieving math students

is already large in 9th grade. Given that performance is highly persistent, it is not sur-

prising that the girls are not able to overcome their initial disadvantage. But performance

persistence makes it all the more striking that the gender gap among high-achieving math

students widens substantially over the the high school years. Some of the more detailed

findings in this Section highlight channels that could be relevant: large performance im-

provements are needed to maintain one’s within-cohort rank; some students are dropping

out of participating (at least at all but the highest ranks); and the three-year time span

between 9th and 12th grades is long enough to allow quite a number of students who were

not high-performers in 9th grade to improve or enter and achieve a high rank by the end

of high school. Gender-related differences in any of these dimensions could contribute to

the widening gender gap.

IV Gender Differences in Dynamics and a Decompo-

sition

In this Section, we look at gender-related differences in the dynamics of year-to-year perfor-

mance and present a decomposition that lets us quantify the relative importance of several
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factors to the broadening of the gender gap in achievement over the high school years.

A Differences in dynamics

We first look for gender-related differences in year-to-year improvement within the popu-

lation of students who participate in the AMC tests in consecutive years. Table 4 presents

estimates from an OLS regression:

log(GradeRankit+1)− log(GradeRankit) = β1Femalei + β2 log(GradeRankit) +

β3 log(GradeRankit)
2 + β4Femalei × log(GradeRankit) +

β5Femalei × log(GradeRankit)
2 +

β6B-Dateit + β7Bothit + δg(it) + γt + εit

where the δg and γt are grade and year dummies. Note that the dependent variable

is the increase in a student’s rank, so that a positive coefficient on any variable implies

that an increase in that variable is associated with decreased year-to-year improvement in

AMC performance. The left panel reports estimates from this regression run on the set of

students who ranked in the top 5000 within their grade in the initial year. The negative

coefficient on the initial rank indicates substantial mean-reversion in within-grade rank, as

one would expect given that test scores are a noisy measure of underlying ability.

The primary coefficient of interest in the regression is the coefficient on the Female

dummy. It is positive and highly significant, indicating that girls are improving by less

from year to year than boys by about 31 log points. The second main estimate of interest

is whether there are gender-related differences in the variance of year-to-year improvement.

The lower panel of the Table reports gender-specific means of the squared residuals from the

above regression. Again, we find a statistically significant gender difference: there is greater

year-to-year variance in the boys’ performances. Hence, we have identified two separate

features of the dynamics that would tend to contribute to a widening of the gender gap
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among the highest achievers: (1) the girls’ mean improvement from year to year is lower;

and (2) the variance in their year-to-year improvement is also lower.

In the above regression, there is also a moderately-sized but statistically significant

coefficient on the interaction between the Female dummy and within-grade rank, indicating

that the gender gap in mean improvement is larger for higher achievers. To examine

whether this may reflect a substantial difference among the highest achievers, the right

panel of Table 4 estimates the same regression on the sample of even higher achievers who

were ranked in the top 500 in their cohort in the initial year. We find that things are not

appreciably different at this level. The gender gap in mean improvement is estimated to be

32 log points per year, and the residual variance is again lower for the girls. In unreported

results, we also estimated the above regressions separately on 9th, 10th, and 11th graders

and did not find substantial differences in either finding across grades.

Differential rates of dropping out of test taking could also contribute to changes in the

gender gap among high scorers. To explore this we define an indicator Dropoutit+1 for

whether each year-t high scorer could not be found in the year-t+ 1 data, and estimate the

OLS regression:26

Dropoutit+1 = β1Femalei + β2 log(GradeRankit) + β3 log(GradeRankit)
2 +

β4Femalei × log(GradeRankit) + β5Femalei × log(GradeRankit)
2 +

β6B-Dateit + β7Bothit + δg(it) + γt + εit

The first column of Table 5 reports estimates run on students who were in the top 5000

in their grade in year t. The primary coefficient of interest is the Female dummy. The

estimate of 0.023 indicates that girls are 2.3 percentage points more likely to drop out

of participating than boys with comparable scores. The estimate is highly statistically

significant, so we have identified a third factor contributing to the widening of the gender
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gap over the course of high school.

The second through fourth columns of the Table present similar regressions estimated

separately on the students in 9th, 10th, and 11th grades. The gender gap in dropout rates is

larger in the 11th to 12th grade transition than in the other years. Girls are 4.5 percentage

points less likely to participate in 12th grade than boys who had comparable 11th grade

scores. Early in high school, the gender gap in dropout rates is much smaller.

All regressions include controls for the student’s within-grade rank in the initial year.

The positive coefficients on these controls reflect that higher-scoring students are substan-

tially less likely to drop out. The coefficients are quite similar across all three grades,

indicating that this relationship is fairly stable over the course of high school.

The final column of Table 5 looks at more extreme high scorers who were among the top

500 students in their grade in year t. The point estimate of the gender-related difference in

dropout rates is much smaller in this sample, just 0.2 percentage points, but the standard

error is such that we can neither reject that the gender gap is zero, nor that it is the same

as in the top 5000 sample.

We noted earlier that some high scorers at the end of high school are students who came

later to math competitions. To examine whether there are also gender-related differences

in this aspect of the dynamics, Figure 4 graphs the fraction female among all grade 9-11

students who were in each rank group in some year from 1999-2006, and the fraction female

among grade 10-12 students in the rank group in 2000-2007 who are entrants. In all but

the top rank group, we find that the fraction of female students among the entrants is

slightly lower than the fraction among the students who were in that group in the previous

year. On average, the difference is about one percentage point.27 This gender difference

in AMC entry is a fourth contributor to the broadening of the gender gap over the high

school years.

To recap, we have identified four gender-related differences in the dynamics of student
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achievement that will contribute to the widening of the gender gap in high achievement on

the AMC over the high school years. High-achieving girls are on average not improving by

as much from year to year, there is less variance in their year-to-year improvement, they

are more likely to drop out of participating (especially after 11th grade), and we see fewer

girls among the high-scoring entrants whom we cannot find in the previous year’s data.

B A decomposition of changes in the gender gap

In this Section, we define a decomposition of the change in the gender gap into portions

attributable to various differences that provides a measure of their relative importance.

Our analysis focuses on changes in the fraction µf
Xt of students in achievement group X

at time t who are female. (We will often use being in the top 50, 500, or 5000 as the group

X.) Here, we relate this to various aspects of differences in the boys’ and girls’ transition

matrices.

Proposition 1 The change in the fraction female in group X can be written as:

µf
Xt+1 − µ

f
Xt = ∆drop

X + ∆cont
X + ∆grow

X + ∆entry
X + ∆mech

X .

See Online Appendix C for algebraic expressions of each term and proof.

The first term in the decomposition, ∆drop
X , can be thought of as the change in female

representation that is due to girls dropping out at a different rate (assuming that the girls

who dropped out would have succeeded at the same rate as the girls who continued to

participate). The second term, ∆cont
X , reflects the difference in rates at which girls who con-

tinue to participate improve by enough to remain in rank group X. The third term, ∆grow
X ,

reflects the difference in rates at which lower-ranked girls versus boys subsequently climb

into group X. The fourth, ∆entry
X , reflects any discrepancies between female representation
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among the high scorers who did not participate in the previous year and what would be

expected given the total number of entrants and female representation among the previous

year’s high scorers.

The final term in the decomposition, ∆mech
X , captures mechanical changes that would

occur even if there were no gender-related differences in the transition process, due to asym-

metries in the initial conditions. There are mechanical effects pushing in both directions.

A negative effect is that the girls in each rank group X are disproportionately found in the

lower part of the rank group, so girls in X would be less likely to avoid dropping into a

lower group in the following year. Working in the opposite direction, there are also more

girls in the rank group just below X than in group X. With gender-independent dynamics,

this would result in the set of students who move up into rank group X in the next year

being more heavily female. The sign of the net mechanical effect ∆mech
X will depend on

which of these countervailing effects is larger.

As discussed in further detail in Online Appendix C, we implement this decomposition

by estimating the transition probabilities both for the full population and for girls as

smooth functions of the initial year rank via local linear regressions, with log(Rank) as the

right-hand-side variable. We do this separately for students in 9th, 10th, and 11th grades,

pooling the data for all six cohorts within each regression.

One version of our basic fact about the widening gender gap was that the percentage

of female students in the top 5000 drops from 30.5 in 9th grade to 21.8 in 12th grade.

This is a drop of 8.7 percentage points over three years, which is about 3 percentage points

per year. The first row of Table 6 presents a decomposition of this change.28 It indicates

that by far the largest source of the drop – responsible for 3.6 percentage points, which is

more than 100 percent of the drop – is ∆grow
X , the term in our decomposition which reflects

differences in the rates at which male and female students at ranks below 5000 improve

their performance and “grow” into the top 5000. Note that this term is designed to control
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for how far below the top 5000 cutoff male and female students were in the previous year:

it is due only to differences in the probabilities that male and female students at each given

rank outside the top 5000 move up into the top 5000. This in turn will reflect both the

differences we identified earlier in both average improvements from year to year and in the

variance of students’ improvements.29

Two other features of the dynamics are a little less than one-third as important as the

growth effect: ∆cont
X which reflects the reduced rate at which highly-ranked female students

who take the test maintain their top 5000 position; and ∆entry
X which reflects the lower

fraction of female students among “entrant” high scorers. The difference in dropout rates

is a smaller contributor on average.

The final column indicates that the total drop would be much larger were it not for a

positive mechanical effect. To appreciate why this effect can be large in practice, recall that

the fraction female is much higher in the population of test-takers outside the top 5000. For

example, for 10th graders it is 0.26 for students in the top 5000 and 0.40 for students who

are ranked between 5,001 and 20,000. Although each individual 5,001-20,000 student is not

very likely to move into the top 5000 in 11th grade, together they will account for about

23 percent of the year-t + 1 grade 11 top 5000. If the dynamics were gender-independent,

then the fraction of girls in this moving-up group would be close to 40 percent, and this

would substantially bring up the average percent female variable in the top 5000.

The next three rows of the Table report the separate 9th to 10th, 10th to 11th, and

11th to 12th grade decompositions that went into the average discussed above. Recall that

gender gap widened most from 9th grade to 10th grade. The entry effect is relatively more

important at this stage. The changes from 10th to 11th grade are very similar to the overall

average. In the 11th to 12th grade transition, the growth effect is even more important,

dropout plays a role, and the entry effect is unimportant.

The final two rows of the Table focus on more extreme high achievers. Recall that the
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fraction female in the top 500 declined from 18 percent in 9th grade to just 12 percent in

12th grade. This 35 percent decrease was larger than the 29 percent decrease at the top

5000 level, although it is smaller in percentage point terms (about 2 percentage points per

year). The importance of the growth process to the evolution in the gender gap comes

through even more strongly here – differences in the probabilities with which boys and

girls at each lower rank are able to move into the top 500 are much more important than

the other differences we’ve identified. The entry and dropout effects are both just minor

factors, consistent with the view that few true entrants will make it all the way to the top

500 and few students will drop out after earning such high scores.

The bottom row looks at even more extreme high achievers who scored in the top 50 in

their grade. Here, the dropout and entry effects continue to fade to insignificance relative

to the large growth effect. What remains are the large growth effect and a continuation

effect, again offset in large part by the mechanical effect.30

The small numbers that come up when doing top 50 calculations may make it easier

to understand why the mechanical effect is so large. On average 18.1 of the year t+ 1 top

50 students will be repeats from the year t top 50. They will be joined by 19.5 students

moving up from ranks 51-500. If the students moving up were randomly drawn from their

rank groups, then about 16 percent of them would female. Hence, their presence would

increase the overall percent female in the top 50 by about 19.5
40
× (16 − 9) ≈ 3 percentage

points. The magnitude of these mechanical effects makes the broadening gender gap even

more striking – the widening of the gender gap occurs despite the fact that every year there

are many more girls well positioned to move into the top 50 (or 500 or 5000) than currently

in the top 50 (or 500 or 5000).
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V Potential Mechanism: Reactions to Disappointment

So far, we have tried to improve understanding of the widening of the gender gap in high

math achievement over the high school years by providing descriptive evidence on the

dynamics of performance that any potential explanation would have to account for. In this

Section, we exploit the multistage nature of the AMC series to provide evidence with a more

causal flavor on the feedback mechanism. Specifically, we investigate gender differences in

how students react to disappointment.

The AMC 10/12 contests are the first stage of a series. A number of awards are given

out along the way and students take pride in how far they advance. For most of the high-

achieving students in our sample, the most salient potential accomplishment is qualifying

for the American Invitational Mathematics Exam (AIME).31 Qualifying keeps their math

competition season alive for another month and they will list it on their college applications.

Many who fall just short of the cutoff for AIME qualification will be disappointed. Our

discussions of “reactions to disappointment” should be understood as a shorthand for how

students react to this disappointment relative to how they react to the positive feedback

that comes with qualifying.

The “rational” response to falling just short might be to redouble one’s efforts. One

consideration pushing in this direction is that not having previously been an AIME qualifier

should raise the incremental benefit that qualifying provides to one’s resume; and students

have learned (given how much students typically improve from year to year) that they have

a good chance of qualifying in the subsequent year. There are, however, other forces that

might push rational students in the opposite direction, e.g., a negative signal about the

returns to investing in math could incentivize a reallocation of effort toward other sub-

jects.32 And it also seems plausible that students might react to the disappointment by

investing less in math for behavioral reasons. In light of the literature on gender differ-

ences in coursework, self-confidence and interest in competition – e.g., Wang et al. (2013),
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Niederle and Vesterlund (2007), and Croson and Gneezy (2009) – one could easily imagine

that there are gender differences in the rational and behavioral responses.

The rules for advancement from the AMC 10/12 to the AIME are a bit complicated.

Students qualify if they score at least 120 on the AMC 10 or 100 on the AMC 12. They

also qualify if they are among the top 1 percent of US test takers on the particular (A

or B) AMC 10 that they took, or among the top 5 percent on the particular AMC 12.33

The rules are an ex ante attempt to treat the tests roughly equally, but in practice the

ex post level of correctly-measured performance at which the cutoff falls varies from test

to test. From our perspective, this is fortuitous in that it makes the AIME qualification

“treatment” less collinear with performance.34 As an initial look at the data, Figure 5

provides an RD-style plot of the probability with which students with scores in each one-

point score band cannot be found in the next year’s data. Students in the zero band and all

students to the right qualified for the AIME. We report the means separately for boys and

girls and add separately estimated regression lines on each side of the cutoff. The Figure

strongly suggests that there is a discontinuous jump in the probability of dropping out of

future participation when students fall just short of the AIME cutoff.

The noisiness of the female data on the right side of the Figure reflects that there are a

limited number of girls with scores more than ten points above the AIME cutoff.35 But in

other cases – e.g., the data points for boys exactly at and six points below the AIME cutoff

– substantial departures from the regression lines occur despite sample sizes that are quite

large. We believe that this reflects the role of unobserved student characteristics that do

not covary smoothly with students’ scores relative to the cutoff. To illustrate why this is

plausible, note that the most common AMC 10 cutoff is 120. In 2002-2006, the unique way

to score 120 was to answer all 25 questions and get 20 correct and 5 wrong.36 The unique

way to get the score just below 120, 119.5, was to attempt just 18 of the 25 questions

and get 17 correct and 1 wrong, with 7 left blank. The 119.5- and 120-scoring students
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may therefore be different in unobserved ways; e.g., the 120 students may be quicker,

less accurate, and more risk loving. Such discontinuous changes in unobservables of this

variety would make the standard RD estimator of the causal effect of AIME qualification

inappropriate.

We try to estimate effects in a manner that is robust to this potential problem in two

ways. First, we simply estimate a regression similar to our earlier dropout regression, with

the addition of a dummy variable for failing to qualify for the AIME, and we restrict our

analysis to the subsample of students who were within two correct answers of the AIME

cutoff on either side. When the AIME cutoff is 120, we include students who answered 25

questions and got 18 or 19 correct (failing to qualify with a 108 or 114, respectively), as

well as students who got 20 or 21 correct (qualifying with a 120 or 126, respectively). In

such a sample where the number of students answering each number of questions is roughly

balanced, the qualification dummy would be mostly uncorrelated with any function of the

number of questions answered, and we would hope that our quadratic in log(GradeRank)

would capture any smooth relationship between higher achievement and dropout rates,

whereas the dummy for failing to qualify would capture any discontinuous jump at the

year×test-specific cutoff. We also explicitly control for whether a student scored in each

of the subsets of scores, e.g. {..., 108, 114, 120, 126, ...} and {..., 113.5, 119.5, 125.5} that are

possible when students attempt a given number of questions. Given the variety of scoring

rules used in different years, this involves adding a total of 18 dummy variables, and can

be thought of as an estimator that will give us the causal effect of failing to qualify on the

probability of dropping out, provided that the unobservables are smooth across the cutoff

once we have controlled for the differences related to the number of questions a student

attempted.

The first column of Table 7 presents estimates from this OLS regression.37 Our main

interest in conducting these regressions is on the effect of the disappointing outcome of fail-
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ing to qualify for the AIME. The main effect on this variable is substantial, 3.7 percentage

points, and highly statistically significant. One way to think about the magnitude is that

it is comparable to the participation gender gap for 11th grade girls: i.e., it means that an

11th grade boy with a score just below the AIME cutoff will be almost as likely to drop

out of participating as an 11th grade girl who scored just above the cutoff.

The second main coefficient of interest is the differential effect that failing to qualify

for the AIME has on girls. The estimate indicates that the decrease in the probability of

participation is 1.9 percentage points larger for girls than for boys; i.e., girls are even more

likely than boys to cease participating in the AMCs when they experience a disappointing

outcome (this difference is statistically significant at the 3 percent level). The effect on a

girl of just missing the AIME will be the sum of the two estimated coefficients, so girls with

scores just below the AIME cutoff will be 5.6 percentage points less likely to participate in

the following year than girls who just barely qualify for the AIME. This is consistent with

previous literature on gender differences in self-confidence and responses to competition,

suggesting that those findings are relevant even to the set of highly accomplished girls we

are studying, and providing us with a causal link identifying a factor that contributes to the

widening gap. The gap is, however, substantially smaller than the roughly 10 percentage

point gap Buser and Yuan (2018) found in a similar analysis of Dutch data, and will only

account for a small portion of the observed widening of the gender gap over the high school

years.38

Second, we implement an RD estimator with local linear controls for the running vari-

able (distance to AIME cutoff as in Figure 5), an endogenous bandwidth, and robust

inference as in Calonico et al. (2014), separately on the male and female samples. In these

regressions, we allow for gender-specific nonlinear effects of the running variable on each

side of the cutoff and control for year and grade fixed effects, a dummy for taking the B-

date test, a dummy for taking both the A-date and B-date tests, and dummies for number
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of questions attempted.39

As reported in the second column of Table 7, the estimated effect of the failing to qualify

“treatment” on boys is that it increases their probability of dropout by 3.4 percentage

points. This is very similar to the OLS estimate and is similarly significant.40 The effect

for girls in the third column is somewhat smaller than the OLS estimate at 4.2 percentage

points and remains highly significant although the standard error is larger. We can therefore

conclude that our finding that both boys and girls are more likely to drop out of future

competition is robust to the more flexible allowance for unobserved heterogeneity.41

The 0.8 percentage point difference between the male and female dropout effects is

estimated sufficiently precisely to rule out the larger difference found in Buser and Yuan

(2018), and suggests that this causal channel can only account for a small portion of the

observed widening of the gender gap. However, the standard errors are sufficiently large in

the “Optimal Bandwidth” specifications that we must also say that whether the gender gap

in reactions to disappointment is statistically significant is sensitive to how one controls for

potential unobserved heterogeneity.

Disappointment may also affect the performance of students who continue to participate

in the AMC tests by affecting the effort students put in over the course of the following

year. To look for effects of this type, Table 8 reports coefficient estimates from regressions

like those in Table 4 examining the change in within-grade rank between year t and year

t+ 1, but using regression discontinuity regressions as in Table 7.

The first main coefficient of interest in this regression is again the coefficient on the

dummy for missing the AIME cutoff. In the OLS regression, we get a positive, significant

coefficient, which again suggests that students are not doing better after experiencing

disappointment: students with scores just below the AIME cutoff have a larger increase in

their expected year-t+ 1 rank (i.e., they do worse) than do students with scores just above

the AIME cutoff. The magnitude is not very large in economic terms – students’ ranks
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are increasing by a little more than 10 percent. However, the fact that it is positive is

noteworthy: we have seen that scoring just below the AIME cutoff induces some students

to drop out, and the most natural guess would be that these dropouts are relatively weak

students, which would result in the pool of continuing students with scores just below the

AIME cutoff being positively selected.

In contrast to our earlier result on girls’ reacting worse to disappointment in terms

of being more likely to drop out, girls who continue participating despite experiencing

disappointment show less of a disappointment effect in their performance. This could

reflect that the sample of continuing girls is more selected, but could also reflect that girls

who do not drop out are less likely to reduce their effort. Regardless, it appears that

differences in dropout rates are the channel through which gender differences in reactions

to disappointment might contribute to a widening gender gap. The positive coefficient

estimate on the Female dummy indicates that (along the lines of what was reported earlier)

girls just above and below the AIME cutoff are still improving by less on average than boys

with comparable scores.

The remaining columns of the Table provide estimates of the effect of failing to qualify

for the AIME on subsequent year performance from the “Optimal Bandwidth” RD pro-

cedure. The effect of failing to qualify for the AIME on boys’ year-to-year improvement

is estimated to be smaller at 0.048 and only marginally significant; the point estimate for

girls’ reactions is identical at 0.048, though it is not statistically significantly different from

zero.

To summarize, students appear to react to the disappointment at falling short of the

AIME cutoff both by being more likely to drop out and by improving by less in the sub-

sequent year conditional on not dropping out. The dropout effect may be larger for girls,

though this result is sensitive to specification. This could be one factor contributing to

the widening of the gender gap, particularly given girls’ lower performance in earlier grades
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and particularly if the observed disappointment effects generalize to other parts of the score

distribution; however, consistent with our above decomposition results, these effects can at

most account for a small portion of the observed widening.

VI Conclusions

In this paper, we used data from the American Mathematics Competitions to document

that the gender gap among high-achieving math students is already quite large by 9th

grade. Girls comprise just 30 percent of the 5000 highest scoring 9th graders on the AMC

contests, 18 percent of the 500 highest scoring 9th graders, and just 8 percent of the top

50. One takeaway is that, to fully understand the gender gap in high math achievement

among high school students, it will be necessary to examine pre-high school data. We hope

that our paper will spur further work in this direction.

A second main finding, which is the focus of most of this paper, is that the gender gap in

high math achievement widens substantially over the high school years. The largest change

occurs between 9th and 10th grades, but it is a fairly steady process clearly visible in every

year. The fraction female among students who are among the top 5000 in their grade on

the AMC test drops from 30 percent in 9th grade to 22 percent in 12th grade. Among

students who are among the top 500 in their grade, the drop is from 18 percent in 9th

grade to just 12 percent in 12th grade. These are substantial changes. They would be hard

to reconcile with the simplest views of gender gaps stemming from some time-invariant

biological difference, and they motivate looking more closely at the year-to-year dynamics

of student performance over the high school years.

Our initial analysis of the dynamics of high math achievement brings out several new

facts. Two that are particularly important are that high-achieving students must substan-

tially improve their absolute performance from year to year to maintain their within-cohort

31



rank, and that within-cohort ranks are nevertheless quite persistent. The persistence rein-

forces our earlier comment that pre-high school factors are important drivers of the gender

gap in high school. The need for substantial improvement to stay in place derives from a

combination of two effects. One is that the typical high-achieving math student is substan-

tially improving their knowledge and problem solving skills from year to year. The other

is that there are many more students outside the top 500 than in the top 500. Some lower-

ranked students are making far-above-average improvements, and this forces highly ranked

students to make above-average improvements to maintain their place. Thus, our high-

achieving students are exerting substantial effort to bolster already highly advanced math

skills. There are many, many demands on elite high school students’ time that could lead to

systematic differences in the opportunity costs of and interest in making such investments.

We have identified four distinct gender-related differences in the dynamics of student

performance that contribute to the widening gender gap. In comparison with boys who

had the same score in the previous year, high-achieving girls are more likely to drop out

of participating in the AMC tests (particularly in 12th grade), and the performance gains

of those who do participate again are lower on average and less variable. Girls are also

underrepresented in the pool of high-scoring “entrants” whom we could not match to a

score in the previous year. Our decompositions point to “growth” differences, the under-

representation of girls in the set of students who manage to move up from lower ranks

to high ranks, as the most important source of the widening gap. The other effects are

more moderate in size, but in combination and cumulated over the years also contribute

substantially to the observed widening of the gender gap.

From 9th to 10th grade, the dearth of female entrants is important, and from 11th

to 12th grade, dropouts become an issue. But the growth differences are consistently the

largest effect both across grades and across levels of achievement. In most cases, they

account for well over 100 percent of the observed widening of the gender gap. Again, this
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suggests a line of further inquiry – why are there so few girls who move up substantially

relative to their cohort in the later high school years?

Any potential explanation for the gender gap in high math achievement will have to

reckon with these facts. Several explanations suggested by the literature seem promising.

Being a top performer on the AMC requires a substantial amount of both ability and effort.

Girls may have lower valuations than boys for the rewards associated with top performance

on the AMC contests, based on intrinsic preferences, societal conditioning, future college

or career expectations, or some combination thereof (Wiswall and Zafar, 2018). Girls may

enjoy the AMC competition less than boys and therefore invest less effort toward it (Niederle

and Vesterlund, 2007). Girls may be more risk averse than boys and thus less likely to

invest all their effort in one extracurricular activity with a risky payoff (Borghans et al.,

2009). Girls may have more promising alternative extracurricular activities competing for

their time than boys (Wang et al., 2013). These and other factors may contribute to the

gender gap in 9th grade. More importantly for our purposes, they may contribute to the

widening of the gender gap as the effort required to maintain one’s rank increases, as the

number of future opportunities to succeed decrease and college applications loom larger

(i.e., the stakes increase) (Azmat et al., 2016), and as students receive feedback on past

performance.42

Our final Section examines one potential contributor and suggests that reactions to

disappointment may be part of the answer. Both boys and girls who experience the dis-

appointing outcome of just barely failing to qualify for the AIME are more likely to not

participate in the following year. The dropout effect may be larger for girls, although the

significance of this difference is not very clear. Apart from psychological effects related to

disappointment, of course, one could also potentially explain such reactions in more stan-

dard “rational” ways; e.g., high-achieving girls might have a greater breadth of other skills

and interests that compete for their time and might therefore rationally shift more effort
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away from math contests toward other activities to maximize chances of college admission

or long-run success. We hope to see future work on this as well.

A limitation of all of our work on the AMC contests is that the data concern performance

in a competitive environment. We believe that many of the investments in problem solving

skills and mastering precalculus mathematics that the AMC contests measure will also

benefit students in later life environments. In our earlier work, we presented some data on

SAT scores consistent with this view, but it would nice to have this complemented with

work on the dynamics of achievement as measured with other instruments. It would be

even more complementary to be able to track AMC participants forward and examine how

participation, achievement, disappointment, etc. on the AMC tests affect outcomes that

are well established to be important in later life, such as choice of college major, pursuit

of postgraduate education, and career choices. Agarwal and Gaule (2018) perform such

an exercise on a more extreme set of high-achievers in high school math competition –

students who advance all the way to the International Mathematics Olympiad. They find

that IMO are scores are highly predictive of math publications and citations twenty years

in the future: IMO gold medalists are fifty times more likely to win the Fields medal than

are graduates of a top 10 math PhD program who did not participate or advance quite

this far in high school math contests. AMC scores/participation are surely not as strongly

predictive as this of any subsequent achievement, but it would be very interesting to see

how they are related to longer-run outcomes.
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Notes

1See Xie and Shauman (2003) and Goldin et al. (2006) among others.

2See Hedges and Nowell (1995), Guiso et al. (2008), Hyde et al. (2008), and Ellison and Swanson (2010)

on math test scores, and Ginther and Kahn (2004) and Carrell et al. (2010) on workforce issues.

3See Guiso et al. (2008), Pope and Sydnor (2010), and Carrell et al. (2010).

4See Gneezy et al. (2003), among others, on gender differences in performance in competitive environ-

ments.

5E.g., laboratory and field evidence suggests that men and boys are more likely to select into experi-

mental and real-world competition than women and girls of equal ability (Buser et al., 2014; Niederle and

Vesterlund, 2007); gender differentials in standardized test performance of high school students depend on

the competitive stakes of the tests (Azmat et al., 2016); and, in a TV game show testing general knowledge,

women earn 40 percent less than men and exit the game prematurely at a faster rate Hogarth et al. (2012).

The large literature showing that girls earn higher grades in all subjects, with particularly large differences

in language courses, suggests that girls may be spending more time on non-math coursework. See Voyer

and Voyer (2014) for a metastudy. Chachra et al. (2009) provide evidence on the extracurricular activities

of engineering students.

6See Hedges and Nowell (1995), Guiso et al. (2008), and Ellison and Swanson (2010).

7See, e.g., Fryer and Levitt (2010) regarding US students, Bharadwaj et al. (2016) regarding Chilean

students, and Contini et al. (2017) regarding Italian students.

8Sutter and Glätzle-Rützler (2014) report that such differences are robust across a broad age range and

visible as early as age 3, so they may help account for our 9th grade results.

9Our finding on the magnitude of the 9th grade gender gap can also be seen as suggestive that differences

in interest in competition are producing part of the real-world effect of girls being underrepresented among

the highest scorers on the contests.

10Our sample has approximately 100 times as many student-years.

11Focusing on STEM fields specifically, Ceci et al. (2014) present evidence on lower female propensities to

major in math-intensive subjects in college and higher female propensities to major in non-math-intensive

sciences. They then examine career development in STEM fields and find greater evidence of pipeline

leakage in fields such as psychology, life science, and social science, rather than in math-intensive fields in

which they are more underrepresented.

12Ellison and Swanson (2010) note that AMC scores are a stronger predictor of how students will do
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when retaking the math SAT than is the previous math SAT score, and the tests remain a calibrated

predictor of future test scores at upper tail percentiles that are an order of magnitude higher than can be

measured with the SAT.

13While the 3,000 AMC-offering schools is a small fraction of the total number of high schools in the

US, Ellison and Swanson (2016) note that at least 80 percent of the highest performing students on several

other math contests and mathematical research contests took the AMCs. At less rarefied achievement

levels, a back-of-the-envelope calculation suggests that about 20 percent of the students at participating

schools with 800s on the SAT math take the AMC contests.

14The structure of the AMC contests changed twice in the period we study. In 1999, all students took

a common test similar to the AMC 12. In 2000, the AMC introduced the AMC 10 and offered younger

students the option of taking either test. The AMC 10 and 12 are similar – 14 of the 25 questions were

common to both tests in the first year – but to be less intimidating to younger students and less affected

by knowledge of above grade-level material, the AMC 10 avoids logarithms and trigonometry, and rarely

has questions as difficult as the five most difficult on the AMC 12.

15Online Appendix A provides more details on the methodology and the resulting normalizations. An

AMC 10 score of x turns out to be roughly equivalent to a score of 7
8x on the AMC 12, but there are

idiosyncratic differences from test to test of about 5 to 10 points on the AMC 12’s 150 point scale. There

is more top-coding of AMC 10 scores than AMC 12 scores, but an order of magnitude less than on the

SAT. A perfect 150 on the AMC 10 is usually equivalent to about a 130 on the AMC 12. A few hundred

students per year score at least 130 on the AMC 12 versus about 15,000 who get perfect scores on the

math SAT.

16Only unique matches are kept in the dataset for analysis. Students’ demographic variables are missing

for 3-6 percent of observations; we consider two values of a variable to be “consistent” if they match or

if one or more values is missing. Grade is considered a match between a year-t observation and a year-t′

observation if gradet − gradet′ = t− t′.
17Miscounting is a concern because most schools offer only the A-date tests and some of the most serious

students will take a B-date test at another area school that offers it if their school does not. Our procedure

avoids double-counting these students if the alternate location they find is a school offering the test on both

dates, which we think is by far the most common situation in which this occurs. We could alternately have

used all of the B-date scores with some set of matching rules to filter out potential out-of-school students.

Any such procedure could at most increase the sample size by two percent.
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18We have constructed the sample to include 9th, 10th, 11th, and 12th graders from all years, so the drop

in female participation noted here should not be contaminated by the time-trend in AMC participation.

19The 19 percent estimate for the top group is noisy given the small sample sizes: the top 50 is only 7-8

percent female, which means that there are typically just 3 or 4 girls in the top 50 of each grade-year.

20In 2015, over 120,000 AP Calculus exams were taken by students in 11th grade and below. It was

less common for the cohorts we study, but there were already over 30,000 students in 11th grade or below

taking AP Calculus when our first cohort was in 11th grade (2001).

21When student performance can only be measured as a within-year z-score, the dynamics of the year-

to-year changes in relative-to-cohort performance are more difficult to analyze for high-scoring students

because changes are highly asymmetric: high-achieving students can only improve their performance very

slightly from year to year, but can easily do much worse.

22These regressions are run on the subsample for which previous year scores are available. The identifying

assumption is that rank in year t − 1 is another (noisy) measure of the student’s position in the latent

expected achievement distribution in year t, and that measurement error in year t− 1 is uncorrelated with

measurement error in year t.

23Further evidence on the role of measurement error can be observed in Online Appendix Table A3,

which shows that the sign of the estimated relationship between −(log(GradeRankit) − log(5000)) and

log(Ranki,t+1)− log(Rankit) flips when we instrument for log(GradeRankit) as in Table 3 above. That is,

measurement error in log(GradeRankit) leads to substantial mean reversion, which obscures the relation-

ship between initial achievement and year-to-year improvement in the OLS regression.

24Due to the discreteness of AMC scores, there will typically be a number of students tied for positions

that cross each boundary. For example, in 2006, fourteen 11th graders had scores of 124, which left them

tied for positions 196 to 209. In this situation, we would include the experience of each of these students

with weight 0.64 in our calculation of what happened to students with ranks of 201 to 500 in year t. And

we similarly record each student’s outcome as their probability of being in each rank group as though ties

are broken at random.

25To investigate this issue, we looked manually through published lists of 2006 and 2007 high scorers.

Among the top 50 students in each grade in 2006, we failed to find 2007 matches for 2.6 percent of 9th

graders, 4.3 percent of 10th graders, and 12.1 percent of 11th graders. These figures should be compared

to the sum of the dropout rate and the probability of finishing outside the 2000 in our algorithmic match,

which is about 18 percent on average across grades. Several factors are involved in the superiority of
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this manual match over our algorithmic match: manually, we were able to identify students who switched

schools, students who took the test at a testing center in one year and in their high school in another year,

and students who appear to have listed their first name differently in different years. It is worth noting

that matching failures are likely more prevalent at the highest score levels due to high-performing students

taking the exams at testing centers in lieu of or in addition to their own high schools.

26Recall that Dropoutit+1 will reflect both true dropouts and students whom we fail to match for other

reasons. The B-test dummy takes on a value of 0.02 and is statistically significant. We suspect that this

reflects in part that a higher fraction of students taking B-date tests are students taking the test at a

location other than their regular school, which makes us more likely to fail to match their performances

across years. We hope that such matching failures are not gender-related.

27It is possible that there are gender-related differences in our ability to match students; e.g., one gender

could be more likely to fill in their name differently in different years. However, girls are overrepresented in

the pool of year-t high scorers whom we cannot match to a year-t+ 1 score, and underrepresented among

year-t + 1 high scorers whom we cannot match to a year-t score: the potential gender-related matching

errors suggested by these results have opposite sign.

28The “average” decomposition is obtained by averaging separately estimated decompositions of the

changes from 9th to 10th, 10th to 11th, and 11th to 12th grades.

29The latter matters here because students outside the top 5000 will need to improve by substantially

more than the average amount to move into the top 5000.

30In order to account for noise in the decomposition exercise introduced by the local linear regressions,

we performed a nonparametric bootstrap of the decomposition procedure, resampling at the student level

and holding ranks fixed across 2,000 bootstrap draws. As shown in Table A2 in the Online Appendix, all

terms in Table 6 are estimated with a great deal of precision, with the exception of several factors at the

top 50 level.

31In the years in our sample roughly 500-750 9th graders, 1000-2000 10th graders, 3000-5000 11th graders,

and 4000-6000 12th graders qualify. In later stages students who score highly enough on the on the AMC

10/12 and AIME are invited to participate in the USA Math Olympiad (USAMO). High USAMO scorers

are invited to the Math Olympiad Summer Program (MOP). Six MOP students are selected to represent

the United States at the International Math Olympiad (IMO).

32This reallocation could involve reallocating effort toward other competitive endeavors – e.g., biology,

chemistry, physics, linguistics, or informatics olympiads or debate competitions – or to coursework or
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noncompetitive extracurriculars.

33Hence, the cutoff can be below 100/120 but never above.

34Although some students may be aware that the AIME cutoff for the AMC 10 is often 120, and the

cutoff for the AMC 12 is often 100, it would nevertheless be difficult for students to “game” the cutoff and

strategically score just above it. If gaming were common, we would expect to see bunching of students

right at the cutoff; as shown in Figure A1, the decline in student counts in a neighborhood of the cutoff is

smooth for both boys and girls, and there is no evidence of bunching.

35See Figure A1 for a histogram, by gender, of the distribution of students relative to the AIME cutoff.

36In 1999, the AMC had 30 questions and gave 5 points for a correct answer and 2 for a blank answer.

In 2000-2001, the tests gave 6 for a correct answer and 2 for a blank answer. In 2002-2006, the score for a

blank answer increased to 2.5.

37The regression also includes unreported year and grade fixed effects, a dummy for taking the B-

date test, a dummy for taking both the A-date and B-date tests, a quadratic in log(GradeRank), and

Female interactions with the linear and quadratic log(GradeRank) terms. We normalize within-grade rank

separately within each grade so that the adjusted log of within-grade rank variable has mean zero within

each grade for students with scores exactly at the AIME cutoff. With this normalization, for example,

the coefficients on the Female × Grade 9 interaction can be thought of as giving the gender difference in

dropout rates for students who qualified for the AIME with the lowest possible score.

38The estimate here is sufficiently precise to rule out an effect close to that found in Buser and Yuan

(2018). Their dataset is two order of magnitude smaller, resulting in standard errors that are sufficiently

large that they typically cannot rule out a smaller gap of the size we estimate.

39In these regressions we use the default optimal bandwidth as implemented in Stata’s rdrobust package.

An optimal bandwidth of 12 points is selected for males, vs. 10.6 for females.

40Both rdrobust results described here are highly significant (p-values ≤ 0.01) according to both conven-

tional and robust inference methods; conventional standard errors are reported in the Table for brevity.

41This contrasts with Buser and Yuan (2018)’s being unable to find an effect for boys.

42Women more often attribute past successes to luck than to inner attributes (and past failures to inner

attributes), while men do the opposite (Beyer, 1990; Felder et al., 1994).
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Table 1: Summary Statistics – Participation and Scores

Grade Number of Statistics on AdjustedScore
level Students Mean St.Dev % ≥ 100 % ≥ 120

Girls
Grade 9 18,984 56.8 14.8 0.7 0.04
Grade 10 28,008 60.3 15.3 1.2 0.06
Grade 11 28,348 66.3 15.7 2.9 0.11
Grade 12 23,294 69.1 16.2 4.5 0.18

Boys
Grade 9 21,067 61.7 16.6 2.5 0.26
Grade 10 31,152 66.0 17.2 4.0 0.40
Grade 11 33,988 72.8 17.2 7.8 0.64
Grade 12 31,391 76.0 17.8 11.3 1.04
Notes: Table reports average annual AMC participation and scores by gender
and grade level, weighting each year 1999-2007 equally.
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Table 2: Growth in Absolute Performance

Within- Decrease in overall rank
grade Corresponding overall rank to maintain rank in grade
rank Grade 9 Grade 10 Grade 11 Grade 12 9→ 10 10→ 11 11→ 12
5000 52,554 32,686 15,654 11,395 38% 52% 27%
1000 15,674 5,734 3,293 2,186 63% 43% 34%
500 8,350 3,234 1,738 1,356 61% 46% 22%
100 1,173 668 290 241 43% 57% 17%
50 875 310 152 106 65% 51% 30%

Notes: Table reports the full-population rank of the Nth-best student in each grade.
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Table 3: Average Achievement Gains as a Function of Initial Achievement

Dep. Var.: log(Ranki,t+1)− log(Rankit)
10th→ 11th 11th→ 12th

Variable Coef. Std. Err. Coef. Std. Err.
Constant -0.50∗∗∗ (0.005) -0.33∗∗∗ (0.005)
−(log(GradeRankit)− log(5000)) -0.07∗∗∗ (0.004) -0.05∗∗∗ (0.004)
Number of observations 81,430 100,270
Root MSE 0.92 1.01
Notes: Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Table reports
the results of IV regressions of growth in absolute performance as a function of initial performance
relative to cohort. log(GradeRankit) instrumented with log(GradeRanki,t−1).
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Table 4: Gender Differences in Within-Cohort Rank Dynamics for High-
Achieving Students

Dep. Var.: log(GradeRanki,t+1)− log(GradeRankit)
Variable Top 5000 in grade at t Top 500 in grade at t
Female 0.31∗∗∗ 0.32∗∗∗

(0.012) (0.055)
log(GradeRankit) -0.25∗∗∗ -0.09∗∗∗

(0.007) (0.024)
log(GradeRankit)

2 -0.02∗∗∗ 0.01
(0.002) (0.010)

Female× log(GradeRankit) -0.03∗ 0.01
(0.014) (0.065)

Female× log(GradeRankit)
2 -0.01 0.01

(0.007) (0.039)
σ̂2

male 1.51∗∗∗ 2.18∗∗∗

(0.009) (0.033)
σ̂2

female 1.20∗∗∗ 1.99∗∗∗

(0.015) (0.078)
Number of observations 81,570 9,682

Notes: Regression sample is restricted to students in grades 9, 10, or 11 in the initial year and whose genders
were non-missing. The log(GradeRankit) control is adjusted by subtracting the sample mean. Regressions
also include unreported year and grade dummies, dummies for students taking the B-test (B-Dateit), and
dummies for students taking both the A-test and B-test (Bothit). The latter variables are intended to
control for unobserved differences in students’ commitment to the contests. Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 5: Gender Differences in Dropout Rates for High-Achieving Students

Dep. Var.: Dropout t→ t+ 1
Sample: Top 5000 in grade X in year t Top 500

Variable All grades Grade 9 Grade 10 Grade 11 All Grades
Female 0.023∗∗∗ 0.005 0.021∗∗∗ 0.045∗∗∗ 0.002

(0.004) (0.006) (0.006) (0.007) (0.013)
log(GradeRankit) 0.069∗∗∗ 0.073∗∗∗ 0.066∗∗∗ 0.069∗∗∗ 0.030∗∗∗

(0.002) (0.004) (0.004) (0.004) (0.006)
log(GradeRankit)

2 0.008∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.008∗∗∗ 0.004
(0.001) (0.001) (0.001) (0.001) (0.002)

Female × log(GradeRankit) 0.001 0.006 -0.004 -0.002 -0.005
(0.005) (0.008) (0.008) (0.008) (0.016)

Female × log(GradeRankit)
2 0.001 0.004 -0.005 0.001 0.007

(0.002) (0.004) (0.004) (0.004) (0.008)
Number of observations 119,325 39,284 39,747 40,294 12,020
Notes: Regression sample is restricted to students in grades 9, 10, or 11 in the initial year and whose genders were
non-missing. The log(GradeRankit) control is adjusted by subtracting the sample mean. Regressions also include
unreported year and grade dummies, dummies for students taking the B-test (B-Dateit), and dummies for students
taking both the A-test and B-test (Bothit). The latter variables are intended to control for unobserved differences
in students’ commitment to the contests. Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 6: Decomposition of Declines in Fraction Female in Top Rank Groups

Grade Achievement Change in Decomposition of decline
Level Level % Female Drop Cont Grow Entry Mech

Average Top 5000 -3.1 -0.4 -1.2 -3.6 -1.1 3.5
9→ 10 Top 5000 -4.6 -0.1 -1.4 -2.9 -2.2 2.0
10→ 11 Top 5000 -2.3 -0.4 -1.1 -3.7 -0.8 3.8
11→ 12 Top 5000 -2.3 -0.9 -1.1 -4.3 -0.4 4.8
Average Top 500 -1.9 -0.3 -1.0 -4.5 -0.4 4.1
Average Top 50 -0.5 -0.3 -0.8 -3.0 0.2 3.1
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Table 7: Reactions to Disappointment – Regression Discontinuity Evidence
on “Dropout” Rates

Dep. Var.: Dropout t→ t+ 1
Sample:

Within two Optimal bandwidth
answers Male Female

Estimation:
Variable OLS RD with controls
Female × Grade 9 -0.006

(0.011)
Female × Grade 10 0.009

(0.008)
Female × Grade 11 0.038∗∗∗

(0.006)
Below AIME Cutoff 0.037∗∗∗ 0.034∗∗∗ 0.042∗∗∗

(0.006) (0.007) (0.012)
Female × Below AIME Cutoff 0.019∗

(0.009)
Bandwidth 10/12 12.043 10.575
Number of observations 139,874 701,686 614,014

Notes: Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Table 8: Reactions to Disappointment – Regression Discontinuity Evidence
on Achievement Gains

D. V.: log(GradeRankit+1)− log(GradeRankit)
Sample:

Within two Optimal bandwith
answers Male Female

Estimation:
Variable OLS RD with controls
Female × Grade 9 0.412∗∗∗

(0.030)
Female × Grade 10 0.309∗∗∗

(0.022)
Female × Grade 11 0.285∗∗∗

(0.017)
Below AIME Cutoff 0.097∗∗∗ 0.048∗ 0.048

(0.017) (0.020) (0.039)
Female × Below AIME Cutoff -0.067∗∗

(0.025)
Bandwidth 10/12 13.041 8.156
Number of observations 85,545 324,325 247,507

Notes: Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
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Figure 1: Percent Female by Grade and Achievement Level

Notes: Figure reports the average percent female, for each achievement group, across the six cohorts that we observe for all
four of their high school years during 1999-2007.
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Figure 2: Persistence in Math Performance – Forward Transition Matrix

Notes: Figure reports the forward transition probability of each year-t+1 within-grade rank group for students in each year-t
within-grade rank group.
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Figure 3: Early Performance of Top Math Students – Backward Transition
Matrix

Notes: Figure reports the probability of each within-9th-grade rank group for students in each within-12th-grade rank group.
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Figure 4: Gender Composition of AMC Entry

Notes: Figure reports the gender composition of highly ranked students new to the AMC in comparison with students in the
rank group in the previous year. All calculations are simple unweighted averages of the means for each grade-year cell.
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Figure 5: Reactions to Disappointment – “Dropout” Rates
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Notes: Figure reports the raw probability that students with scores around the AIME cutoff “drop out” of participating in
the next year, by gender. Running variable is distance between the student’s score on the first test he or she took in a given
year and the AIME cutoff for that test-year. Lines indicate linear fit within 24 points of cutoff.
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