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1 Introduction

There is broad agreement that technological change has been a major engine of economic growth and

prosperity over the last 250 years.1 However, not all innovations are created equal and the direction of

technology matters greatly as well.

Both antibiotics and dietary supplements have resulted from new innovations and have led to products

that have been consumed by billions of people around the world. But most would agree that antibiotics

constitute a bigger technological breakthrough and have been socially more beneficial.2 More strikingly,

the same advances by early twentieth-century chemists, especially Fritz Haber and Carl Bosch, paved the

way to both synthetic agricultural fertilizers, which massively boosted crop yields, and the large-scale

production of more powerful explosives, which led to the deaths of millions of soldiers and civilians (e.g.,

Hager, 2009). Few people would think that these two advances have similar social value. Additionally,

different technologies often create gains and losses for different groups and may even influence other major

social outcomes, including civic participation and democracy.

Economists have long recognized that the overall amount of research effort may be insufficient and,

as a result, government support for innovation, for instance in the form of investments in the research

infrastructure or R&D tax credits, is beneficial (see, e.g., Jones and Williams, 1998, Bloom, Shankerman

and Van Reenen, 2013, Howell, 2017, and Azoulay, Graff Zivin, Li and Sampat, 2019, for evidence).

Nevertheless, a common perspective is that the market is the best judge of how research efforts should

be allocated: once basic support to research is provided, the government should have a limited role in

influencing the direction of innovation. There are indeed myriad examples of failed government attempts

at “picking winners” (see Pack and Saggi, 2006, and Hufbauer and Jung, 2021, for reviews). The British

science writer Ridley (2020) argues that the cumulative, step-by-step process of innovation is inevitably

hampered when governments try to influence its direction. The opposite point of view emphasizes the

myriad distortions in the equilibrium innovation process.

In this paper, I take an intermediate position. I assume that the market (working through competition

between corporations and scientists) is best placed to experiment with new methods and carry out

innovations, but it is possible for systemic factors to distort the direction of technology. This distinguishes

my approach from both older-style industrial policy, where the government is assumed to have some ability

to judge which sectors are more promising, and from more recent arguments claiming that the government

can be as good as the private sector in innovation (e.g., Mazzucato, 2015).3

1See, for example, Mokyr (1992, 2011) and Koyama and Rubin (2022).
2US annual expenditures are about $10 billion in the 2010s for antibiotics and above $30

billion for dietary supplements (see https://academic.oup.com/cid/article/66/2/185/4093915) and
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952619/). This is despite the fact that there are no well-established
studies documenting the effectiveness of dietary supplements (see https://pubmed.ncbi.nlm.nih.gov/32601065/ and
https://www.nytimes.com/2016/11/15/well/eat/studies-show-little-benefit-in-supplements.html).

3Existing evidence suggests that although government encouragement to invest in high-tech sectors can have major
benefits (e.g., Gruber and Johnson, 2019; Moretti, Steinwender and Van Reenen, 2021), top-down research often generates
extensive distortions. For example, Howell, Rathje, Van Reenen and Wong (2021) show that traditional Defense Department
research contracts have become less effective over time, while those that provide more open-ended support for new areas
create more successful innovations. Similarly, convincing evidence of productivity benefits from industrial policy comes from
settings in which such policy supported broad sectors, such as heavy and chemical industries in South Korea and Finland
(Lane, 2022, Mitrunuen, 2019). Additionally, Branstetter, Li and Ren (2022) show that recent Chinese industrial policy has
not been successful in increasing firm productivity, while Acemoglu, Yang and Zhou (2022) provide evidence that top-down
Chinese academic incentives have led to significant distortions in the direction of research.
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To develop these ideas, I extend the directed technological change framework in Acemoglu (1998,

2002), focusing on an economy in which the private sector spearheads innovation and can target either

one or both of two alternative, imperfectly substitutable technologies. From a positive perspective, the

framework links the direction of technology to relevant market sizes (supplies of factors of production

working with these technologies and consumer demand), the price of other inputs into the production

process (for example, natural resources used in different sectors), markups and regulations. The implica-

tions of the framework are broadly in line with a growing body of empirical work, especially from sectors

such as energy, health care, agriculture, modern automation and traditional industrial technologies.

More importantly for my focus here, the framework highlights several factors that can lead to sys-

tematic misalignment between market incentives and social objectives. First, some technologies generate

negative externalities, while alternative paradigms aimed at performing similar production tasks may

avoid these negative effects or even create positive externalities.4 The leading current example of this

phenomenon is in the energy and transport sectors, where fossil-fuel-based energy creates carbon emis-

sions and environmental damages, while renewables avoid such emissions. When the market does not

price these damages, equilibrium innovation will be excessively directed towards fossil-fuel technologies.

I argue that similar issues arise in health care, where some technologies, for instance those targeting

prevention, may have greater social benefits than those aimed at high-tech procedures for late-stage

cures. I will also suggest that the direction of technology may be distorted towards automation and away

from worker-complementary technologies, because labor market imperfections create a wedge between

the social cost of labor and the equilibrium wage.

Second, different sectors often have different markups, and I show that equilibrium incentives will

be excessively biased towards higher-markup sectors and technologies.5 Health care illustrates this phe-

nomenon, for curative technologies appear to have higher markups than preventative ones.6

Third, a variety of social forces may favor one paradigm ahead of alternatives. For example, the

research community may value certain types of breakthroughs more than others, because they are viewed

as the more exciting research area or because they are more useful for building a scientific reputation.

One possible illustration may be from modern digital technologies, where many researchers believe that

the most important and coveted advances are those that enable algorithms to reach human parity in a

range of tasks. This perspective then creates greater incentives to work on automation rather than other

paradigms aimed at more human-complementary tools.7

Fourth, when different technologies create distinct distributional effects and society cares about in-

equality (either for direct or indirect reasons related to political economy), the market will fail to inter-

4These positive externalities may also be on future research, for example, with some areas creating more substantial
knowledge gains upon which future innovations can build. Another example of negative externalities would be “defensive
innovations” undertaken by incumbents in order to prevent rivals from increasing their market share.

5High markups encourage more innovation effort but also simultaneously reduce the utilization of a technology. This
latter effect implies that expanding the production level of high-markup technologies is also socially valuable. Yet this force
is dominated by the former effect, and thus the equilibrium involves excessive innovation effort devoted to high-markup
technologies.

6One telling example is emphasized in Howard, Bach, Brendt and Conti (2015): the melanoma drug Yervoy, approved in
2011, was marketed at the price of $120,000 for a four-dose treatment by the pharmaceutical company Bristol-Myers Squibb.
It extends life by about four months. I provide direct evidence on these markup differences in Section 5.

7See Acemoglu and Restrepo (2020b), Acemoglu, Jordan and Weyl (2022), Brynjolfsson (2022) and Acemoglu and Johnson
(2023) for the argument that the general incentives in the artificial intelligence (AI) community and the agenda spearheaded
by Alan Turing are creating an excessive focus on using AI technologies for automation.
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nalize these additional considerations. Finally, the direction of innovation may be distorted because of

coordination failures. For example, there may be insufficient diversity in research investments, or firms

and innovators may fail to coordinate on more productive alternative paradigms, as I discuss briefly

below.

While in practice all five of these effects are likely important, I focus on the first two, for two related

reasons. First, these two channels can be, in principle, quantified by measuring markups or social bene-

fits/externalities and are thus better candidates for “systematic distortions” in the direction of innovation.

In the last part of the paper, I make a preliminary attempt at this type of quantification. Second, because

these are quantifiable distortions, correcting them does not require government agencies to have superior

information or an ability to “pick winners”. By comparison, it is more difficult to objectively determine

whether an untried paradigm would be more successful or if the research community’s enthusiasm for a

specific topic is a “fad” leading to excessive concentration of innovative effort.

I reestimate the empirical models from three studies in order to obtain some of the key parameters

of my framework in these three different settings. These studies are: Acemoglu and Restrepo (2022)

for research directed at automation technologies; Acemoglu, Moscona, Sastry and Williams (2023) for

medical research directed towards different types of diseases; and Aghion, Dechezleprêtre, Hémous, Martin

and Van Reenen (2016) for fossil-fuel-based and cleaner innovations in the automobile industry. In each

case, I identify the elasticity of substitution between different technologies and the degree to which past

advances in one field create a relative advantage for the same field in the future. These two parameters

are critical for both the equilibrium response of the direction of innovation to factor supplies, prices and

policies, and for the divergence of equilibrium allocations from socially-optimal choices. I combine these

numbers with estimates of the social costs/benefits of different technologies and markups to assess how

distorted equilibrium technology choices are and the welfare gains from redirecting innovation. In each

case, I provide suggestive evidence that innovation distortions and their welfare effects are sizable.

Related Literature. This paper builds on and extends the literature on directed technological

change. The first explicit discussion of this topic is in Hicks’s (1932) argument that a high price for

a factor induces technological change targeted at economizing on that factor. The induced technology

literature of the 1960s explored whether technological change would be Harrod-neutral (purely labor

augmenting), as typically imposed in neoclassical growth models (e.g., Kennedy, 1964, Ahmed, 1965,

Samuelson, 1965, Drandakis and Phelps, 1966). But this literature relied on ad hoc rules determining

the direction of technology and the exact form of these rules had defining effects on their results.

An early empirical investigation of these issues was Habakkuk’s (1962) seminal study of American

technology in the nineteenth century. Habakkuk argued that the direction and speed of American tech-

nology was shaped by a desire to economize on scarce skilled labor in the country. Allen (2009) similarly

suggested that Britain was the first country to industrialize because British labor was more expensive

than labor in other European economies and in China.

The more recent literature on the direction of technological change has developed models with explicit

R&D decisions targeted at different sectors and monopolistic profits from new technologies, which shape

the composition of innovation. The first two papers within this area, Acemoglu (1998) and Kiley (1999),

investigated the reasons why recent industrial technologies have often been skill-biased and why this skill

bias may have accelerated starting in the 1980s, concurrently with the large increase in the supply of
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educated workers in the US and other industrialized nations.

Acemoglu and Zilibotti (2001) develop a model of directed technological change in a multi-country

setup, whereby technology choices in advanced economies are directed to their own needs, creating a

form of “inappropriate technology” from the viewpoint of less developed nations with different factor

endowments. Broader cross-country implications of directed technological change are studied in Gancia

and Zilibotti (2005). Acemoglu (2003a) and Thoenig and Verdier (2003) explore how trade openness

impacts the endogenous skill bias of technology. Acemoglu (2003b) and Jones (2006) investigate why an

endogenous direction of technology can lead to Harrod-neutral advances and thus balanced growth as in

textbook neoclassical models. Acemoglu and Linn (2004) and Costinot, Donaldson, Kyle and Williams

(2019) study how demographic changes that alter the future market sizes of different types of medical

technologies impact the direction of innovation, while in Acemoglu (2010) I present a formalization of the

Habakkuk-Allen hypothesis, where labor scarcity can be a spur to faster economic growth. Bovenberg

and Smulders (1995), Goulder and Schneider (1999), Di Maria and Valente (2006), Grimaud and Rouge

(2008), Acemoglu, Aghion, Bursztyn and Hémous (2012), Rodrik (2014), Acemoglu, Akcigit and Kerr

(2016) and Hémous (2018), among others, discuss the balance between clean and dirty technologies and

possible corrective policies in the presence of environmental externalities. Acemoglu and Restrepo (2018,

2022) and Hémous and Olsen (2022) explore the endogenous choice between automation and other types

of technologies.

The model I present here generalizes Acemoglu (2002) in two important directions. First, I extend the

baseline framework to perform comparative statics with respect to input prices, markups and externalities.

Second, to the best of my knowledge, I undertake the first general analysis of the efficiency of the direction

of technology within this framework, though Acemoglu, et al. (2012) provides a characterization of

optimal policies to restore efficiency in a model of endogenous technology and carbon emissions.

Also closely related to this paper are a series of works that point out why the equilibrium direction of

technology may be inefficient. Acemoglu (2011) shows that equilibrium innovation is often insufficiently

diverse, investing too much in one of two alternative technologies. This innovation pattern then leaves the

economy vulnerable to shifts in underlying conditions or blockages in existing technological paradigms.

Acemoglu, Alp, Akcigit, Bloom and Kerr (2018) propose a model in which the distribution of innovation

between firms of different sizes and ages is distorted.

Akcigit, Hanley and Serrano-Velarde (2021) distinguish between fundamental and applied research,

and argue that the former generates more knowledge spillovers. The paper provides empirical evidence

and a quantitative evaluation of this source of inefficiency. Distortions in the direction of technology

resulting from different knowledge spillovers are also explored in Dechezleprêtre, Martin and Mohnen

(2013) and Martin and Verhoeven (2022), and are present in models of international technology diffusion

as well (e.g., Grossman and Helpman, 1993, Coe and Helpman, 1994). Acemoglu, Akcigit and Kerr (2016)

show that new ideas in some fields matter more for subsequent innovation than others. These differential

knowledge spillovers are complementary to the distortions emphasized in this paper.

Another related literature focuses on the choice between different technological paradigms and the

possibility of inefficient lock-in (e.g., Dosi, 1982, and Arthur, 1989, as well as recent work by Acemoglu

and Lensman, 2023).

The rest of the paper is organized as follows. Section 2 presents the basic framework of directed tech-

4



nological change, first in a static and then in a dynamic setting and characterizes equilibrium innovation.

Section 3 compares the equilibrium allocation and the types of technologies developed to those that are

socially optimal. Section 4 reviews several studies that provide evidence on the effects of market size,

prices, markups and policies on the direction of innovation. Section 5 focuses on a few of these studies to

obtain estimates of the key parameters of the framework. It then combines these parameters with num-

bers on markups and externalities to present a first evaluation of the extent of technology distortions and

welfare gains from correcting them. Section 6 contains concluding comments, while the online Appendix

presents additional derivations, results and details left out of the main text.

2 A Simple Model of Directed Technology

In this section, I provide a simple, two-sector model of directed technology. For simplicity, I start with a

static setting and then outline the dynamic version, which is similar to the setup in Acemoglu (2002).

2.1 Static Environment

The economy is static and inhabited by a representative household with preferences given by

U = lnC + lnE, (1)

where C denotes consumption, while E is an externality term, specified below. The log functional form

is adopted to maximize the similarity with the infinite-horizon version of this model. There are three

different types of labor (two of them working in the two sectors plus scientists). As is standard, I assume

that labor income from all these types of labor accrues to the representative household.

The unique final good is produced with the production function

Y =
[
γ1Y1

ε−1
ε + γ2Y2

ε−1
ε

] ε
ε−1

, (2)

where Y1 and Y2 denote the output levels of the two intermediate products, which are themselves produced

using two different types of technologies (clean vs. dirty, preventative vs. curative, worker-friendly vs.

automation, etc.). Their production functions are given by

Yj = Xα
j R

1−α
j , (3)

for j ∈ {1, 2}, where Xj denotes a variable input aggregate and Rj is a resource input, with exogenous

price qRj .

The variable input is in turn produced with the following production function

Xj =

(∫ Nj

0
xj (ν)1−β dν

)
L̃j

β, (4)

where L̃j is a specialized factor employed only in sector j. For example, L̃2 could correspond to skilled (or

college-educated) labor, while L̃1 could be unskilled labor.8 In addition, the xj (ν)’s denote the quantities

8In some applications, these could be the same labor allocated to the two sectors. In that case, L1 and L2 would be
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of the different machine varieties used in the production of intermediate good j ∈ {1, 2} and β ∈ (0, 1). In

this formulation, [0, Nj ] denotes the range of machines used in the production of j ∈ {1, 2} and captures

how advanced the technology for intermediate good j is. Once invented, each machine can be produced

at the fixed marginal cost ψ > 0 in terms of the final good.

In what follows, I assume that all labor is supplied inelastically:

L̃j = Lj for j ∈ {1, 2}.

I model the innovation possibilities frontier, which specifies how new machine varieties are invented, by

assuming that new ideas (or new machine varieties) are created by scientists. Specifically, the technology

for creating new machine varieties is assumed to take the following static form:

Nj = η̃jφ(Sj)Sj , (5)

where η̃j > 0, Sj is the number of scientists assigned to technology j, and φ(Sj) = S
δ

1−δ
j with δ ∈ [0, 1).

When δ > 0, the innovation possibilities frontier features increasing returns to scale at the sectoral level.

In the dynamic model, these increasing returns will take the form of path dependence, meaning that past

advances in the technology of a sector will make further advances in the same sector easier. Scientists

take the behavior of other scientists, and thus the value of the φ function, as given. The case of δ = 0

corresponds to the useful benchmark in which there are no increasing returns to scale and scientists have

a constant productivity in each sector.

Scientists that innovate and create varieties of machines become the owners of the technology mo-

nopolists that sell those varieties. This means that when a scientist invents a new machine for sector

j ∈ {1, 2}, she will be able to make a profit πj , which I characterize below.

The total number of scientists is fixed, so market clearing for scientists yields:9

S1 + S2 = S̄. (6)

To determine the profit levels from new machines for the two sectors, I adopt a simple market structure

where each sector is subject to a fringe of competitive firms that can imitate and produce every machine,

but do so less efficiently. This forces a limit price in each sector, given by

qj = (1 + µj)ψ, (7)

where µj ∈ (0, β
1−β ]. This formulation provides a tractable form in which markups are potentially different

between the two sectors.

endogenous and satisfy a single market-clearing constraint, L1 + L2 ≤ L̄. Equilibrium would then require their earnings in
the two sectors to be equalize, i.e., w2/w1 = 1.

9Formally, in Appendix A, I suppose that each scientist has mass s > 0, and then consider the limit where s → 0. This
only matters in ensuring that deviations are well defined in the presence of externalities.

Additionally, note that the assumption that scientists take the value of φ(Sj) as given does not matter for the results,
because with a fixed supply of scientists and the iso-elastic form of the φ function, the allocation of scientists between the two
sectors is the same even if scientists form consortia that internalize the positive externalities they create on other scientists
working in the same field. Finally, it is straightforward to make the supply of scientists endogenous to the income that
scientists derive from innovation, but I will not do so in this paper.
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Finally, I assume that the externality term in (1) takes a simple form given by

E = e−
∑
j∈{1,2} τ̃ j lnNj , (8)

where τ̃ j ≥ 0 represents a negative externality from technology j ∈ {1, 2} (or if there are positive

externalities, then τ̃ j < 0). The assumption that the negative externalities originate from the level of

technology is adopted for simplicity. Because these externalities do not impact market prices and are

ignored by scientists and firms, they will play no role in the equilibrium allocation, but will have a major

impact on the efficiency of the equilibrium.10

An equilibrium in this environment is defined as an allocation in which both the final good sector

and the two intermediate sectors minimize costs, technology monopolists maximize profits by setting the

limit price given in (7), scientists maximize their income by choosing which sector to innovate in, and

all markets clear. I am particularly interested in the equilibrium level of relative technology, denoted by

nEQ (where n ≡ N2/N1).

2.2 Static Equilibrium

Cost-minimizing demands for machines and resources can be computed from the maximization problem

max
{xj(ν),Lj ,Rj}

pj

(∫ Nj

0
xj (ν)1−β dν · Ljβ

)α
Rj

1−α −
∫ Nj

0
qj(ν)xj (ν) dν − wjLj − qRj Rj , (9)

where wj is the price (wage) of factor j ∈ {1, 2}. Combining (7) with the expressions for machine and

resource demands (provided in Appendix A), we obtain technology monopolists’ profits as:

πj(ν) = µjψxj(ν)

= µjψ


pj ( (1− β)α

(1 + µj)ψ

)α(1− α
qRj

)1−α
 1

αβ

Lj

 ≡ πj , (10)

where the square-bracketed expression in the second line is xj(ν) ≡ xj , and the last equality defines the

equilibrium flow profits for the two sectors, πj , which, as claimed above, is identical for all machines used

in sector j = 1, 2.

Setting the final product as the numeraire, the cost-minimization condition for the final good sector

implies

pj = γj

(
Yj
Y

)− 1
ε

. (11)

Combining this expression with (3), (4), and the expressions for machine and resource demands in

10If, instead, the externalities were from the production or consumption levels of the intermediates, technology would have
additional indirect effects working through changes in equilibrium prices. The simplification enables me to remove these
indirect effects.
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Appendix A, we obtain:

p ≡ p2

p1
=

(
γ2

γ1

)αβε
σ
(

1 + µ2

1 + µ1

)α(1−β)
σ

(
qR2
qR1

) 1−α
σ
(
N2

N1

)−αβ
σ
(
L2

L1

)−αβ
σ

, (12)

where σ ≡ αβε+1−αβ is the derived elasticity of substitution between the two types of labor. Intuitively,

the relative price of a sector’s product is decreasing in the technology and labor supply to the sector,

since these tend to expand its output. In addition, higher resource prices and markups increase a sector’s

relative price.

The price levels are then obtained by combining this relative price equation with the ideal price

condition, which uses the fact that the final good is the numeraire:[
γε2p

1−ε
2 + γε1p

1−ε
1

] 1
1−ε = 1. (13)

Factor prices are equal to the value of the marginal product of the relevant factor: wj = αβpjYj/Lj

for j = 1, 2. Using this equation and (12), the relative wage of the two types of labor can be derived as

w2

w1
=

(
γ2

γ1

) ε
σ
(

1 + µ2

1 + µ1

)− (1−β)(σ−1)
βσ

(
qR2
qR1

)− (1−α)(σ−1)
αβσ

(
N2

N1

)σ−1
σ
(
L2

L1

)− 1
σ

. (14)

This expression confirms that σ is indeed the elasticity of substitution between the two types of labor.

Equation (14) additionally shows that N2/N1 plays the role of relative factor-augmenting technological

change. We can see that (σ − 1)/σ also regulates the impact of relative technology N2/N1, markups

and resource prices, since the net effect of these economic quantities depends on whether they affect the

production level of an intermediate good by more or less than its price.

In an interior equilibrium in which research is directed to both technologies, scientists should make

the same profits from improving the technology for either sector. Recalling that the productivity of

a scientist when she works on technology j is η̃jφ(Sj) = η̃jS
δ

1−δ
j , an interior equilibrium must satisfy:

η̃1S
δ

1−δ
1 π1 = η̃2S

δ
1−δ
2 π2. Inverting φ(Sj), we have Nj = η̃jS

1
1−δ
j , or Sj =

(
Nj/η̃j

)1−δ
. Substituting this

into the condition for an interior equilibrium and defining ηj ≡ η̃1−δ
j , we have

η1N
δ
1π1 = η2N

δ
2π2. (15)

Combining this equation with (10) and (12), we obtain

nEQ =

η2

η1

(
γ2

γ1

) ε
σ µ2

µ1

(
1 + µ2

1 + µ1

)−σ−(1−β)
βσ

(
qR2
qR1

)− (σ−1)(1−α)
αβσ

(
L2

L1

)σ−1
σ

 σ
1−δσ

. (16)

Equation (16) links the equilibrium technology ratio between the two sectors to parameters of the final

good production function, the innovation possibilities frontier, resource prices, markups, and the relative

supplies of factors employed in the two sectors. For example, focusing on the case where δσ < 1, nEQ is

increasing in L2/L1 if and only if σ > 1, as I discuss in greater detail below.

The next proposition follows from this discussion and equation (16), and the uniqueness of equilibrium
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is established in Appendix A.

Proposition 1 Suppose that δ < 1/σ. Then there exists a unique equilibrium in which the relative

technology ratio is given by (16).

The comparative statics of the direction of technology in this unique equilibrium are provided readily

by equation (16) and will be discussed after I present the dynamic version of this environment in the next

subsection.

To understand the role of the condition δ < 1/σ, note that the stabilizing economic force in this

model is the lower price of the intermediate good that is technologically more advanced as shown by (12),

and this force is stronger when σ is lower. The destabilizing force, on the other hand, is the extent of

increasing returns, δ. When δ < 1/σ, the sector that is further ahead technologically faces sufficiently

lower returns from innovation and this ensures the existence and uniqueness of the interior equilibrium.

In contrast, when δ > 1/σ, the degree of increasing returns to scale in research is sufficiently strong

that there does not exist an equilibrium in which research is directed towards both sectors. I show in

Appendix A that in this case there are two corner equilibria—all scientists working in sector 1 or all

scientists working in sector 2. This discussion also illustrates why the comparative statics of (16) are only

relevant when δ < 1/σ.

2.3 Dynamic Environment

I now present the dynamic version of this economy, for brevity emphasizing only the elements that are

different from the static setup. Suppose that time is continuous and runs to infinity. There is an infinitely-

lived representative household with preferences given by U(0) =
∫∞

0 e−%tU(t)dt, with U(t) = lnC(t) +

lnE(t), where C(t) denotes consumption at time t, E(t) is the externality term as in the text, and % is the

discount rate of the representative household. Analogously with (8), we have E(t) = e−
∑
j∈{1,2} τ̃ j lnNj(t).

All of the equilibrium conditions derived in the static model now apply, except that they should be

indexed by time. The main difference is the innovation possibilities frontier, which takes the form

Ṅj (t) = ηjNj(t)
(1+δ)/2N∼j(t)

(1−δ)/2Sj (t) , (17)

where Sj (t) denotes scientists working for innovation in technology j at time t and the Nj(t)
(1+δ)/2 term

captures path dependence in innovation from one’s own sector, while the Nj(t)
(1−δ)/2 is the contribution

of the technology of the other sector. This innovation possibilities frontier is the dynamic analogue of

(5). Notice the difference from the increasing returns to scale in (5): in the dynamic case, there is a form

of increasing returns to scale, but it is realized over time. This is the reason I refer to δ as the degree of

path dependence—when δ > 0, once a sector is technologically ahead of the other one, it becomes more

productive in generating new innovations.

The total number of scientists is again fixed, so S1 (t) + S2 (t) = S̄ at all t. Scientists that innovate

and create new varieties now become the perpetual owners of the technology monopolists that sell those

varieties. Suppose also that resource prices, the qRj ’s, are constant, which implies that profits from

technology j = 1, 2 in this dynamic environment are constant and are still given by πj in equation (10).
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I first focus on an interior balanced growth path (BGP) in which n(t) ≡ N2(t)/N1(t) is constant and

thus scientists work on both technologies. This requires

η1π1N1(t)δ = η2π2N2(t)δ for all t.

This condition is identical to (15) in the previous subsection. Hence the BGP technology ratio in this

dynamic model is identical to the equilibrium technology ratio in the static model.

Proposition 2 There exists a unique BGP, where the equilibrium direction of technology is given by

equation (16).

The fact that the unique BGP ratio coincides with the static equilibrium technology ratio is because

of the way in which the static model was set up to mimic the insights of the dynamic framework.11 While

the BGP here coincides with the equilibrium of the static model, the full equilibrium path of the dynamic

model leads to somewhat different results, as explained in the next proposition.

Proposition 3 If δ < 1/σ, the unique interior BGP (given by (16)) is globally (saddle-path) stable. In

particular, starting from any initial conditions, the economy tends to this interior BGP. Moreover, the

unique dynamic equilibrium allocates all scientists to the sector that is relatively behind (compared to the

BGP). As a result, the BGP is reached in finite time.

If δ > 1/σ, then the interior BGP is unstable, and starting from almost all initial conditions the

economy limits to an allocation in which only one of the two technologies advances.

This proposition clarifies why the case with δ < 1/σ is the focal one in the dynamic economy as well,

and the intuition for this condition is similar: the stabilizing force via relative price changes should be

stronger than the destabilizing force due to path dependence.

When δ > 1/σ, the equilibrium in the dynamic model is still unique (in contrast to the static model,

where there were multiple equilibria), but now the relative technology level identified by condition (16)

corresponds to an unstable BGP, and the economy will never converge to it. Rather, the equilibrium

allocation will limit to one of the two corner BGPs, where the economy has a constant growth rate, driven

by research in only one of the two technologies.

2.4 Some Properties of Equilibrium Technology Choices

I now review some properties of equilibrium direction of technology (using either the static equilibrium

or the BGP of the dynamic equilibrium). This discussion will be brief because most of this material is

familiar from previous work and is not my main focus here, though recognizing these comparative statics

helps build intuition about the workings of the model.

Relative supply effects: The direction of technology is determined by the relative supply of labor

used with the two types of technologies, L1 and L2. As in Acemoglu (1998, 2002) the implications of

relative supplies on the direction of technology depend on market size and price effects. Holding prices

11The existence of a unique BGP is a consequence of the simplifying functional form assumptions. In general, as discussed
in Acemoglu (2007), multiple equilibria are possible. But given my focus here, uniqueness enables me to focus on issues of
distorted technology more directly.
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(in particular p1 and p2) fixed, greater relative supply of one type of labor expands the market size

of the technology complementing that type of labor and it further encourages the development of this

complementary technology (i.e., a higher L2/L1 increases nEQ). However, in equilibrium, prices also

adjust and this creates a countervailing force. Whether this countervailing force is more powerful than

the direct market size effect depends on the elasticity of substitution between the two types of labor.

Specifically, when σ > 1, the market size effect dominates the price effect, and nEQ is increasing in

L2/L1. In contrast, when σ < 1, the price effect is more powerful and nEQ is decreasing in L2/L1.

Weak bias of technology: As we have just seen, the impact of L2/L1 on nEQ is ambiguous

and depends on the elasticity of substitution between the two factors. Nevertheless, as emphasized in

Acemoglu (2002), there is a general, unambiguous result about the bias of technology. A change in

technology is said to be biased towards a factor if, holding all other variables constant, it increases the

relative price of that factor. The main result that holds in this class of models is that an increase in L2/L1

always induces a change in technology that is (weakly) biased towards L2. For example, if the relative

supply of college-educated workers increases, then technology becomes more skill-biased. Intuitively, this

is because, as equation (14) demonstrates, when σ > 1, a greater L2/L1 raises nEQ, and in this case

it is also a higher level of nEQ that is biased towards type 2 workers. Conversely, when σ < 1, it is

a decrease in nEQ that is biased towards type 2 workers, and in this instance, higher L2/L1 leads to

lower nEQ. Hence, regardless of the exact value of the elasticity of substitution between the two factors,

technology always (weakly) moves in a direction that is favorable to the more abundant factor. Among

other things, this force might explain why aggregate technology has become more skill-biased over the last

eight decades, while the supply of skilled workers in the industrialized world has risen rapidly (Acemoglu,

1998). Acemoglu (2007) shows that this weak bias result is more general and holds without any of the

functional form assumptions imposed here, provided that some mild regularity conditions are satisfied.

Strong bias of technology: By substituting the expression for nEQ from (16) into (14), we obtain

the long-run (endogenous technology) relationship between relative supplies and relative wages as

(
w2

w1

)BGP
= Γ

(
L2

L1

)σ−2+δ
1−δσ

, (18)

with

Γ ≡

η2

η1

(
γ2

γ1

) ε(1−δ)
σ−1

(
µ2

µ1

)(
1 + µ2

1 + µ1

)− 1−δ(1−β)
β

(
qR2
qR1

)− (1−α)(1−δ)
αβ

 σ−1
1−δσ

,

where recall that δσ < 1. This equation implies that the relationship between relative wages and relative

supplies is upward-sloping when σ > 2−δ, exactly as in Acemoglu (1998, 2002). Intuitively, the condition

σ > 2 − δ ensures that technology moves sufficiently in the direction of the factor that becomes more

abundant. With this powerful change in the direction of technology, the demand for the more abundant

factor increases so much that the overall consequence is to raise this factor’s marginal product more

than that of the less abundant factor. Consequently, the locus of long-run equilibria becomes upward

sloping—greater relative supply translates into greater relative wage. Notice that, when technology is

fixed, relative demand curves are always downward sloping in this model (as in all models with price-

taking firms). The upward-sloping demand curve is a consequence of technology’s response to changes
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in relative supplies of factors. Acemoglu (2007) provides a version of the same result for more general

technologies and also an analogue of this result for the wage level of a factor rather than its relative wage.

Resource prices: Equation (16) also clarifies that resource prices will have a major impact on the

direction of technology. In particular, when σ > 1, an increase in qR2 (relative to qR1 ) reduces nEQ, because

higher resource prices for sector 2 make production and thus the technologies being used in this sector

less profitable.

Effects of markups: Equation (16) further highlights a first-order effect of markups on the direction

of technology, and under relatively weak conditions, a higher µ2 (holding µ1 constant) increases nEQ.12

Many of these theoretical implications receive empirical support, as I discuss in Section 4.

3 Distorted Technology

This section compares the equilibrium and socially optimal technology choices and identifies several

reasons why equilibrium technology choices will be distorted.

3.1 Socially Optimal Direction of Technology

I now consider the social planner’s solution in the static environment (the same exercise for the dynamic

setup is presented in Appendix A). Differently from equilibrium incentives, the social planner takes into

account the externalities that the two intermediates generate. Naturally, the planner also cares about

the full income stream accruing to the representative household, rather than just the monopoly profits.

In what follows I further focus on the case in which the social planner cannot directly control prices and

allocations—and thus will not be able to correct for externalities and markups by introducing Pigovian

taxes/subsidies. This choice has three motivations. First, practical (information-related) or political

constraints often prevent governments from removing monopoly markups or may even make it difficult

to implement corrective taxes for externalities. Second, as discussed in Acemoglu, et al. (2012), Pigovian

taxes are not always sufficient by themselves to restore optimality when the direction of technology is

endogenous.13 Third, this choice also enables me to clearly focus on the distortions created by the

allocation of research effort and the welfare gains from eliminating these technology distortions (rather

than the full welfare consequences of various microeconomic distortions).

Given these assumptions, the only choice of the social planner is the allocation of scientists between

the two technologies. In practice, this can be achieved by targeted research subsidies or regulations,

and here I assume that the planner directly controls this allocation. Hence, in the static environment,

the planner’s problem can be written as maximizing (1) by choosing S1 and S2 subject to (6) and the

innovation possibilities frontier (5), and taking all other equilibrium relationships, and in particular the

12As discussed in the Introduction, the countervailing force here is that higher markups reduce output and via this channel
increase prices. It is straightforward to verify that more research is directed to sector j = 1, 2 when its markup µj increases,
provided that σβ + µj(1− σ)(1− β) > 0. This condition is satisfied whenever σ ≤ 1 or whenever µj is not too large.

13This is because in models with endogenous innovation, there are distortions both in the production sector (captured by
the externalities targeted by Pigovian taxes) and in the allocation of research effort between different sectors (due to monopoly
profits and knowledge externalities, such as the path dependence introduced above). As a result, optimal allocations should
correct for both sets of distortions. For example, in the context of the energy sector, relying just on carbon taxes without
actively redirecting technological change away from fossil-fuels would slow down the transition to clean energy and amplify
its short-run costs.
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price function (12), as given. This yields a simple maximization problem for the social planner:

max
S1,S2≥0: S1+S2≤S̄

lnY [N1, N2] + lnE[N1, N2]

subject to (5), (6) and (12). Taking the first-order conditions for this expression, noting that d lnNj =

dNj/Nj , and substituting for Sj in terms of Nj as in the equilibrium analysis, this necessary condition

for an interior social optimum can be written as

η1

[
d lnY

d lnN1
+

d lnE

d lnN1

]
= n−(1−δ)η2

[
d lnY

d lnN2
+

d lnE

d lnN2

]
. (19)

Clearly, d lnE/d lnNj = −τ̃ j , and in Appendix A I prove that d lnY/d lnNj = γεjp
1−ε
j . Moreover,

defining τ j ≡ τ̃ j/(γεjp
1−ε
j ) as a price-adjusted externality, the first-order condition can be simplified to

η1γ
ε
1p

1−ε
1 (1− τ1) = η2p

1−ε
2 γε2(1− τ2)n−(1−δ).

We can then substitute from (12), and solve for the socially optimal ratio of technology between the two

sectors, nSP , as

nSP =

η2

η1

(
γ2

γ1

) ε
σ
(

1 + µ2

1 + µ1

) 1−β
β

1−σ
σ
(

1− τ2

1− τ1

)(
qR2
qR1

)− (σ−1)(1−α)
αβσ

(
L2

L1

)σ−1
σ

 σ
1−δσ

. (20)

It is also useful to write the ratio of socially optimal and equilibrium technologies as

nSP

nEQ
=

[(
µ2

µ1

)−1(1 + µ2

1 + µ1

)(
1− τ2

1− τ1

)] σ
1−δσ

. (21)

It can be verified that, given τ1 and τ2, a higher µ2 always implies a lower nSP /nEQ.14 There are

indirect effects from markups, but the overall impact from a higher sectoral markup is to distort technology

towards that sector. Additionally, a higher τ2 always implies a lower nSP and nSP /nEQ, because of the

negative externalities. Finally, the impact of all of these factors on the extent of technology distortion is

amplified by σ/(1− δσ). This is because a higher elasticity of substitution between factors and a greater

degree of increasing returns to scale (or path dependence) in innovation makes the equilibrium direction

of technology more responsive to markups and the social planner’s preferred direction more sensitive to

externalities. The next proposition summarizes these results.

Proposition 4 Suppose that δ < 1/σ. Then the social planner’s problem has a unique solution given by

(20). Greater externalities and higher markups in sector j imply that equilibrium technology is excessively

distorted towards sector j.

This proposition implies that the only sources of divergence between the equilibrium and the social

14Recall that τ1 and τ2 are functions of prices, and in (20), they are evaluated at the relative technology level nSP .
However, the interpretation of (21) requires some caution. In particular, in writing this expression we have to hold τ1 and τ2
fixed. Or alternatively, when distortions are small, intermediate prices p1 and p2 under nEQ and nSP will be approximately
the same and thus a given level of τ̃ j will map to approximately the same level of τ j .
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planner’s solution in this setting are due to markups and externalities. The social planner would like to

move equilibrium technology away from sectors that have high markups and high negative externalities.

Equation (21) additionally implies that technology distortions can be quantified using four sets of

quantities: markup differences, µ2/µ1; externality differences, (1− τ2)/(1− τ1); the degree of increasing

returns to scale, δ; and the elasticity of substitution between the two types of labor used in the two

sectors, σ (which is in turn a function of ε, α and β).

As in the equilibrium characterization in Proposition 1, Proposition 4 focuses on the case where

δ < 1/σ. When this condition is violated, the social planner prefers all scientists to work only in one of

the two sectors (see Appendix A), whereas, as we have seen, all scientists working in either sector is an

equilibrium.

Given the equilibrium characterization, one can also compute the welfare loss in equilibrium relative

to the social optimum. Appendix A provides a first-order approximation to the change in welfare between

the equilibrium and the social optimum, and I present estimates of this welfare loss in the context of the

applications in Section 5.

3.2 Other Considerations

Before moving to an assessment of the quantitative extent of distorted technology in various applications,

I comment on a few additional issues.

First, I simplified the discussion by ignoring other sources of distortions in the direction of technology.

One potentially important type of distortion originates from visions, beliefs, fads and ideologies. For

example, the private sector may come to believe that only one path of development of a scientific platform

is feasible, or may be gripped by a “technology fad”. These issues are discussed in Acemoglu and Restrepo

(2020b) and Acemoglu and Johnson (2023) in the context of artificial intelligence (AI)—arguing that the

influence of dominant companies and certain research approaches developed in the 1950s and 60s pushed

the field too much towards automation-related applications of AI. These considerations can be introduced

in the current model in a reduced-form manner by assuming that the market’s assessment of η1 and η2

are systematically biased away from the true values of these parameters. Alternatively, one of the sectors

may offer greater reputation-building opportunities to researchers. The more interesting question, which

is beyond the scope of the current paper, is how such misperceptions or distorted incentives arise and

whether there could be systematic ways in which government regulation could detect and prevent them.

Second, for tractability’s sake, I have assumed that the degree of increasing returns to scale, captured

by the parameter δ, is the same in the two sectors. In practice, certain types of research, for example

those targeting a scientific breakthrough, or the “research” rather than the “development” part of R&D,

may generate more knowledge spillovers (e.g., Akcigit et al., 2021). Such spillovers can also be introduced

in our context, though measuring the exact extent of such externalities is challenging.

Third, policymakers may also wish to take into account distributional and other social effects.15 If

society engages in costly fiscal redistribution in order to increase the incomes of certain groups (e.g.,

the unemployed, low-skill workers, etc.), then we can think of technologies that directly increase these

15Inequality generated by some technologies may create additional social problems (as argued, for example, by Wilson,
1996, and documented by Autor, Dorn and Hanson, 2021), or may erode support for democracy (as shown in Acemoglu,
Ajzeman, Aksoy, Fiszbein and Molina, 2021). These considerations would constitute additional reasons for altering the
direction of technology. Since these effects are harder to quantify, they fall beyond the scope of the current paper.
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groups’ productivity as generating first-order pecuniary externalities, which can again be captured by

our τ parameters.

Fourth, there may be reasons why the market underinvests in diverse technologies, as argued in

Acemoglu (2011). Specifically, when there are shifts in which technologies are appropriate in different

time periods, the market economy may underinvest in having a diverse portfolio of technologies that can

act as a stepping stone when the underlying environment changes.

Finally, in richer models, there can be coordination failures whereby the market coordinates on or

stays too long with an inferior technology (see Acemoglu and Lensman, 2023, for recent work on this

topic). Once again, quantifying distributional, diversity, and coordination effects is more challenging,

and I leave these issues for future work as well.

4 Existing Empirical Evidence

In this section, I review several empirical papers from the area of energy, health technologies, agriculture,

modern automation technologies, and the introduction of new industrial machinery during the Industrial

Revolution to provide an overview of a body of growing empirical evidence on how market sizes, resource

prices and policy impact the direction of technology. The available evidence generally supports the

predictions of the theoretical framework of this paper.

4.1 Energy

There is a large and growing literature that shows the responsiveness of both energy-generation and

energy-use technologies to resource prices. Newell, Jaffe and Stavins (1999) studied the impact of energy

prices on energy-saving innovations. These authors collected data on the cooling/heating capacity, energy

flow, energy efficiency and price of room air conditioners, central air-conditioning units, and gas water

heaters from the Sears-Roebuck catalogs between 1957 and 1993. Their results show that higher energy

prices have a significant impact on energy efficiency—the models offered to consumers became more

energy-efficient when resource costs rose. The authors also present some evidence that energy standard

regulations had a similar effect for room air conditioners. Consistent with the idea that there is a strong

trade-off between different types of technologies, the authors additionally show that energy efficiency

adjustments are associated with higher prices, and in fact, they do not find significant effects on the

overall amount of technological change. Hence, this study suggests that the direction of technology may

be more responsive to resource prices than the overall amount of technological change, which is consistent

with the framework presented here when σ > 1.

Popp (2002) studies US patent and citations data from 1970 to 1994. He establishes a robust asso-

ciation between energy prices and energy-efficient innovations. Popp also shows a significant role of the

knowledge base, reminiscent of path dependence in the innovation possibilities frontier above.

Aghion et al. (2016) provide additional evidence consistent with these patterns. These authors build

a firm-level data set of automobile-related patents across 80 countries, and classify these innovations into

dirty and clean technologies—e.g., internal combustion engine vs. hybrid and electric vehicles. They

show that higher fuel prices induced by carbon taxes lead to more clean and less dirty innovations in the

automobile industry. They also estimate statistically significant path dependence. In Section 5, I use this
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study’s data to present some related results as a basis of my quantitative exercise.

More recent work by Acemoglu, Aghion, Barrage and Hémous (2022) documents a relationship be-

tween natural gas prices, driven by the US shale gas boom, and overall green patenting (relative to either

all patents, energy patents or dirty patents). In particular, green patents surged when natural gas prices

were high and then declined as the shale gas boom kicked in.

Overall, the evidence from the energy sector is fairly clear that resource prices have the expected

impact on the direction of technology—and the direction of technology is possibly more responsive than,

the overall amount of innovation. There is also evidence of path dependence, whereby energy-efficient (or

green) innovations build on a specific knowledge base that past innovations of this type have created.

4.2 Health and Medical Technologies

The direction of health care and medical technologies appears to be highly responsive to market sizes,

prices and regulations, along the lines of the predictions of the framework presented here. Finkelstein’s

pioneering (2004) study focuses on several policy changes, expanding the market size for certain vaccines.

Specifically, in 1991 the Center for Disease Control recommended that all infants be vaccinated against

Hepatitis B, while in 1993 Medicare began covering the full cost of influenza vaccination for Medicare

recipients (without any copayments). Finkelstein also looks at a 1986 reform indemnifying manufacturers

from lawsuits from potential adverse reactions to childhood vaccines against polio, diphtheria-tetanus,

measles mumps and rubella (MMR) and pertussis. Finkelstein estimates a 2.5-fold increase in the likeli-

hood of clinical trials for the relevant vaccines following the policy-induced expansion of market size.16

Acemoglu and Linn (2004) focus more directly on the market size for new pharmaceuticals. They

exploit variation originating from demographic change—for example, the baby boomer generation first

creating demand for pharmaceuticals targeted at younger and middle-aged patients, and later as this

cohort aged, for drugs targeting diseases for older patients. They find a powerful impact of market size

on the introduction of new molecular entities, as well as the entry of new generics. Their baseline estimate

suggests that a 1% increase in market size is associated with a 4% increase in new non-generic drugs.

In subsequent work Acemoglu, Cutler, Finkelstein and Linn (2006) provide suggestive evidence that

Medicare induced an increase in pharmaceutical innovations targeted at the elderly. Costinot, Donaldson,

Kyle and Williams (2019) provide similar evidence from a cross-country setting. These authors combine

predictions about the direction of innovation with the home market effect (whereby countries specialize

in and export products targeted at their home market), and document that countries invest more in and

export drugs that have a greater demand among their home population.

More recent research by Acemoglu, et al. (2023) assembles a comprehensive data set of cross-country

medical research and disease burdens impacting different countries. They estimate a strong association

between the burden from a disease and research directed towards that disease. Below I also present

regression evidence from the data set compiled by these authors.

Finally, the only paper I am aware of that provides evidence relevant for the effects of markup

differences is Budish, Roin and Williams (2015). These authors observe that the US patent system,

16Finkelstein does not find an increase in medical trials and patents, which may be due to the fact that the relevant
knowledge for additional rollout of these six vaccines already existed. We know from the more unique but sharper variation
coming from the COVID-19 pandemic that entirely new vaccines, together with a new body of scientific knowledge, were
created in response to the huge increase in the demand for vaccines against this novel virus (see, e.g., Zuckerman, 2021).
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where protection is granted for a fixed term length, creates greater pecuniary incentives for late-stage

cancer treatments relative to early-stage treatments and cancer prevention. They show that there is a

powerful effect favoring late-stage treatments. This can be interpreted as a difference in markups between

two (imperfectly substitutable) treatment modalities targeting the same underlying problem.

Overall, health care and medical technologies provide ample evidence supporting the role of market

size in the direction of innovation, and several of the studies show that policy-induced changes in market

size have sizable effects on the direction of technology as well. There is additionally some evidence on

the role of markups.

4.3 Agriculture

Early work by Hayami and Ruttan (1971) applied ideas from the induced innovation literature to agri-

culture, focusing on incentives for developing more or less capital-intensive agricultural methods. More

recently, Moscona (2022) studied the long-run effects of the soil erosion and reduced soil productivity in

the American Midwest following the Dust Bowl and found that agricultural innovation shifted towards

more impacted crops, in an apparent effort to make them more productive under the new soil conditions

(see also Hornbeck, 2012).

Related work by Moscona and Sastry (2023a) looks at the more recent period and focuses on the

changes in environmental conditions caused by global warming. Using granular data on new crops, these

authors find that since the middle of the 20th century agricultural innovation has shifted towards crops

that have greater exposure to extreme temperatures, and this has been driven by the types of technologies

that are most related to environmental adaptation, such as new crop varieties that can be grown in higher

temperatures by existing farmers. The innovation response in these two papers is consistent with the

predictions of the framework here when price effects are more powerful than market size effects (that

is, if σ < 1). In contrast, if market size effects had been dominant (σ > 1), innovations should have

been redirected towards crops that are less-affected by the Dust Bowl and climate change, and less of the

affected crops should have been cultivated. In contrast, it appears that because price effects are stronger,

innovation attempted to make up for the reduced productivity of the affected crops.

4.4 Modern Automation Technologies

Following Acemoglu (2003b), Acemoglu and Restrepo (2018, 2021) and Hémous and Olsen (2022), the

two factors here can be mapped to capital and labor to capture a reduced-form model of automation.

A more microeconomic model of automation and task allocation between capital and labor, as in Zeira

(1998), is developed in Acemoglu and Autor (2011) and Acemoglu and Restrepo (2018); see also Autor,

Levy and Murnane (2003).

Acemoglu and Restrepo (2022) provide a first empirical study of this issue, exploiting the fact that

demographic change is taking place at different rates across countries, and by reducing the industrial

workforce, aging is expanding the demand for automation technologies. This paper shows that demo-

graphic change has a large impact on the demand for robots and other automation technologies, and then

uses patents and exports of intermediate products to establish that countries with aging workforces file

more patents for automation technologies and export more intermediates involved in automation. There

is no similar impact for non-automation technologies. This study thus establishes a powerful channel from
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the market size for automated production methods to both the innovation and adoption of automation

technologies. I will use the data from this study in the next section as well.

More recent work by Dechezleprêtre, Hémous, Olsen and Zanella (2022) confirms and more deeply

explores this relationship. The authors build a new firm-level data set of automation innovations based on

patent text, and combine this with macroeconomic data across 41 countries. They estimate that higher

wages for low-skill workers lead to more automation innovation. In addition, they exploit the Hartz labor

market reforms in Germany, which led to lower protection for workers, and show that these reforms were

associated with a reduction in automation innovations.

Finally, Clemens, Lewis and Postel (2018) study the end of the Bracero program, which brought about

half a million Mexican immigrants to work in US farming. They find no discernible effect on agricultural

wages and provide evidence that this is because the decline in the supply of unskilled labor induced the

adoption of more mechanized production methods in US agriculture.

Overall, the evidence suggests that, although many factors have impacted the development and in-

troduction of modern automation techniques, a major boost has come from changes in the market size

for these technologies, driven by declines in the supply of labor and corresponding higher wages, due to

aging or changes in regulations.

4.5 British Industrial Revolution

There is also a small economic history literature providing evidence that at various turning points during

the industrialization process, the direction of innovation was heavily shaped by market sizes and scarcity

of labor and other inputs. In addition to Habakkuk and Allen’s work discussed in the Introduction,

Hanlon (2015) studies the technological implications of the shortage of cotton in Britain created by the

Union Navy’s blockade of Southern shipping during the American Civil War. After the introduction

of the cotton gin, the US South had become a major (slave-based) producer of cotton and the largest

exporter of this crop to the expanding British industry. The blockade of Southern exports during the

Civil War created an acute shortage of inputs to the British cotton industry, which in response turned to

alternative cotton varieties, grown in India (and to a lesser extent, in Egypt and Brazil). The spinning

technologies used at the time were adapted to the American cotton and could not be used on Indian

and other varieties. Hanlon interprets this change as an expansion in the market size of these alternative

cotton varieties, which should, according to the framework presented here, trigger a major expansion of

complementary technologies. Hanlon documents that this is exactly what happened. There was a flurry

of spinning innovations and patenting, but no spike in other textile technologies, such as weaving, and

no changes in non-textile patents (for which there was no major change in market size). Moreover, by

studying the variation in cotton prices, Hanlon shows that the induced-innovation response was large

enough to cause the equivalent of the strong-bias result outlined above.

4.6 Inappropriate Technologies

Another implication of the framework presented here is that when a disproportionate share of innovative

activity is concentrated in a few countries, and researchers in these countries target their own economies’

factor endowments and prices, then the global technology will be inappropriate to the needs of remaining

countries, especially when their conditions are very different from those of innovative economies.
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A recent important paper by Moscona and Sastry (2023b) extends the framework in Acemoglu and

Zilibotti (2001) and provides evidence that this inappropriate technology channel is present and quan-

titatively important. They establish that new crop varieties and seeds are developed to be resistant

to pests and pathogens that are important in the US and Western nations, while the major pests and

pathogens in the rest of the world, though closely related, are distinct. As a result, the same agricul-

tural technologies do not achieve high productivity in developing-world agriculture. Moscona and Sastry

document that inappropriate agricultural technologies are generally not adopted in the developing world

and consequently, agricultural productivity remains low in these countries. They estimate that global

agricultural output could be increased by about 58%, if the direction of innovation were better targeted

towards the agricultural conditions in less developed economies. Relatedly, Acemoglu et al. (2023) show

that global medical research responds to disease burden in rich countries, but not in poor countries, and

Diao, Ellis, McMillan, and Rodrik (2021) provide evidence from Ethiopia and Tanzania that firms using

Western, capital-intensive technologies are not increasing employment.

5 Quantitative Evaluation

In this section, I discuss how the extent of technology distortions can be assessed in the leading applica-

tions considered here (automation, health and energy). I first outline the econometric framework I use for

estimating the parameters σ and δ, and discuss how markup and externality differences are calibrated. I

then provide baseline estimates and a quantitative evaluation of distortions in the direction of innovation

in these three sectors.

5.1 Econometric Framework

For automation technologies, I use the data set on automation patents and demographic changes from

Acemoglu and Restrepo (2022). For health care, I rely on the medical research and disease burdens data

set compiled by Acemoglu et al. (2023). For energy, I use the firm-level patenting and innovation data set

constructed by Aghion et al. (2016), who then combine this with information on policy-induced changes

in the cost of gasoline.

In each case, I start from the dynamic innovation possibilities frontier for entity (country or firm) f

and technology j:
Ṅfj (t)

Nfj (t)
= ξfj(t)ηfjΓj(t)Nfj (t)−

1−δ
2 Nf∼j (t)

1−δ
2 Sfj (t) , (22)

which generalizes equation (17) by including a constant, ηfj > 0, parameterizing the productivity of

entity f in technology area j, a time effect, Γj(t), and a random term, ξfj(t), orthogonal to everything

else. In addition, Sfj (t) is a measure of research effort devoted by this entity to technology area j

(e.g., the number of scientists allocated to this line) and δ ∈ [0, 1) again designates the degree of path

dependence.

In this formulation, Ṅfj (t) is the flow of patents or innovations, while Nfj(t) is the stock of

patents/innovations, which is estimated following Cockburn and Griliches (1988) and Aghion et al.

(2016), by assuming that the stock of knowledge embedded in past patents depreciates at some rate

(and as in these papers I set this rate of depreciation to 20%).
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When there are only two types of technologies, as in the benchmark model, we can define nft ≡
Nf2 (t) /Nf1 (t) as relative technology, take logs and use the approximations ∆nft ≈ Ṅf2 (t) /Ṅf1 (t) as

we transition from continuous to discrete time to obtain:

ln

(
∆nft
nft

)
= η̄f + γ̄t − ρ lnnft + sft + ξ̄ft,

where I defined η̄f ≡ ln ηfj − ln ηf∼j , sft ≡ lnSfj (t) − lnSf∼j (t), γ̄t ≡ ln Γ(t) − ln Γ∼j(t), and ξ̄ft ≡
ln ξfj(t)− ln ξf∼j(t). I also set ρ ≡ 1− δ.

Suppose that we have a shifter/forcing variable at the country or firm level zf (such as relative resource

prices, market sizes, or policies) that alters the relative profitability of different technologies. Suppose

also that the allocation of research effort between the two technologies at the firm level can be written

as sft = χ ln zft + λ∆ ln zft.
17 Substituting for this relationship, we arrive at the estimating equation:

ln

(
∆nft
nft

)
= η̄f + γ̄t − ρ lnnft + χ ln zft + λ∆ ln zft + ξ̄ft. (23)

The left-hand side variable is the flow of relative patents or innovations normalized by stock of relative

patents in the two technology areas. The forcing variable is also relative.

From estimates of (23), the key parameters necessary for quantifying the extent of distortions can be

recovered. First, I set δ̂ = max {0, 1− ρ̂}, which imposes that the estimate for δ does not become negative

in a few specifications in which ρ̂ takes a value above one. Moreover, long-run effects can be obtained

from estimates of (23). In particular, in an interior BGP we have Ṅf2 (t) /Nf2 (t) = Ṅf1 (t) /Nf1 (t) in

(22) and sft = χ ln zft, and thus the long-run relationship between relative technology and the forcing

variable is lnnft =constant+ χ
1−δ ln zft. Estimated long-run effects can then be linked to the underlying

parameters. Specifically, equation (16) implies that when the forcing variable is changes in market size,

we have χ/(1 − δ) = (σ − 1)/(1 − δσ), and for the case of energy, where the forcing variable is changes

in energy prices, we have χ/(1− δ) = −(σ − 1)(1− α))/(αβ(1− δσ)).

The same economic relationships can be alternately estimated at the technology-field level, by running

the following regression separately by field, which follows directly from (22):

ln

(
∆Nfjt

Nfjt

)
= ηfj + Γjt −

ρ

2
lnNfjt + χ lnZfjt + λ∆ lnZfjt + ξfjt. (24)

With only two research areas, this is equivalent to estimating (23). In the medical research regressions,

there will be many more than just two areas, and hence focusing on this regression will be more meaningful.

5.2 Measuring Shares, Externalities and Markups

Throughout, I use numbers from the US economy. The factor shares α and β are obtained from the

Bureau of Economic Analysis IO Use Tables. Table 1 provides a summary of these numbers for our three

applications. For the automation application, I assume α = 1 and take β to be the wage bill divided by

the sum of the wage bill and expenditures on intermediate inputs for the manufacturing sector in 2012,

17This form follows, for example, when there are within-period diminishing returns or congestion effects in research (e.g.,
Acemoglu, 1998).
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which gives β = 0.22. For the health application, I again set α = 1 and take β to be the wage bill divided

by the sum of the wage bill and expenditures on intermediate inputs for the health care sector in 2012,

which gives β = 0.55. For the energy application, I take 1 − α and αβ to be, respectively, expenditures

on material inputs divided by the sum of the wage bill and expenditures on intermediate and material

inputs, and the wage bill divided by the sum of the wage bill and expenditures on intermediate and

material inputs. This gives α = 0.86 and β = 0.32.

The simplest method to measure the τ parameters is to start with existing estimates of externalities

from certain economic activities. I then convert these externalities into the equivalent of τ̃ in our model,

which is in consumption units (recall equation (1)). Throughout I adopt the convention that the sector

creating negative externalities is sector 2.

In the automation case, I follow Acemoglu, Manera and Restrepo (2020), who interpret estimates

of wage declines following job loss as proxying for quasi-rents that workers enjoy above and beyond the

marginal cost of labor hours (and thus above the the social opportunity cost of employment). Hence, if

automation technologies reduce employment, they create a negative pecuniary externality proportional

to labor earnings. Assuming that for the target group (workers) consumption is approximately equal to

labor earnings, this corresponds to τ̃ in our model. I measure this externality by combining estimates

from Acemoglu and Restrepo (2020a) on the effects of robots on employment with the average estimate

of the extent of wage declines following job loss (15%, following the review of the literature in Acemoglu,

Manera and Restrepo, 2020). The details are provided in Appendix A. The resulting estimate is τ̃2 = 0.07,

as shown in Table 1. As an alternative, more conservative estimate, I consider the case where only half

of the workforce receives quasi-rents, which implies average quasi-rents of 7.5% and τ̃2 = 0.03.

In the health care case, I interpret output Y as quality-adjusted life years, which depend on expendi-

tures and innovations in two broad categories: preventative vs. curative technologies (used after the onset

of disease). I allow these two types of technologies to have different markups and social benefits. This

distinction and my approach are motivated by Kenkel (2000), Kremer and Snyder (2015) and Newhouse

(2021). To measure social benefits, I use a sample of 71 new technologies that can be sorted into these

two categories and then rely on existing estimates from the medical literature to obtain how much gain

in quality-adjusted life years (QALYs) is obtained per one dollar of total cost (upfront R&D spending

plus per unit usage costs). These numbers indicate that there are fewer QALY gains from a dollar of

spending in curative technologies than preventative technologies, and I interpret this shortfall as a neg-

ative externality from N2 (curative) relative to N1 (preventative). The baseline estimate of τ̃2 = 0.37

indicates that the QALY gains from the preventative category are about 60% larger than those from

the curative category. The details of these technologies and the relevant calculations are provided in

Appendix C. In the baseline quantitative evaluation for health care, I set these externalities equal to zero

and subsequently explore the implications of these additional distortions separately.18 Broadly speaking,

differences in externalities and markups between these two classes of technologies result from the fact that

both the level of demand and the elasticity of demand for technologies that can be used after the onset

of a disease are different from those for preventative ones because of individual incentives and insurance

and public policy reimbursement rules (see Kremer and Snyder, 2015, and Newhouse, 2021).

18Estimating the shortfall of QALYs from curative technologies should be viewed as an alternative to using markup
differences, since differential markups will lead to different QALYs from preventative and curative technologies.
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In the energy application, I focus on negative externalities created by fossil-fuel emissions. I use a

worldwide social cost of carbon (CO2) of SCC = $185 dollars per metric ton of carbon (in 2020 dollars),

based on Rennert et al.’s (2022) estimate. For the baseline, I focus on US damages only, since the other

applications also ignore worldwide externalities. To convert this estimate to US-only damages I use

the ratio of US to worldwide damages from the Resources For the Future’s recent report (0.14), which

gives SCC ≈ $26 per metric ton of carbon.19 These estimates are then converted into τ̃2 following the

procedure described in Appendix A. The resulting estimates are depicted in Table 1 as well.

Estimates for τ̃2 need to be converted to τ2. Recalling that τ j = τ̃ j/(γ
ε
jp

1−ε
j ) and also that γεjp

1−ε
j =

γj (Yj/Y )
ε−1
ε = pjYj/Y , we have τ2 =

(
p2Y2

p1Y1+p2Y2

)−1
τ̃2. Since estimates of p1Y1 and p2Y2 in the various

approaches are likely to be imprecise (because of the difficulty of matching the conceptual categories here

to data), I use the fact that this expression implies τ2 ≥ τ̃2 and in the spirit of obtaining lower bounds

on innovation distortions, I proxy τ2 by τ̃2 in all three applications. As a result, my baseline estimates of

technological externalities are τ2 = 0.07 in the automation case (or τ2 = 0.03 using the more conservative

estimate of quasi-rents); τ2 = 0.37 in the health care case; and τ2 = 0.13 in the energy case when I focus

on social cost of carbon for the US and τ2 = 0.94 when taking full global damages into account.

Finally, I assume that markups are equal between the two technologies in the automation and energy

applications. In the health care application, I use data from health-related Compustat firms, sorted

into the preventive vs. curative technologies. I then use production function estimation or accounting

data to obtain estimates of markups for these two groups of firms.20 The details and list of companies

in each category are provided in Appendix C. The baseline markup estimates, which follow De Loecker,

Eeckhout and Unger (2020), yield µ1 = 0.46 and µ2 = 1.70 for the period 1980-2016, as shown in Table 1.21

These markups are high, though broadly consistent with the numbers in De Loecker, et al. (2020). For

example, their estimates of revenue-weighted markups for pharmaceutical and medicine manufacturing,

and medical equipment and supplies manufacturing (the two four-digit industries most closely related to

curative technologies) are, respectively, 3.41 and 2.14 (or cost-weighted markups of 2.97 and 1.91). These

high numbers are also in line with the common view that certain medical procedures and pharmaceuticals

are priced much above marginal cost in the United States, partly because of lack of regulation and partly

19See https://www.rff.org/publications/explainers/social-cost-carbon-101/. Rennert et al.’s (2022) estimate is based on a
discount rate of 2%. The EPA’s most recent preferred approach also suggests a similar social cost of carbon ($190) based
on 2% discount rate. See https://www.epa.gov/system/files/documents/2022-11/.

20Health-care firms in the preventative category include basic health providers, various companies specialized in diagnos-
tics and vaccine manufacturers, while curative ones include major pharmaceutical companies as well as high-tech medical
equipment manufacturers. See Appendix C for a full list.

21Markup estimates from Compustat should be interpreted as simply suggestive, since both capital and labor information
from this data set are subject to significant measurement error, and it is impossible to separate the output and factor usage
of multi-product companies into different business lines. Moreover, as I show in Appendix C, there are nontrivial fluctuations
and trends in markup estimates. Nevertheless, Appendix C also shows that using different methods for production function
estimation yields quite similar estimates.

One conceptual issue, discussed in Appendix C, is whether markups over marginal cost from variable inputs, as estimated by
the production function approach, or accounting markups that subtract payments to quasi-fixed factors are more appropriate
in this context. In particular, although accounting profits do not correspond to economic profits, they may be more
informative about incentives for innovation and entry. Reassuringly, accounting markups for the two group of firms are
comparable to our baseline estimates (µ1 = 0.51 and µ2 = 1.35), and using them instead yields broadly similar results, as
also shown in Appendix C.

Finally, I experimented with applying the same methods to the energy sector as well, but because there are only a few
firms that can be associated with clean technologies, these markups are unstable.
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because of employer-provided health insurance and Medicare reimbursement policies (see, e.g., Agnell,

2005, Howard, et al., 2015, Anderson, Hussey and Petrosyan, 2019, and Case and Deaton, 2019).

5.3 Estimates: Automation

In the context of automation, I focus on technologies targeting automation vs. those that can broadly

be thought to increase worker productivity. Columns 1 and 2 of Table 2 present estimates of equation

(23) using five-year or ten-year patent counts sorted between automation and non-automation technolo-

gies. Following Acemoglu and Restrepo (2022), I exploit medium-term, partially anticipated changes in

demographics, which reduce the availability of labor to perform manual tasks across countries. I focus on

anticipated (15 or 20-year) changes in the ratio of workers aged 56 and above to those between the ages

of 25-55 as the measure of aging.22 The left-hand side variable is the relative flow of automation patents

compared to the relative stock of automation patents. On the right-hand side, I additionally control for

GDP per capita, log population and average years of schooling of the population at the beginning of the

sample interacted with time dummies. These controls allow for flexible differential trends as a function

of baseline characteristics. As in the original paper, these regressions are weighted by manufacturing

employment in 1990, since patent data are significantly noisier for countries with smaller manufacturing

employment levels. The sample period in this case is 1986-2015.

Throughout this table, I report heteroscedasticity-robust standard errors clustered to allow for serial-

correlation (at the country level in columns 1-4, and at the firm level in columns 5 and 6).

Column 1 in Table 2 depicts estimates from equation (23) for a full sample of 66 countries. The

main parameters are estimated reasonably precisely. For example, the estimate of ρ̂ = 0.77 (standard

error = 0.14) implies a value of δ̂ = 0.23 for the degree of path dependence. In addition, χ̂ is estimated

as 0.87 (standard error= 0.31), which maps to a long-run effect of 1.14—hence, 1% more aging will be

associated with 1.14% shifts towards automation technologies. These estimates also imply an elasticity

of substitution between factors of σ̂ = 1.69, which ensures that δ̂σ̂ = 0.40 < 1.

These parameters, together with equation (21), yield a lower bound distortion of nSP /nEQ = 0.82,

as shown in Panel C at the bottom of the table. This is a sizable difference between the equilibrium

and socially optimal direction of technology—a socially-optimal technology ratio that is 18% lower

than the equilibrium—despite the fact that the pecuniary externality in the automation case appears

small. This magnitude is partly explained by the non-trivial value of δ̂σ̂ = 0.40, which amplifies the

impact of distortions. Nevertheless, the welfare loss from equilibrium distortions is modest, about 1% in

consumption-equivalent terms. Panel D shows that using an even smaller estimate of quasi-rents from

employment (7.5% instead of 15%) gives correspondingly smaller numbers for the technology distortion

(nSP /nEQ = 0.91) and welfare losses (0.2%).

Column 2 of Table 2 considers one variation on the automation numbers by using ten-year rather than

five-year intervals. The results are broadly similar: ρ̂ = 0.76 (standard error= 0.12), χ̂ = 1.16 (standard

error= 0.38) and a long-run effect of 1.52. These imply σ̂ = 1.85 and δ̂σ̂ = 0.44, which together yield

slightly larger technology distortions and welfare costs: nSP /nEQ = 0.79 and 1% in Panel C. Panel D

22When using five-year (ten-year) changes, the anticipated aging variable is for the next 15 (20) years.
Acemoglu and Restrepo (2021) also show that instrumental-variable estimates exploiting fertility changes from several

decades before give very similar results to these ordinary least squares (OLS) estimates. Here I focus on OLS models.
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numbers are correspondingly smaller.

Table B1 in Appendix B presents a number of robustness checks and additional results. In particular,

in columns 3-8, I show that similar results hold: when instead of lnx, I use ln(1 + x) and include

observations with zeros; when I use the inverse hyperbolic sine, a sinh (a transformation that allows for

zeros and approximately yields logarithmic form for non-zero observations); and for the OECD sample.

The implied technology distortion nSP /nEQ remains comparable to those in columns 1 and 2, ranging

from 0.56 to 0.76 in Panel C. The exceptions are the inverse hyperbolic sine model and the specification

that focuses on just OECD countries, in both cases at the five-year horizon (columns 5 and 7). In these

instances, the estimates for δ are higher and consequently technology distortions are more pronounced

(nSP /nEQ = 0.40 and 0.34) and welfare losses are also larger. Finally, columns 9 and 10 of this table

reports estimates of equation (23) from the recent paper by Dechezleprêtre et al. (2022), who study the

effects of skill premia on automation technologies at the firm level. Using five-yearly observations across

about 1150 firms that have at least four automation patents, these columns show similar estimates of

the degree of path dependence and the elasticity of substitution σ to the baseline estimates in columns 1

and 2 of Table 2 (column 9 includes firm fixed effects and industry by time fixed effects, while column 10

additionally includes country by time fixed effects). As a result, we obtain broadly comparable technology

distortions using estimates from this firm-level data set: nSP /nEQ = 0.47 and 0.61 in the two columns,

with welfare losses of 3% and 2%, respectively.

5.4 Estimates: Health

Because detailed data classified into preventative and curative health innovations are not available, for

the regression analysis I use data on medical research and disease burdens from Acemoglu et al. (2023).

Columns 3 and 4 report estimates from equation (24) using these data. The left-hand side variable is the

flow of medical articles for a disease in a country during a particular time period (relative to the stock

of medical articles relevant for this observation), and the forcing variable is the disease burden for that

disease, country and time. Disease burdens are computed as declines in the number of disability-adjusted

life years caused by each disease in a country and time period in our sample.23 All regressions in this

case are unweighted and control for disease, country and time fixed effects.

Column 3 focuses on five-year periods, while column 4 looks at ten-year observations. In both columns,

the sample covers the years 1990-2019 and 279 diseases, and comes from 193 countries. In column 3 we

have a total of 55, 699 observations, while there are 37, 389 observations in column 4.

The estimates in the two columns are similar. In column 3, ρ̂ is 0.93 (standard error= 0.03), which

implies a path dependence parameter of δ̂ = 0.07. The estimate of χ̂ = 0.10 combined with these numbers

yields a long-run effect of 0.11. Hence, a 1% increase in the burden of a specific disease in a country leads

to a 0.11% increase in the medical research directed to that disease. The implied elasticity of substitution

is σ̂ = 1.10, which again puts us comfortably in the region where δ̂σ̂ = 0.08 < 1. In column 4, ρ is

estimated to be a little more than 1 (1.11), which implies no path dependence and thus I set δ = 0. Other

estimates remain similar: in particular, a long-run effect of 0.14 and σ = 1.14.

Panel C focuses on markup differences between preventative and curative categories, given in Ta-

23These calculations are based on data from the Global Burden of Disease (GBD) project, which is a collaboration between
the World Bank and the Institute for Health Metrics and Evaluation (IHME). See Acemoglu et al. (2023) for details.
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ble 1 (and ignores differences in externalities). Technology distortions are similar in the two columns:

nSP /nEQ = 0.43 in column 3 and 0.45 in column 4, meaning that the technology ratio is about 45%

biased in favor of curative technologies in the decentralized equilibrium. The resulting welfare effects are

sizable—around 6% (which should be interpreted as a fraction of health care consumption).

Panel D looks at the implications of the τ2 estimate from the shortfall of QALY gains from curative

technologies relative to preventative technologies (now ignoring markup differences). This alternative

way of conceptualizing misaligned innovation incentives in health care leads to even larger technology

distortions: nSP /nEQ is around 0.6, and welfare losses from the equilibrium direction of technology are

correspondingly bigger (17-18%).

Table B2 in Appendix B, I show that the estimates reported in columns 3 and 4 of Table 2, and

thus the implied technology distortions and welfare effects, are quite robust. Similar results are obtained

when instead of lnx, I use ln(1 + x) and keep observations with zeros; when I use the inverse hyperbolic

sine (a sinh) transformation; when the country fixed effects are omitted; when we include country times

year and disease times year fixed effects; and when we focus only in variation in the United States. The

implied values for nSP /nEQ in Panel C are mostly around 0.4 and the welfare effects are also comparable

to those in Table 2, except in specifications using ln(1 + x) and a sinh with five-year observations and in

the two specifications that do not include country fixed effects, where technology distortions are larger,

ranging between 0.11 and 0.17, and the welfare effects are correspondingly more substantial.

5.5 Estimates: Energy

In the context of energy, I follow the conceptual structure in Acemoglu et al. (2012) that distinguishes

dirty (coal, gas and oil) technologies and clean (renewables and nuclear) technologies. Columns 5 and

6 of Table 2 use data from Aghion et al. (2016) and report firm-level regressions of the flow of patents

of clean technologies relative to dirty technologies in the automobile sector, once again normalized with

their respective stocks. In these data, there are many observations with zero stocks, and I follow Aghion

et al. and include these observations by using ln(1 + x). This gives a data set of 3, 412 firms across 58

countries for the years 1986-2005, and 13,684 and 6,824 observations in the two columns.

The estimates are fairly similar between column 5 and 6. For example, ρ is estimated as 0.81 (standard

error= 0.03) in column 5 and 0.86 (standard error= 0.04) in column 6. Long-run effects are comparable

as well: −1.89 in column 5 and −1.23 in column 6 (these are the effects of higher gasoline prices, leading

to lower clean technology patents, hence the negative sign). The estimated values of σ are also similar

across the two columns: 2.73 and 2.53. As a result, in both columns, we have δ̂σ̂ < 1.

Using our baseline estimate of τ2 = 0.13 in Panel C of Table 1 based on social cost of carbon for the

United States, the technology distortion is found to be nSP /nEQ = 0.44 in column 5, and a little smaller,

nSP /nEQ = 0.57 in column 6. These are again sizable distortions with welfare losses of about 2-3%.

Instead, with global damages we have τ2 = 0.94, and because this externality is close to one, equa-

tion (20) implies that the social planner would like to essentially shut down fossil-fuel technologies (i.e.

nSP /nEQ ≈ 0), as indicated in Panel D.

In Appendix B, I report various robustness checks. The general pattern is broadly comparable to

that shown in columns 5 and 6. Long-run effects and elasticity estimates are quite similar, including in

specifications that add spillovers from the stock of innovation of other firms in the same country, as in
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Aghion et al. (2016). The extent of technology distortions, nSP /nEQ, remains fairly stable and ranges

between 0.37 and 0.74 across all specifications in Panel C.

Overall, in all three of the applications considered here, I find suggestive evidence that distortions in

the direction of technology can be sizable and generate non-trivial welfare consequences. These results

should be interpreted with ample caution, since both the estimates of the underlying parameters and

even more so the estimates of externalities and markups are subject to considerable uncertainty. They

are presented in the spirit of suggestive evidence to stimulate more work in this area.

6 Concluding Remarks

Technological change is vital for continued economic prosperity and can help tackle many of the epochal

challenges facing humanity, such as climate change, pandemics and global poverty. Because of its society-

wide benefits, corporations and individuals tend to underinvest in innovation, and this underinvestment

provides a central justification for government support for science, academia and corporate R&D. But

will the “market process”—working through profit incentives, competition and reputational concerns of

researchers—get the direction of innovation right?

Typically, there are many alternative technologies and paradigms even within a narrow field. In health

care, innovation can be directed towards curative technologies and pharmaceuticals, or it can prioritize

preventative technologies. In energy and transport, innovation can be directed towards clean or dirty

alternatives. In most industries, researchers and corporations decide how much to invest to automate

production processes vs. how much to prioritize increasing worker marginal productivity, by providing

better tools, new labor-intensive tasks and new learning opportunities to employees. In agriculture, novel

crop varieties can target pests and pathogens that are pervasive in some countries ahead of others.

In this paper, I have suggested that there may be systemic reasons for the direction of innovation to

be distorted. Using a simple framework, I highlighted the factors impacting the direction of technology,

and illustrated how economic or social externalities (such as carbon emissions) and markup differences

between technologies can lead to a misaligned direction of innovation. Innovation distortions tend to

reduce or even reverse welfare gains from technological progress (for example, when research effort focuses

on socially costly technologies) and can even slow down economic growth (for example, because of markup

differences).

There are three distinct objections one could raise to the approach in this paper. First, even if the

market does not get the direction of innovation completely right, governments and bureaucrats could

be worse at it. This objection is valid and is the reason why much of my discussion focused on sys-

temic sources of distortions that can be determined without superior technical knowledge on the part

of bureaucrats or some impressive ability to “pick winners”. If there are markup differences across the

products generated by different technologies or quantifiable externalities—as I have proposed—the extent

of distortions can be determined and agreed upon.

Second, one may argue that distortions resulting from the direction of technology are secondary relative

to underinvestment in overall innovation and/or they are small relative to other costs that government

intervention in the innovation process would generate. This is also a valid concern, but ultimately the

extent of these distortions is a quantitative question. For this reason, I provided evidence from three
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distinct domains on distortions in the direction of technology.

Third, attempts to deal with distortions in the direction of innovation could lead to new and chal-

lenging political economy questions. I return to this important question at the end of these remarks.

In light of these caveats, the current paper should be seen as a first step in a more detailed investigation

of possible distortions in the direction of technological change and potential remedies. This is the reason

why the theoretical framework is chosen to be as simple as possible and the quantitative evaluation is

purely suggestive. Several interesting questions are open for future study within this framework, and I

list some of them here.

• It would be instructive to model and empirically investigate the extent to which other social factors

can also create distortions in the direction of scientific and corporate research. One possibility is

researchers following each other’s leads and becoming influenced by each other’s visions to such an

extent that makes them overinvest in some paradigms. I have suggested in past work (Acemoglu and

Restrepo, 2020b, and Acemoglu and Johnson, 2023) that this may be a concern within the field of

artificial intelligence, pushing researchers to prioritize automation and mass-scale data collection.

What the theoretical microfoundations of such effects are, whether this type of bias is indeed

present in practice, and whether governmental or societal intervention may be possible in this case

are interesting questions for future research.

• The theoretical analysis in the paper ignored the interplay between Pigovian taxes and policy aimed

at redirecting technological change. A critical question both from a theoretical and an applied point

of view is to what extent these different classes of policies are complements or substitutes.

• Much industrial policy became mired in corruption and political problems in the past, and one may

be worried that any government intervention aimed at influencing the direction of technological

change would be similarly hampered by political economy challenges. This is particularly true since

history is full of examples of special interest groups attempting to block technological change to

protect their rents or privileges (e.g., Acemoglu and Robinson, 2012). On the other hand, the

endogeneity of the direction of innovation opens up new political economy avenues, and studying

them is a fruitful area for future inquiry (see Acemoglu and Johnson, 2023).

• In this context, another research area is to model the market structure of the relevant industries in

greater detail, so that the pro- or anti-competitive effects of policies aimed at redirecting techno-

logical change can be evaluated. For example: can firms and researchers be encouraged to invest in

socially more beneficial technologies without reducing the extent of competition in the economy?

• Lastly, the empirical part of the current paper was a first attempt, and more systematic work on

measuring distortions in the direction of innovation is a critical area for future research.
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Tables

Table 1: Externally Calibrated Parameters

Parameters Description Values

Panel A: Automation
α 1−Material Share 1
β Labor Share divided by α 0.22

(µ1, µ2) Markups (assumption) (µ, µ)
(τ1, τ2) Externality (quasi-rent = 15%) (0,0.07)
(τ1, τ2) Externality (quasi-rent = 7.5%) (0,0.03)

Panel B: Health
α 1−Material Share 1
β Labor Share divided by α 0.55

(µ1, µ2) Markups (estimated) (0.46,1.70)
(τ1, τ2) Externality (from QALYs) (0,0.37)

Panel C: Energy
α 1−Material Share 0.86
β Labor Share divided by α 0.32

(µ1, µ2) Markups (assumption) (µ, µ)
(τ1, τ2) Externality (US damages) (0,0.13)
(τ1, τ2) Externality (World damages) (0,0.94)

Notes: This table presents the values of the parameters used in the equilibrium and welfare analysis. Panel A is for the
automation application, Panel B for the health care application, and Panel C for the energy application. Material and labor
shares are taken from the BEA Use Table for 2012 (see text for details). Markups in Panel B are computed from Compustat
via the production function estimation method based on De Loecker et al. (2020). Firm-level markups are aggregated to
the technology level using firm cost shares. Appendix C provides more details and alternative estimates. Externalities are
computed from wage declines following job loss, based on Acemoglu, Manera and Restrepo (2020) in Panel A; from the
shortfall of quality-adjusted life year gains from curative technologies relative to preventative technologies (based on own
calculations in Appendix C) in Panel B; and from Rennert et al.’s (2022) estimate of the social cost of CO2, converted to
US-equivalent damages and for world-wide damages in Panel C. Further details are provided in the text, Appendix A and
Appendix C.
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Table 2: Estimates and Implied Parameters

Application Automation Health Energy
Frequency 5-year 10-year 5-year 10-year 5-year 10-year

(1) (2) (3) (4) (5) (6)

Panel A Parameters Estimated from Regressions
Initial Relative Stock: ρ̂ 0.77 0.76 0.93 1.11 0.81 0.86

(0.14) (0.12) (0.03) (0.03) (0.03) (0.04)
Initial Shifter: χ̂ 0.87 1.16 0.10 0.14 -1.52 -1.06

(0.31) (0.38) (0.01) (0.01) (0.29) (0.66)

Changes in Shifter: λ̂ 1.18 1.81 -0.004 0.001 -0.45 1.12
(0.43) (0.63) (0.02) (0.02) (0.20) (0.82)

Observations 232 125 55,699 37,389 13,648 6,824

Panel B Implied Parameters
Long-run Effects 1.14 1.52 0.11 0.14 -1.89 -1.23

δ̂ 0.23 0.24 0.07 0.00 0.19 0.14
σ̂ 1.69 1.85 1.10 1.14 2.73 2.53
ε̂ 4.09 4.82 1.18 1.26 7.27 6.56

δ̂σ̂ 0.40 0.44 0.08 0.00 0.53 0.36

Panel C Equilibrium and Welfare Comparison
nSP /nEQ 0.82 0.79 0.43 0.45 0.44 0.57
USP − UEQ 0.01 0.01 0.06 0.06 0.03 0.02

Panel D Equilibrium and Welfare Comparison(Alternatives)
nSP /nEQ 0.91 0.89 0.58 0.59 0.00 0.00
USP − UEQ 0.002 0.002 0.18 0.17 13.74 8.94

Notes: This table presents regression estimates (Panel A), implied parameter values (Panel B) and implied distortions and
welfare results (Panels C and D) for the three applications. In all cases, regressions are estimated with ordinary least squares
and heteroscedasticity-robust standard errors are presented in parentheses. Standard errors are clustered at country level
in columns 1-4 and at the firm-level in columns 5-6. Odd-numbered columns are for five-year changes and even-numbered
columns are for ten-year changes. Columns 1 and 2 are for the automation application and are at the country-time period
level and present regressions weighted by manufacturing employment in 1990. The dependent variable is the number of
newly granted patents for automation technologies relative to other utility patents divided by the stock of patents related
to automation relative to the stock of other utility patents (in logs). Shifters are the level and change in the ratio of workers
above the age of 56 to workers between 21 and 55. Column 1 uses expected 20-year change, and column 2 uses expected
a 15-year change (in logs). Both columns include region dummies, and the 1990 values of log GDP per capita, log of
population, average years of schooling and the ratio of workers above 56 to workers aged 21 in 1990 interacted with period
dummies. Columns 3 and 4 are for the health care application, and observations are at the country-disease-period level. The
dependent variable is relative number of new medical articles for each disease divided by relative stock of medical articles for
that disease (in logs). Shifters are the log of the burden of disease for the relevant country-year-disease cell. Both columns
include country, disease and period fixed effects. Columns 5 and 6 are for the energy application and observations are at
the firm-period level. The dependent variable is relative number of newly granted patents for dirty technologies relative to
newly granted patents for clean technologies (with the log (1+x) transformation). Shifters are firm-level fuel prices adjusted
(based on firm-level fuel consumption) inclusive of taxes. Both columns include firm and period fixed effects as well as the
values of government R&D subsidies for clean innovation, regulations over emissions, the relevant country’s GDP per capita
for that period (as in Aghion et al., 2016). In columns 1 and 2, Panel C uses 15% quasi-rent for workers, and Panel D uses
7.5% quasi-rents. In columns 3 and 4, Panel C focuses on markup differences and Panel D uses the externality estimate
computed from the shortfall of quality-adjusted life years from curative relative to preventative technologies. In columns 5
and 6, Panels C and D use externality numbers based on Rennert et al.’s (2022) estimate of the social cost of CO2 for the
US and the world, respectively.
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ONLINE APPENDICES

Appendix A: Additional Theoretical Results and Omitted Proofs

Derivation of Static Equilibrium

In this part of the Appendix, I provide a few expressions omitted from the text. First, the maximization

of (9) gives the demand for machine varieties and resource inputs as

xj(ν) =

pj ( (1− β)α

(1 + µj)ψ

)α(1− α
qRj

)1−α
 1
αβ

Lj , (A1)

and

Rj =

pj ( (1− β)α

(1 + µj)ψ

)α(1−β)
(

1− α
qRj

)1−α+αβ
 1
αβ

NjLj . (A2)

Substituting these into (4), we obtain the levels of sectoral production as

Yj =

(
(1− β)α

(1 + µj)ψ

) 1−β
β

(
1− α
qRj

) 1−α
αβ

pj
1−αβ
αβ NjLj . (A3)

Combining this expression for j = 1, 2 with (11) and rearranging yields (12) in the text.

I next show that the equilibrium characterized in the text is unique when δσ < 1 and there are always

multiple (corner) equilibria when δσ > 1. Recall from footnote 9 that each scientist has a mass s > 0,

and then we are taking the limit case where s→ 0. Then consider an allocation in which all researchers

work in sector 2 (of course, the argument is analogous when they all work in sector 1). For this allocation

to be an equilibrium, we need that switching to sector 1 is not profitable for an individual scientist. This

requires

η̃2(S̄ − s)
δ

1−δ π2 ≥ η̃1s
δ

1−δ π1.

Rearranging this equation and using the equivalent conditions from the main text, it becomes

η̃2

η̃1

(
S̄ − s

s

) δ
1−δ µ2

µ1

(
1 + µ2

1 + µ1

)− 1
β
(
qR2
qR1

)− 1−α
αβ

p
1
αβ

(
L2

L1

)
≥ 1,

or substituting from (12) and recalling that Nj = η̃jS
1

1−δ
j , it is equivalent to

η2

η1

(
γ2

γ1

) ε
σ µ2

µ1

(
1 + µ2

1 + µ1

)−σ−(1−β)
βσ

(
qR2
qR1

)− (σ−1)(1−α)
αβσ

(
L2

L1

)σ−1
σ
(
S̄ − s

s

)− 1−δσ
(1−δ)σ

≥ 1.

Now taking the limit s → 0, we can see that this condition can never be satisfied when δσ < 1,

since
(
S̄−s
s

)− 1−δσ
(1−δ)σ → 0 , and hence the entire left-hand side limits to 0. Conversely, when δσ > 1,(

S̄−s
s

)− 1−δσ
(1−δ)σ → +∞ and thus the left-hand side limits to +∞, ensuring that this condition is always
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satisfied as a strict inequality. This establishes that when δσ < 1, there are no corner equilibria and the

interior equilibrium characterized in the text is unique. Conversely, when δσ > 1, corner allocations are

always equilibria.

Derivation of Socially-Optimal Technology Ratio in the Static Model

The first-order conditions for the social planner in the static model can be written as:

η̃1S
δ

1−δ
1

[
d lnY

dN1
+
d lnE

dN1

]
= η̃2S

δ
1−δ
2

[
d lnY

dN2
+
d lnE

dN2

]
.

From this expression, using the fact that d lnNj = dNj/Nj and substituting Nj for Sj from Nj = η̃jS
1

1−δ
j

(with ηj ≡ η̃1−δ
j ), we get (19) in the main text.

Next, note that

d lnY

d lnYj
= γj

(
Yj
Y

) ε−1
ε

= γεjp
1−ε
j ,

where the second relationship exploits the representative household’s utility maximization condition (re-

calling that the social planner does not directly manipulate prices). Moreover:

d lnY2

d lnN2
= 1 +

∂ lnY2

∂ ln p2

d ln p2

d lnN2

= 1 +
1− αβ
αβ

d ln p2

d ln p

d ln p

d lnN2

d lnY2

d lnN1
=

∂ lnY2

∂ ln p2

d ln p2

d lnN1

=
1− αβ
αβ

d ln p2

d ln p

d ln p

d lnN1

d lnY1

d lnN1
= 1 +

∂ lnY1

∂ ln p1

d ln p1

d lnN1

= 1 +
1− αβ
αβ

d ln p1

d ln p

d ln p

d lnN1

d lnY1

d lnN2
=

∂ lnY1

∂ ln p1

d ln p1

d lnN2

=
1− αβ
αβ

d ln p1

d ln p

d ln p

d lnN2
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Finally, using the ideal price condition, (13),

dp1/dp

p1
= −γε2p−εp1−ε

1

dp2/dp

p2
= γε1p

ε−2p1−ε
2 .

Or

d ln p1/d ln p = −γε2p1−ε
2 and d ln p2/d ln p = γε1p

1−ε
1 .

Now combining these expressions, we have

d lnY

d lnN1
= γε1p

1−ε
1

[
1− (1− αβ)γε2p

1−ε
2

σ

]
+ γε2p

1−ε
2

[
(1− αβ)γε1p

1−ε
1

σ

]
= γε1p

1−ε
1 ,

and

d lnY

d lnN2
= γε1p

1−ε
1

[
(1− αβ)γε2p

1−ε
2

σ

]
+ γε2p

1−ε
2

[
1− (1− αβ)γε1p

1−ε
1

σ

]
= γε2p

1−ε
2 .

Combining these expressions, we obtain the desired result:

d lnY

d lnNj
= γεjp

1−ε
j for j = 1, 2.

Finally, using the same steps as in the previous subsection of the Appendix, we can show that when

δσ < 1, the second-order conditions of the social planner’s optimization problem are always satisfied

in the interior allocation given by (16). Conversely, when δσ > 1, the interior allocation is not a local

maximum, and instead there are two local maxima at the corners, with all scientists working in one of

the two sectors. One of these two local maxima is the global maximum. Which one is preferred can

be easily determined by using the expression for welfare derived in the next subsection of the Appendix

and substituting for Sj in terms of Nj (once again from Nj = η̃jS
1

1−δ
j ), and comparing the resulting

expressions as s→ 0.

Measuring Externalities

In the theoretical analysis, I simplified the discussion by assuming that externalities are created directly

by technology choices. This means that I need to convert existing externality estimates into those that

appear in the form of the τ̃ j or τ j variables. I now discuss how this can be done.

Automation: In the automation case, I follow Acemoglu, Manera and Restrepo’s (2020) review of

the literature. The median estimate of quasi-rents (and thus pecuniary externalities) in labor income is

about 15%. I combine this with Acemoglu and Restrepo’s (2020) estimate of the effect of robot adoption

on the employment in local labor markets (approximated by commuting zones in the US). Namely, let us

equate automation technologies with N2, and employment with L1 (and L2 can be capital or high-skilled
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labor working with automated technologies), and denote the working age population by Pop. Then we

have

τ̃2 = − d lnE

d lnN2
= − d lnE

d lnL1

d lnL1

d lnN2

= − d lnE

d lnL1

d lnL1

dL1

dL1

dL1/Pop

dL1/Pop

dN2

dN2

d lnN2

= − d lnE

d lnL1

Pop

L1

dL1/Pop

dN2
N2

= −(0.15)× 1

0.63
× (−0.39)× 0.73

= 0.07,

where −0.15 is from Acemoglu, Manera and Restrepo’s review of the literature, 0.63 is the employment to

population ratio in the United States, averaged over the years 1990-2007 in Current Population Survey,24

−0.39 is Acemoglu and Restrepo’s (2020) estimate of the impact of one more robot per 1000 industrial

workers on employment to population ratio, and 0.73 is their estimate of the stock of robots between

1993 and 2007. This number implies that a proportional increase in automation technology creates a 7%

negative pecuniary externality on workers. I then convert this into τ2 as described above.

Health care: In the health care case, the main distortion I focus on is differential markups, which

does not need any conversion. Secondarily, I compute the externalities in terms of differences in quality-

adjusted life year returns per one dollar of spending on technology between the preventative and high-

tech/late-stage curative technologies (inclusive of R&D costs and usage costs). These numbers are there-

fore directly comparable to τ̃ j ’s in our model. Further details of medical procedures, drugs and tech-

nologies used in these computations and the studies from which the estimates are taken are provided in

Appendix C.

Energy: In the energy case, I use estimates of the social cost of carbon. In this framework, carbon

corresponds to the (suitably rescaled) resource input R2 (identifying dirty technologies with sector 2).

The social cost of carbon is in terms of the impact of one more metric ton of carbon emissions on

consumption-equivalent welfare. The externality in the utility equation (1) is in terms of proportional

effect on consumption. Therefore, I compute τ̃2 as follows:

τ̃2 = −d lnE2

d lnN2
= −dE2

dR2

R2

E2

d lnR2

d lnN2

= SCC × CO2 emission

Energy Consumption

d lnR2

d lnN2
,

where I am using the fact that the relevant consumption is total energy consumption and proxying

d lnR2/d lnN2 ' 1.

24From FRED, https://fred.stlouisfed.org/series/EMRATIO
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Welfare Comparisons

The welfare difference between the social optimum in the equilibrium can be written as

USP − UEQ = lnY
(
nSP

)
− lnY

(
nEQ

)
+ lnE(nSP )− lnE(nEQ),

where I am using the fact that all other endogenous variables are functions of n. The basic idea is to

develop the approximation:

∆ lnY EQ,SP ≡ lnY
(
nSP

)
− lnY

(
nEQ

)
'
d lnY

(
nEQ

)
dS

[
SSP − SEQ

]
, (A4)

where SSP is the allocation of scientists consistent with a technology ratio of nSP , and SEQ is the

allocation of scientists implied by the technology ratio of nEQ.

To do this, consider the impact of a change in the allocation of scientists from the equilibrium nEQ,

and let S1 = S and S2 = S̄ − S. Then we can write:

d lnY

dS
=

d lnY

d lnN1

d lnN1

dS
− d lnY

d lnN2

d lnN2

dS

=
d lnY

d lnN1

dN1

dS

1

N1
− d lnY

d lnN2

dN2

dS

1

N2

=
1

1− δ

[
γε1p

1−ε
1 η̃1N

−1
1 S

δ
1−δ
1 − γε2p1−ε

2 η̃2N
−1
2 S

δ
1−δ
2

]
=

1

1− δ

[
γε1p

1−ε
1 η1N

−(1−δ)
1 − γε2p1−ε

2 η2N
−(1−δ)
2

]
=

1

1− δ

[
η1γ

ε
1

[
γε1 + γε2p

1−ε]−1
N
−(1−δ)
1 − η2γ

ε
2

[
γε1 + γε2p

1−ε]−1
p1−εN

−(1−δ)
2

]
=

N
−(1−δ)
1

1− δ

[
η1γ

ε
1

[
γε1 + γε2 (p)1−ε

]−1
− η2γ

ε
2

[
γε1 + γε2 (p)1−ε

]−1
p1−εn−(1−δ)

]
(A5)

Here, the third line simply uses the expressions for dNj/dSj from the static innovation possibilities frontier

(5), while the fourth line uses the same transformation as in the text: Nj = η̃jS
1

1−δ
j and ηj ≡ η̃1−δ

j . The

penultimate line uses the ideal price condition (13) to substitute p1 and p2 in terms of the relative price

p. The final line simply factors out N1.
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Hence,

∆ lnY EQ,SP ' d lnY

dS

(
SSP − SEQ

)
=
d lnY

dS

 S̄

1 + η1
η2

(nSP )1−δ −
S̄

1 + η1
η2

(nEQ)1−δ


=

(
NEQ

1

)−(1−δ)

1− δ

 η1γ
ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1

−η2γ
ε
2

(
γε1 + γε2

(
pEQ

)1−ε)−1 (
pEQ

)1−ε (
nEQ

)−(1−δ)

(SSP − SEQ)

=

(
NEQ

1

)−(1−δ)

1− δ
η1γ

ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1
(

1− η2

η1

(
γ2

γ1

)ε (
pEQ

)1−ε (
nEQ

)−(1−δ)
)(

SSP − SEQ
)

=

(
NEQ

1

)−(1−δ)

1− δ
η1γ

ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1
[
1− µ1

µ2

1 + µ2

1 + µ1

] (
SSP − SEQ

)
=

(
NEQ

1

)−(1−δ)

1− δ
η1γ

ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1
[
1− µ1

µ2

1 + µ2

1 + µ1

] S̄

1 + η1
η2

(nSP )1−δ −
S̄

1 + η1
η2

(nEQ)1−δ


=

1

1− δ
γε1

(
γε1 + γε2

(
pEQ

)1−ε)−1
[
1− µ1

µ2

1 + µ2

1 + µ1

]1 + η1
η2

(
nEQ

)1−δ
1 + η1

η2
(nSP )1−δ − 1

 .

In these derivations, I have used the following steps. The second line is from (A4), while the third

line substitutes from (A5). The fourth line factors out η1γ
ε
1

(
γε1 + γε2

(
pEQ

)1−ε)−1
. The fifth line uses

the expressions for pEQ and nEQ from (12) and (16). The sixth line uses the fact that from (5), the

equilibrium and socially-optimal allocations of scientists have to satisfy

SEQ =
S̄

1 + η1
η2

(nEQ)1−δ and SSP =
S̄

1 + η1
η2

(nSP )1−δ .

The seventh line then substitutes for

NEQ
1 =

 S̄

1
η1

+ (nEQ)1−δ

η2

 1
1−δ

, (A6)

and cancels out terms.

Here everything is a function of nEQ and parameters.

With no markup differences, it can be verified that ∆ lnY EQ,SP = 0 (which also follows from an

application of the envelope theorem). Note, in particular, that the terms in square brackets are equal to
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zero. Therefore, with no markup differences (as in the automation and energy cases), we have

USP − UEQ ' lnE(nSP )− lnE(nEQ)

= (τ̃1 + τ̃2) ln

(
NEQ

1

NSP
1

)
+ τ̃2 ln

(
nEQ

nSP

)
.

This can be computed given the expression for NEQ
1 in (A6), and its analogue for the socially-optimal

level of technology:

NSP
1 =

 S̄

1
η1

+ (nSP )1−δ

η2

 1
1−δ

.

Hence,

NEQ
1

NSP
1

=

1 + η1
η2

(
nSP

)1−δ
1 + η1

η2
(nEQ)1−δ

 1
1−δ

.

To proxy for the ratio NEQ
1 /NSP

1 we only need an estimate of η2/η1. This ratio can be obtained by using

the expressions for (12), (16), and (A3). Combining these equations, we obtain:

η2

η1

=
(
nEQ

)1−δ (µ2

µ1

)−1(1 + µ2

1 + µ1

)(
p2Y2

p1Y1

)−1

,

where p2Y2/p1Y1 is the relative output of the two sectors.

When there are markup differences and no externalities (as in our baseline health care application),

then

USP − UEQ ' ∆ lnY EQ,SP

as derived above. This can be computed if we can also compute pEQ and have an estimate for γ2/γ1.

In the health care application, we have α = 1 and there is no specialized labor, so the same health care

labor forces allocated between the two technologies, which implies

wEQ2

wEQ1

= (pEQ)
1
β

(
1 + µ2

1 + µ1

)− 1−β
β

(nEQ)
σ−1
σ = 1.

Given markups and nEQ, this equation gives pEQ. To obtain an estimate for γ2/γ1, note first that

γ1 + γ2 = 1, and thus γ2/γ1 = (1− γ1)/γ1. Moreover,

p =
1− γ1

γ1

(
Y2

Y1

)− 1
ε

,

which can be rearranged to yield

γ1 =

[
1 +

(
pEQ

) ε−1
ε

(
p2Y2

p1Y1

) 1
ε

]−1

,
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which again uses an estimate of the relative output of the two sectors.25

This discussion clarifies that to compute the welfare losses from innovation distortions we need two

more numbers in each applications: nEQ and (p2Y2)/(p1Y1). We use the following estimates for these

quantities:

• Automation: nEQ is taken as the ratio of the total number of automation patents to total non-

automation patents across all countries in 2005 from Acemoglu and Restrepo (2022). This gives

nEQ = 0.15. I also set (p2Y2)/(p1Y1) = 0.38 on the basis of the model-based inference in Acemoglu,

Manera and Restrepo (2020), which yields that about 28% of tasks are automated in the US

economy.

• Health care: nEQ is taken as the ratio of the sum of the discounted stock of curative patents to that

of the sum of preventative patents across countries, which gives nEQ = 16.2. I proxy p1Y1 as total

spending on ambulatory health services and social assistance in 2020 from the U.S. Census Bureau

Service Annual Survey (SAS) and total spending on diagnostic substances and biological product

manufacturing in 2020 from the U.S. Census Bureau and Annual Survey of Manufactures (ASM).

I set p2Y2 equal to the 2020 revenues of the same industries classified as curative in Appendix C.

These revenues are also taken from the ASM. The resulting ratio is (p2Y2)/(p1Y1) = 0.13.26

• Energy: nEQ = 2.20 is taken as the sum of the stock of dirty patents to that of the stock of

clean patents across all countries in 2005, from Aghion et al. (2016). In addition, (p2Y2)/(p1Y1)

is proxied by the ratio of the revenue of renewable energy to that of non-renewable energy, where

revenue is calculated as the product of average wholesale electricity price of an energy source and

its primary energy consumption from the EIA Monthly Energy Review. The resulting ratio is

(p2Y2)/(p1Y1) = 3.08.27

25An alternative approximation for welfare in this case can be derived by taking a first-order Taylor approximation in terms
of deviations between technology ratios and then substituting out some of the technology terms by using the same equilibrium

relationship we used in the welfare computations, in particular, η1
η2

(
nEQ

)1−δ
=
(
γ2
γ1

)ε (
pEQ

)1−ε [
1− µ1

µ2

1+µ2
1+µ1

]−1

. This gives

the following approximation for output differences between the optimal and equilibrium allocations in the presence of markup
differences:

γε1

(
γε1 + γε2

(
pEQ

)1−ε)−1 [
1− µ1

µ2

1+µ2
1+µ1

]( (
γ2
γ1

)ε
(pEQ)1−ε

[
1−µ1

µ2

1+µ2
1+µ1

]−1

1+
(
γ2
γ1

)ε
(pEQ)1−ε

[
1−µ1

µ2

1+µ2
1+µ1

]−1

)
. This approximation removes the need to sep-

arately estimate η2/η1. In practice, the two expressions give very similar estimates of welfare costs of distorted technology
in the health care case.

26More specifically, the preventative categories are: NAICS 621 (Ambulatory health), NAICS 624 (Social assistance),
NAICS 325413 (In-vitro diagnostic substances manufacturing), and NAICS 325414 (Biological product manufacturing). The
curative categories are: NAICS 325412 (Pharmaceutical preparation manufacturing), NAICS 334510 (Electromedical and
electrotherapeutic apparatus manufacturing), NAICS 339112 (Surgical and medical instrument manufacturing), and NAICS
339113 (Surgical appliance and supplies manufacturing). See Appendix C for details. The SAS and ASM data can be ac-
cessed at www.census.gov/programs-surveys/sas/data/tables.html and www.census.gov/programs-surveys/asm/data.html,
respectively.

27Wholesale prices are from the United States Energy Information Agency (EIA) Power Operations Report (see
www.eia.gov/energyexplained/us-energy-facts/) and energy consumption data are from the EIA Monthly Energy Review
(www.eia.gov/todayinenergy/detail.php?id=45436).

A8

www.census.gov/programs-surveys/sas/data/tables.html
www.census.gov/programs-surveys/asm/data.html
www.eia.gov/todayinenergy/detail.php?id=45436


Dynamic Model

In this part of the Appendix, I provide a few more details about the dynamic framework provided in the

text. First recall that when a scientist invents a new machine for sector j ∈ {1, 2}, she receives the net

present discounted value of future profits from the sale of this machine, given by

Vj(t) =

∫ ∞
t

e−
∫ t′
t r(t′′)dt′′πj(t

′)dt′, (A7)

where r(t) is the market interest rate at time t, and πj(t) is the common profit that all machines for

sector j ∈ {1, 2} will make at time t.

The representative household’s optimization problem implies that the growth rate of consumption

has to satisfy
Ċ(t)

C(t)
= r(t)− %, (A8)

as well as a standard transversality condition, which requires the net present discounted value of current

and future machine varieties to be finite (see Acemoglu, 2002).

In BGP, consumption has to grow at a constant rate, and thus the interest rate will be constant.

Therefore, we have

Vj =
πj
r

for j = 1, 2.

Using these expressions for the two sectors and combining them with the equilibrium allocation of scien-

tists, we obtain (16), as claimed in the text, which also establishes Proposition 2. The proof for Proposition

3 follows the analysis in Acemoglu (2002) closely and I do not present it here to avoid repetition.

I next consider the socially optimal choice of technology in this dynamic framework. Once again,

assuming that the social planner only controls the allocation of scientists, this problem can be written as

max
[S(t),N1(t),N2(t)]∞0

∫ ∞
0

e−%tU [N1(t), N2(t)]dt

subject to

Ṅ1 (t) = η1N1(t)(1+δ)/2N2(t)(1−δ)/2S (t) (A9)

and

Ṅ2 (t) = η2N1(t)(1−δ)/2N2(t)(1+δ)/2[S̄ − S (t)]. (A10)

Here U [N1(t), N2(t)] = lnC(t) + lnE(t) is the level of utility at time t, inclusive of externalities, given

the vector of technologies (state variables), N1(t) and N2(t). This expression exploits the fact that the

level of final good production and hence consumption only depend on the current state of technologies.

(All other endogenous variables, and in particular prices of the intermediates, p1(t) and p2(t), are solved

out as in the equilibrium allocation in the text).

Suppressing time dependence when this will cause no confusion and assigning co-state variables λ1

and λ2 to (A9) and (A10), the necessary condition from the maximum principle applied to this optimal

A9



control problem yields:

λ1η1N
1+δ
2

1 N
1−δ
2

2 − λ2η2N
1−δ
2

1 N
1+δ
2

2


> 0 =⇒ S = S̄

= 0 =⇒ S ∈ [0, S̄]

< 0 =⇒ S = 0

. (A11)

Therefore, just like in the equilibrium, the social planner’s solution leads to a bang-bang solution. More-

over, for an interior BGP, we need scientists to be assigned to both sectors, and thus this expression

should be equal to zero. Hence, in an interior BGP, we must have:

λ1η1 = λ2η2n
δ. (A12)

In order to characterize the socially-optimal technology choices, we need to know the values and

evolution of the co-state variables, which are given by the following two differential equations:

%λ1 − λ̇1 =
dU

dN1
+

1 + δ

2
λ1η1

(
N2

N1

) 1−δ
2

S +
1− δ

2
λ2η2

(
N2

N1

) 1+δ
2 [

S̄ − S
]

=
dU

dN1
+

1 + δ

2
λ1η1n

1−δ
2 S +

1− δ
2

λ2η2n
1+δ
2
(
S̄ − S

)
=

dU

dN1
+ λ1η1n

1−δ
2

[
1 + δ

2
S +

1− δ
2

(
S̄ − S

)]
,

%λ2 − λ̇2 =
dU

dN2
+

1− δ
2

λ1η1

(
N2

N1

)− 1+δ
2

S +
1 + δ

2
λ2η2

(
N2

N1

)− 1−δ
2 [

S̄ − S
]

=
dU

dN2
+

1− δ
2

λ1η1n
− 1+δ

2 S +
1 + δ

2
λ2η2n

− 1−δ
2
(
S̄ − S

)
=

dU

dN2
+ λ2η2n

− 1−δ
2

[
1− δ

2
S +

1 + δ

2

(
S̄ − S

)]
.

In BGP, we need λ̇1 = λ̇2 = 0, and hence

λ1 =
1

%

(
dU

dN1
+ λ1η1n

1−δ
2

[
1 + δ

2
S +

1− δ
2

(
S̄ − S

)])
=

dU
dN1

%− η1n
1−δ
2

[
1+δ

2 S + 1−δ
2

(
S̄ − S

)] , and

λ2 =
1

%

(
dU

dN2
+ λ2η2n

− 1−δ
2

[
1− δ

2
S +

1 + δ

2

(
S̄ − S

)])
=

dU
dN2

%− η2n
− 1−δ

2

[
1−δ

2 S + 1+δ
2

(
S̄ − S

)] .
Moreover, the scientist allocation has to satisfy the BGP condition:

S

S̄ − S
=
η2

η1

n−(1−δ). (A13)
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Substituting the values of the co-state variables into (A12), we obtain

η1

d lnY
d lnN1

+ d lnE
d lnN1

%− η1n
1−δ
2

[
1+δ

2 S + 1−δ
2

(
S̄ − S

)] = η2n
−(1−δ)

d lnY
d lnN2

+ d lnE
d lnN2

%− η2n
− 1−δ

2

[
1−δ

2 S + 1+δ
2

(
S̄ − S

)] . (A14)

This condition is different from (19) because the social planner takes into account the knowledge

spillovers the two sectors create, which have differential effects depending on the relative technology

ratio. In the special case where δ = 1, we can combine (A13) and (A14) to show that these differential

knowledge spillovers cancel out and we end up with the following condition for the socially-optimal BGP

technology ratio:

η1

[
d lnY

d lnN1
+

d lnE

d lnN1

]
= η2

[
d lnY

d lnN2
+

d lnE

d lnN2

]
,

which is identical to (20) when δ = 1, and thus the same nSP in (20) in the text characterizes the

socially-optimal BGP technology ratio. The general case where δ < 1 captures the same economic forces

I emphasized in the text, but does not admit a closed-form solution for the technology ratio.
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Appendix B: Robustness Checks

This part of the Appendix provides robustness checks on the regression results reported in Table 2 in the

text. Table B1 considers variations for the automation regressions, Table B2 presents robustness checks

for the the regressions on the relationship between medical research and disease burden, and finally Table

B3 focuses on the relationship between fuel prices and direction of innovation in automobiles. The results

of all three tables are discussed in the text.

The formulae for the path dependence parameter δ and the elasticity of substitution σ in the various

tables and columns are:

Table B1, columns 1-8 (Long-run effects from relative market sizes)

δ̂ = max {0, 1− ρ̂} , and

σ̂ =
1 + χ̂− δ̂
1 + δ̂χ̂− δ̂

.

Table B1, columns 9-10 (Long-run effects from relative prices and with spillovers)

δ̂ = max
{

0, 1− ρ̂− ρ̂spillover

}
, and

σ̂ =
2χ̂+ δ̂ − 1− χ̂δ̂

χ̂+ δ̂ − 1
,

where ρ̂spillover is the coefficient on the (relative technology) spillover term.

Table B2, columns 1-12 (Long-run effects from relative market sizes)

δ̂ = max {0, 1− ρ̂} , and

σ̂ =
1 + χ̂− δ̂
1 + δ̂χ̂− δ̂

.

Table B3, columns 1-10 (Long-run effects from relative input prices)

δ̂ = max {0, 1− ρ̂} , and

σ̂ =
αβχ̂− (1− δ̂)(1− α)

αβδ̂χ̂− (1− δ̂)(1− α)
.

Table B3, columns 11-12 (Long-run effects from relative input prices and with spillovers)

δ̂ = max
{

0, 1− ρ̂− ρ̂spillover

}
, and

σ̂ =
αβχ̂− (1− δ̂)(1− α)

αβδ̂χ̂− (1− δ̂)(1− α)
.
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Table B1: Robustness for Automation Application

LHS ln(x) ln(x) ln(1 + x) ln(1 + x) asinh(x) asinh(x) ln(x) ln(x) ln(1 + x) ln(1 + x)
Samples Full Full Full Full Full Full OECD OECD Firm-Level Firm-Level
Frequency 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 5-year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A Parameters Estimated from Regressions
Initial Relative Stock: ρ̂ 0.78 0.81 0.41 0.67 0.26 0.52 0.19 0.46 0.83 0.83

(0.13) (0.12) (0.12) (0.14) (0.09) (0.12) (0.06) (0.17) (0.03) (0.03)
Initial Shifter: χ̂ 0.84 1.11 1.00 1.07 0.63 1.04 0.38 1.07 1.66 2.06

(0.39) (0.38) (0.51) (0.53) (0.29) (0.41) (0.20) (0.35) (0.69) (0.85)

Changes in Shifter: λ̂ 1.11 2.12 1.34 2.55 0.42 1.72 0.14 1.06 -1.58 -0.52
(0.54) (0.67) (0.51) (0.90) (0.29) (0.63) (0.16) (0.65) (0.77) (0.95)

Spillovers: -0.30 -0.23
(0.15) (0.21)

Observations 232 125 345 165 345 165 149 78 3,459 3,447
Country covariates Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes
Industry × Year fixed effects Yes Yes
Country × Year fixed effects Yes

Panel B Implied Parameters
Long-run Effects 1.09 1.36 2.43 1.61 2.40 2.02 2.00 2.34 3.13 3.43

δ̂ 0.22 0.19 0.59 0.33 0.74 0.48 0.81 0.54 0.47 0.40
σ̂ 1.68 1.88 1.41 1.70 1.22 1.53 1.15 1.47 1.78 1.85
ε̂ 4.06 4.96 2.86 4.13 2.01 3.37 1.66 3.12 4.50 4.81

δ̂σ̂ 0.38 0.35 0.83 0.57 0.91 0.74 0.93 0.80 0.84 0.74

Panel C Equilibrium and Welfare Comparison (Baseline: τ̃ = 0.07)
nSP /nEQ 0.83 0.82 0.56 0.76 0.40 0.66 0.34 0.60 0.47 0.61
USP − UEQ 0.01 0.01 0.03 0.01 0.04 0.02 0.05 0.02 0.03 0.02

Panel D Equilibrium and Welfare Comparison (Alternative: τ̃ = 0.03)
nSP /nEQ 0.91 0.90 0.75 0.87 0.64 0.82 0.58 0.78 0.69 0.78
USP − UEQ 0.002 0.002 0.01 0.003 0.01 0.004 0.01 0.01 0.01 0.01

Notes: This table presents regression estimates (Panel A), implied parameter values (Panel B) and implied distortions and welfare results (Panels C and D) for the
automation application. Regressions are estimated with ordinary least squares and heteroscedasticity-robust standard errors clustered at country-level are presented in
parentheses. All regressions are weighted by manufacturing employment in 1990. The dependent variable is relative number of newly granted patents for automation
technologies relative to other utility patents divided by relative stock of patents related to automation relative to other utility patents (in logs, unless otherwise indicated).
Shifters are expected 20-year level and change of the ratio of workers above the age of 56 to workers between 21 and 55 (in logs). Country covariates, included in columns
1-4, are region dummies, and the 1990 values of log GDP per capita, log of population, average years of schooling and the ratio of workers above 56 to workers aged
21 in 1990 interacted with period dummies. Columns 1 and 2 replicate the specifications from Table 2. Columns 3 and 4 use ln(1 + x), while columns 5 and 6 use the
inverse hyperbolic sine transformation. Columns 7 and 8 are for the OECD sample (with lnx as in our main specifications). Columns 9 and 10 report estimates from
Dechezleprêtre et al.’s (2022) firm-level data, using a sample of firms with at least four automation patents. These regressions also include spillovers from country-level
relative stock of knowledge. Column 9 controls for firm fixed effects and industry by year fixed effects, while column 10 additionally includes country by time fixed effects.
The parameters δ and σ in these two columns are computed using the equations with spillovers provided above. Panel C uses 15% quasi-rent for workers, and Panel D
uses 7.5% quasi-rents.
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Table B2: Robustness for Health Application

LHS ln(x) ln(x) ln(1 + x) ln(1 + x) asinh(x) asinh(x) ln(x) ln(x) ln(x) ln(x) ln(x) ln(x)
Samples Full Full Full Full Full Full Full Full Full Full US US
Frequency 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A Parameters Estimated from Regressions
Initial Relative Stock: ρ̂ 0.93 1.11 0.36 0.83 0.38 0.84 0.45 0.48 0.93 1.09 0.94 1.27

(0.03) (0.03) (0.02) (0.04) (0.02) (0.03) (0.04) (0.04) (0.03) (0.03) (0.10) (0.12)
Initial Shifter: χ̂ 0.10 0.14 0.05 0.11 0.07 0.13 0.07 0.10 0.11 0.14 0.32 0.26

(0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.12) (0.10)

Changes in Shifter: λ̂ -0.004 0.001 -0.01 0.002 -0.01 0.002 -0.04 -0.06 -0.004 0.01 0.26 0.12
(0.02) (0.02) (0.01) (0.01) (0.01) (0.02) (0.03) (0.03) (0.02) (0.02) (0.17) (0.07)

Observations 55,699 37,389 75,399 44,569 75,399 44,569 55,702 37,394 55,625 37,358 1,243 741
Country fixed effects Yes Yes Yes Yes Yes Yes
Disease fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Period-Country fixed effects Yes Yes
Period-Disease fixed effects Yes Yes

Panel B Implied Parameters
Long-run Effects 0.11 0.14 0.15 0.13 0.18 0.16 0.16 0.22 0.11 0.14 0.34 0.26

δ̂ 0.07 0.00 0.64 0.17 0.62 0.16 0.55 0.52 0.07 0.00 0.06 0.00
σ̂ 1.10 1.14 1.05 1.11 1.06 1.13 1.07 1.09 1.11 1.14 1.31 1.26
ε̂ 1.18 1.26 1.09 1.19 1.11 1.24 1.12 1.17 1.19 1.26 1.57 1.47

δ̂σ̂ 0.08 0.00 0.67 0.19 0.66 0.18 0.58 0.57 0.08 0.00 0.08 0.00

Panel C Equilibrium and Welfare Comparison (Markups Only)
nSP /nEQ 0.43 0.45 0.11 0.39 0.11 0.38 0.17 0.17 0.43 0.45 0.37 0.42
USP − UEQ 0.06 0.06 0.15 0.07 0.15 0.07 0.12 0.12 0.06 0.06 0.07 0.06

Panel D Equilibrium and Welfare Comparison (Externalities Only)
nSP /nEQ 0.58 0.59 0.24 0.54 0.24 0.53 0.31 0.32 0.58 0.59 0.52 0.56
USP − UEQ 0.18 0.17 0.48 0.21 0.47 0.21 0.39 0.38 0.18 0.17 0.22 0.19

Notes: This table presents regression estimates (Panel A), implied parameter values (Panel B) and implied distortions and welfare results (Panels C and D) for the health
application. Regressions are unweighted and estimated with ordinary least squares and heteroscedasticity-robust standard errors clustered at country-level are presented
in parentheses. Observations are at the country-disease-period level. The dependent variable is relative number of new medical articles for each disease divided by relative
stock of medical articles for that disease (in logs, unless otherwise indicated). Columns 1 and 2 replicate the main specifications from Table 2. Columns 3 and 4 use
ln(1 + x), while columns 5 and 6 use the inverse hyperbolic sine transformation. Columns 7 and 8 drop the country fixed effects, while columns 9 and 10 include period
times country and period times disease fixed effects. Columns 11 and 12 focus on just the US observations. Panel C considers the implications of markup differences,
and Panel D depicts the implications of an externality estimate based on the shortfall of quality-adjusted life year gains from curative vs. preventative technologies.
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Table B3: Robustness for Energy Application

LHS ln(1 + x) ln(1 + x) asinh(x) asinh(x) ln(1 + x) ln(1 + x) ln(1 + x) ln(1 + x) ln(1 + x) ln(1 + x)
Frequency 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A Parameters Estimated from Regressions
Initial Relative Stock: ρ̂ 0.81 0.86 0.82 0.86 0.58 0.51 0.81 0.86 0.81 0.86

(0.03) (0.04) (0.02) (0.04) (0.03) (0.04) (0.03) (0.05) (0.03) (0.04)
Initial Shifter: χ̂ -1.52 -1.06 -1.99 -1.44 -0.07 -0.48 -1.51 -2.02 -1.50 -1.14

(0.29) (0.66) (0.36) (0.81) (0.09) (0.14) (0.28) (0.40) (0.29) (0.67)

Changes in Shifter: λ̂ -0.45 1.12 -0.61 1.38 0.21 1.16 -0.47 -0.28 -0.43 1.09
(0.20) (0.82) (0.26) (1.00) (0.13) (0.36) (0.14) (0.21) (0.21) (0.83)

Spillovers: 0.03 -0.07
(0.03) (0.05)

Observations 13,648 6,824 13,648 6,824 13,648 6,824 13,648 6,824 13,648 6,824
Firm covariates Yes Yes Yes Yes Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

Panel B Implied Parameters
Long-run Effects -1.89 -1.23 -2.43 -1.68 -0.12 -0.94 -1.87 -2.34 -1.86 -1.32

δ̂ 0.19 0.14 0.18 0.14 0.42 0.49 0.19 0.14 0.19 0.14
σ̂ 2.73 2.53 3.07 2.92 1.12 1.49 2.72 3.41 2.71 2.61
ε̂ 7.27 6.56 8.51 7.99 1.44 2.78 7.24 9.75 7.21 6.86

δ̂σ̂ 0.53 0.36 0.56 0.41 0.47 0.73 0.52 0.47 0.52 0.37

Panel C Equilibrium and Welfare Comparison
nSP /nEQ 0.44 0.57 0.37 0.50 0.74 0.46 0.45 0.40 0.45 0.56
USP − UEQ 0.03 0.02 0.04 0.03 0.01 0.03 0.03 0.04 0.03 0.02

Panel D Equilibrium and Welfare Comparison (Using Global SCC)
nSP /nEQ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
USP − UEQ 13.74 8.94 16.99 11.60 3.50 12.15 13.62 15.58 13.55 9.50

Notes: This table presents regression estimates (Panel A), implied parameter values (Panel B) and implied distortions and welfare results (Panels C and D) for the health
application. Regressions are unweighted and estimated with ordinary least squares and heteroscedasticity-robust standard errors clustered at firm level are presented in
parentheses. Observations are at the firm-period level. The dependent variable is relative number of newly granted patents for dirty technologies relative to newly granted
patents for clean technologies. Shifters are firm-level fuel prices adjusted (based on firm-level fuel consumption) inclusive of taxes (in ln(1 + x) form unless otherwise
indicated). All specifications include firm and period fixed effects as well as the values of government R&D subsidies for clean innovation, regulations over emissions, the
relevant country’s GDP per capita for that period (as in Aghion et al., 2016). Columns 1 and 2 replicate the main specifications from Table 2. Columns 3 and 4 use the
inverse hyperbolic sine transformation. Columns 5 and 6 drop the firm fixed effects. Columns 7 and 8 additionally include the relative stock of knowledge in other firms
in the same country as in the baseline specification of Aghion et al. (2016). In this case, we use the equations with spillovers for computing δ and σ. Panel C uses an
externality number based on from Rennert et al.’s (2022) estimate of the social cost of CO2, converted to US-equivalent damages (see text for details), and Panel D uses
their estimate for worldwide damages.
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Appendix C: Data Sources and Construction

In this part of the Appendix, I describe the data sources for the three empirical exercises and provide

some additional details.

Automation

Data for automation patents by country are directly from Acemoglu and Restrepo (2022). The flow of

automation and non-automation patents were computed from the patents by different countries filed at

the USPTO. In particular, all patents that are in the USPTO 901 class (technologies related to industrial

robots) and all patents referencing this class are classified as automation patents. Aging variables are

from the United Nations data, while the country-level covariates (GDP per capita, population, and

average years of schooling) are from version 9.0 of the Penn World Tables (Feenstra, Inklaar and Timmer,

2015). Regressions are weighted by manufacturing value added in 1990 (sourced from the United Nations

Industrial Development Organization).

Using these definitions, the exact estimating equations for columns 1 and 2 of Table 2 are:

ln

(
∆nct
nct

)
= −ρ lnnct + χ ln zct + λ∆ ln zct + Xc,1990γt + εct, (C1)

where ∆nct is the ratio of the flow relative automation patents (compared to non-automation patents) and

nct is the relative technology stock (automation patent stock relative to non-automation patents stock).

Stocks are computed from the corresponding flow variables using a 20% depreciation rate, as explained

in the text.

The forcing variables are: the (log of) the ratio workers aged 56 and above to those between the ages

of 25 and 55 and the (log of) 15- or 20-year ahead change in the ratio workers age 56 and above to those

between the ages of 25 and 55. Finally, Xc,1990 denotes the country covariates (log GDP per capita, log

population, and average years of schooling, all in 1990), and the fact that its coefficient is time varying

designates that these covariates are allowed to have a separate effect in every time period. The sample

covers 69 countries and the time period 1986-2015. The observations are weighted by value added in

manufacturing in 1990 and standard errors are clustered by country. The models estimated in Table B1

are variations of these equations as explained in the text.

In addition, the estimates in columns 11 and 12 of Table B1 are provided directly by Dechezleprêtre

et al. (2022), based on their firm-level data set on automation and non-automation patents. The reader

is referred to their paper for variable definitions and sources.

Medical Research

Our estimates for medical research’s responsiveness to disease burden, depicted in columns 3 and 4 of Table

2 and Table B2, come directly from Acemoglu, Moscona, Sastry and Williams (2023). The estimating

equation is similar to (24) in the text:

ln

(
∆Ndct

Ndct

)
= ηd + Γc + Υt −

ρ

2
lnNdct + χ lnZdct + λ∆ lnZdct + εdct, (C2)

where Ndct (∆Ndct) is the stock (flow) of medical scientific articles on disease d in country c at time t.

Stocks are again computed from flows using a 20% depreciation rate. The forcing variables are the level

and change of disease burdens, defined as declines in the number of disability-adjusted life years caused

C1



by a disease in a country and time period in our sample. These calculations are based on data from the

Global Burden of Disease (GBD) project. Finally, ηd, Γc and Υt are, respectively, disease, country and

time fixed effects, and in some specifications, two-way fixed effects are also included. All regressions in

this case are unweighted. Additional details can be obtained from Acemoglu et al. (2023).

Energy

Data on the relationship between fuel prices and automobile patents come directly from Aghion et al.

(2016). The data on flows of patents are based on the World Patent Statistical Database (PATSTAT)

maintained by the European Patent Office (EPO), and innovation is measured using a count of patents by

application/filing date. The authors use data on tax-inclusive fuel prices, from the International Energy

Agency (IEA), to compute a time-varying, country-specific fuel price by averaging the prices of diesel

and gasolinespace prices. Country-specific fuel prices are then used to construct firm-level fuel prices

as a weighted average of fuel prices across countries based on the firm’s expected market share across

countries (in practice, using a time-invariant share of the firm’s sales in each market). The covariates

are log GDP per capital (sourced from World Development Indicators), log R&D subsidies (from the

IEA), and exposure to air pollution regulations. Emission regulations are for maximum level of tailpipe

emissions for pollutants for new automobiles, coded between 0 and 5, and are taken from Dechezleprêtre

et al. (2012).

The exact estimating equation for columns 5 and 6 of Table 2 is similar to but a little different from

(C1). In particular, Aghion et al. (2016) impute log patent stocks as zero when stocks are zero. We avoid

this by using ln(1 + x) consistently for both flow and stock variables throughout this application. This

gives our estimating equation as:

ln

(
∆ñfct
ñfct

)
= −ρ ln (ñfct) + χ ln zfct + λ∆ ln zfct + Xfctγ + εct, (C3)

where

ln

(
∆ñfct
ñfct

)
= ln

(
1 + Patentclean

fct

1 + Patentdirty
fct

)
− ln

(
1 + Stockclean

fct

1 + Stockdirty
fct

)
and likewise,

ln (ñfct) = ln

(
1 + Stockclean

fct

1 + Stockdirty
fct

)
,

with Patentclean
fct and Patentdirty

fct , respectively, denoting the flow of clean and dirty automobile patents for

firm f located in country c at time t, and Stockclean
fct and Stockdirty

fct likewise denoting the stocks of clean

and dirty patents. The forcing variables, as described above, are based on firm-level fuel prices and their

changes, while covariates are now time-varying but have constant coefficients. Regressions are unweighted

and estimated by ordinary least squares, and standard errors are heteroscedasticity-robust and clustered

at the country level. The models estimated in Table B3 are variations of these equations as explained in

the text.

Markup Estimation

In this part of the Appendix, I describe our markup estimation strategies. Throughout, each firm is

assumed to have a single, well-defined price at each point in time. Then, the gross markup of firm i at

C2



time t is defined as

Λit =
Pit
MCit

, (C4)

where Pit is this firm’s price at time t and MCit is its marginal cost. Note that in the text I focused on

net markups defined as

µit = Λit − 1.

Production Function Estimation Methods

The production function method follows De Loecker et al. (2020). Let us first focus on a single industry,

and suppose that each firm i in this industry has a production function

Qit(Vit,Kit) (C5)

at time t, with Vit denoting a composite of variable inputs (labor and material) and Kit representing its

capital stock. Suppose that the capital stock is a quasi-fixed factor, meaning that it is chosen in advance

(and hence the designation of the other factors as “variable”). The function Qit is firm and time-varying,

for example, it includes information on the firm’s (revenue) productivity upon which variable costs may

depend. In the estimation, the function Qit will be taken to be Cobb-Douglas.

Consider the elasticity of this production function with respect to variable inputs, Vit, denoted by θVit :

θVit =
∂Qit
∂Vit

Vit
Qit

=
1

MCit

P Vit Vit
Qit

,

where P Vit is the price of the composite variable input, and the second equality exploits the fact that,

becauseKit is fixed, the marginal cost of production isMCit = P Vit / (∂Qit/∂Vit). Next, using the definition

of the markup in (C4) to substitute out MCit and rearranging, we obtain

Λit = θVit
PitQit

P Vit Vit
.

Given this equation, firm-level markups can be estimated with data on revenue, PitQit, cost of variable

inputs, P Vit Vit, and crucially the elasticity of the firm’s production function with respect to variable inputs,

θVit .

Here I briefly outline DeLoecker et al.’s (2020) estimation strategy, which I follow. Recall that the

capital stock is quasi-fixed. Suppose also that observed sales are given by Salesit = εitQit(Vit,Kit), where

εit is a demand shifter realized after all input decisions are made. Finally, as noted below, suppose that

the function Qit is Cobb-Douglas, and denote the Hicks-neutral productivity of firm i at time t by Ωit.

Then we have

ln Salesit = θVt lnVit + θKt lnKit + ln Ωit + εit, (C6)

which allows for the Cobb-Douglas exponents, and thus output elasticities, to be time-varying, but con-

stant across firms (within the industry being considered). The difficulty in the estimation of (C6) is that

the firm knows Ωit when choosing its composite variable input Vit, and thus OLS estimation will lead to

biased output elasticities. DeLoecker et al. (2020) deal with this problem by using a control function ap-

proach based on Olley and Pakes (1996). For example, Hicks-neutral productivity Ωit can be assumed to

be measurable with respect to the firm’s capital stock Kit, investment Iit, and additional control variables
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related to factor demands denoted by Zit. This implies a relationship of the form

ln(Ωit) = φt(lnKit, ln Iit, Zit),

so that the elasticity of output with respect to variable inputs, θVt , can be estimated from the following

equation:

ln Salesit = θVt lnVit + θKt lnKit + φt(lnKit, ln Iit, Zit) + εit. (C7)

I follow DeLoecker et al. (2020) and include the following terms in the φ function: a quadratic and

cubic in lnKit, a main, quadratic and cubic in ln Iit, and the interaction between these two variables,

lnKit ln Iit.
28 In addition, as in their specification, the Zit variable includes the ratio of the firm’s total

costs to the four-digit industry total cost, and the ratio of the firm’s total costs to the economy-wide total

cost.

Once estimates of the variable input elasticity θ̂
V

t are obtained, (gross) markups can be computed as

Λ̂Pit = θ̂
V

t

PitQit

P Vit Vit
, (C8)

where the superscript P specifies that this is a markup estimated using the production function method.

The (net) markup is then µ̂Pit = Λ̂Pit − 1.

DeLoecker et al.’s baseline estimates are based on a variant based on Ackerberg, Caves and Frazer

(2015), where the composite variable input is used instead of investment and ln(Ωit) is assumed to follow

a first-order Markov process. For this specification, I directly use their estimates of these elasticities,

reported in The Quarterly Journal of Economics Dataverse.29

One drawback of the production function method is that the estimation of θVit requires the model and

the measurability assumptions embedded in the control function to be correctly specified.

As an alternative, DeLoecker et al. (2020) also use cost shares to estimate θVt . In particular, they

compute industry-level output elasticities as

θ̃
V
t = median

{
P Vit Vit

P Vit Vit +RtKit

}
,

where the median is across all firms within a two-digit industry, and Rt is the user cost of capital. In this

case, (gross) markups can be obtained as

Λ̂Cit = θ̃
V
t

PitQit

P Vit Vit
,

where the superscript C refers to the fact that output elasticities are now are estimated from cost shares

(but still taken to be common across firms within an industry). Then, naturally, µ̂Cit = Λ̂Cit−1. In practice,

this approach gives similar results to the production function estimation.

One drawback in this case is that, although the functional form assumptions of the production function

method are relaxed, the assumption that there is a common θVt at the industry level is challenged by the

fact that there is a large variation in cost shares, and the median is an arbitrary way of resolving this

issue.

Another drawback of both approaches from my point of view is that it is not entirely clear whether

28As in their paper, investment in Compustat is computed from the capital stock data assuming a 10% depreciation rate,
that is, Iit = Kit − 0.9 ·Kit−1.

29https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/5GH8XO
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markups relative to variable costs is the right notion for µ in the model, since this parameter captures

how profitable a technology is and regulates incentives for innovation and entry. If one technology is

more capital intensive and has higher markup estimates using the production function methods used

by DeLoecker et al. (2020), it may nonetheless have lower profitability and lower µ in the sense of the

theoretical framework in the text. This motivates the next strategy.

The Accounting Method

As an alternative, one could directly use an estimate of profits to compute markups.

Using the same notation and terminology, (gross) markups are estimated in this case as

Λ̂Ait =
PitQit

P Vit Vit +RtKit
, (C9)

where Rt is the user cost of capital (again assumed to be the same across firms in the industry). We then

have: µ̂Ait = Λ̂Ait − 1.

The drawback of this approach is well known: accounting profits do not correspond to economic profits.

The advantage, on the other hand, is related to the discussion at the end of the previous subsection. This

method takes into account capital costs explicitly, and thus may be more informative about the overall

profitability of a technology/subsector.

Data

I follow De Loecker et al. (2020) and use Compustat North America for firm-level markup estimation.

Compustat Fundamentals Annual extract is obtained through Wharton Research Data Service (WRDS),

and I use the same variables as De Loecker et al. (2020). Namely, the variable SALE measures revenues

and variable costs are measured using the variable COGS (cost of goods sold, which includes expenses

for materials, labor, overhead and other intermediate inputs). The capital stock of each firm is measured

using the variable PPEGT (property, plant, and equipment gross total). The user cost of capital is

also computed as in their paper: Rt = nominal interest ratet−inflationt+depreciation rate.30 I set the

depreciation rate at 10%. We exclude firms in the top and bottom 1% of cost of goods to sales ratio

(COGS/SALE ) and cost-shares, which are likely to have extreme values due to measurement error.31

Aggregating Markups

Throughout, I aggregate firm-level markups to industry-group level (in this instance, preventative health

care vs. curative health care) by using the ratio of firm costs to industry-group costs. Specifically, our

main estimates aggregate (gross) markups with the following equation:

ΛPJt =
∑
i∈J

Costit
Costjt

× ΛPit ,

where Costit = P Vit Vit+RtKit, and J denotes the industry-group in question (with i ∈ J designating that

firm i belongs to this group) such that Costjt = P VjtVjt + RtKjt. I choose cost-based aggregation rather

30I follow De Loecker et al. (2020) and use the federal funds rate, FEDFUNDS, and the annual percent change in the
relative price of investment goods, PIRIC. Both variables are taken from from the Federal Reserve Economic Data, FRED.

31In particular, for this exercise, cost shares are measured as COGS
COGS+KEXP

and COGS
COGS+KEXP+SGA

, where SGA measures
selling, general, and administrative expenses
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than using revenue-weights as in De Loecker et al. (2020), since, as these authors also recognize, revenue-

based estimation can lead to inflated aggregate markups because high markup firms, which generate

higher revenues, receive greater weights.

Firm Classification

This subsection explains how firms in Compustat are assigned to preventative and curative health care.

The classification is on the basis of the main North American Standard Industry Code (NAICS)

assigned to firms in Compustat.32

Preventative: Health care firms whose main activity is in basic health provision, diagnosis or manu-

facture of vaccines and related products are assigned to the preventative health care group.33 Firms with

the following main NAICS codes are included in this category:

• NAICS 621 - Ambulatory health services: Firms that provide health care services diresctly or indi-

rectly to to ambulatory patients and do not usually provide inpatient services. Includes outpatient

services provided by physicians, dentists, and other health practitioners. Also includes outpatient

care centers, medical and diagnostic laboratories, home health care services, and other ambulatory

health care services.

• NAICS 325413 - In-vitro diagnostic substances manufacturing: Firms that manufacture in-vitro

(i.e., not taken internally) diagnostic substances (chemical, biological, or radioactive substances).

Substances are used for diagnostic tests, such as blood glucose , HIV, pregnancy, and other tests.

It also involves manufacturing hematology, hormone, microbiology, and viral diagnostic substances,

among others.

• NAICS 325414 - Biological product (except diagnostic) manufacturing: Firms primarily involved in

manufacturing vaccines, toxoids, blood fractions, etc.

Curative: Health care firms whose main activity is in pharmaceutical preparation and high-tech

medical equipment manufacturing firms (including a few that are related to advanced diagnostics) are

assigned to the curative health care group. These firms are again identified based on their main NAICS

codes, including the following categories:

• 325412 - Pharmaceutical preparation manufacturing: Firms manufacturing in-vivo diagnostic sub-

stances and pharmaceutical preparations (except biological) intended for internal and external con-

sumption in dose forms, such as tablets, capsules, vials, ointments, powders, solutions, and suspen-

sions.

• 334510 - Electromedical and electrotherapeutic apparatus manufacturing: Firms manufacturing elec-

tromedical and electrotherapeutic apparatus such as magnetic resonance imaging equipment, medi-

cal ultrasound equipment, pacemakers, hearing aids, electrocardiographs, and electromedical endo-

scopic equipment.

32Codes and descriptions obtained from the U.S. Census Bureau North American Industry Classification System (NAICS)
at https://www.census.gov/naics/?99967.

33In addition, preventative health care should also include those in the area of social assistance, NAICS 624, which
comprises firms providing individual and family services, community food and housing, vocational rehabilitation services,
child daycare services, as well as emergency and other relief services. Nevertheless, there are no firms in this NAICS category
in Compustat.
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• 339112 - Surgical and medical instrument manufacturing: Firms manufacturing medical, surgical,

ophthalmic, and veterinary instruments and apparatus (except electrotherapeutic, electromedical,

and irradiation apparatus). Examples are syringes, needles, anesthesia apparatus, blood transfusion

equipment, catheters, surgical clamps, and medical thermometers.

• 339113 - Surgical applicance and supplies manufacturing: Firms manufacturing surgical appliances

and supplies such as orthopedic devices, prosthetic appliances, surgical dressings, personal safety

equipment, hospital beds, operating tables, etc.

Table D1, included in Appendix D, which is available upon request, provides a full list of health

care firms in Compustat and their assignment to preventative and curative categories. It also lists the

relevant sample period for the firm, sales, costs of goods sold, and capital stock, as well as the three

measures of (net) markup—based on production function, cost share and accounting methods. In total,

our sample includes 658 preventative and 1069 curative health care firms. At the bottom of each panel,

(cost-weighted) averages of the markups are also presented.

The four panels of Figure C1 show the evolution of markups based on the two production function

estimation methods, cost share and accounting methods, separately for firms in the preventative and

curative categories. Each panel also gives the average (net) markup, which corresponds to µ in the model.

The trends are fairly similar with the different methods and show some fluctuations and also a significant

increase in markups among firms in the curative category. This is consistent with the patterns reported

by De Loecker et al. (2020) at a higher level of aggregation. The increase in markups among curative

firms is in fact larger than at the two-digit level patterns depicted by De Loecker et al. (2020).

Our baseline uses the averages in Panel a, which give µ1 = 1.70 for preventative firms and µ2 = 0.46

for curative firms as also shown in Table 1 in the text. The numbers in the other panels are quite similar,

and using these numbers instead yields broadly similar results to those reported in Table 2. Table C1

shows the technology ratio and welfare loss estimates corresponding to the specifications in Table B2, if

instead we use the markup estimates in Panels b, c or d of Figure C1.
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Figure C1: Aggregate Markups by Sector Group

a. Total cost-weighted average of firm-level µP1
it

(first production function estimation method)

µ2= 1.70
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b. Total cost-weighted average of firm-level µP2
it

(second production function estimation method)

µ2= 1.65

µ1= 0.46
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c. Total cost-weighted average of firm-level µC
it

(cost-share estimation method)

µ2= 1.75

µ1= 0.55
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d. Total cost-weighted average of firm-level µA
it

(accounting method)

µ2= 1.35

µ1= 0.51
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Note: This figure depicts total cost-weighted averages of firm-level markups across the preventative and curative technology groups. Cost shares are defined as

(COGSit + RtPPEGTit)/(COGSjt + RtPPEGTjt) (see Appendix D Table D1). The four panels use firm-level markups µPit1, µPit2, µCit and µAit, which are based,

respectively, on the first and second production function estimation methods, cost-share estimation method and the accounting method, as described in Section 6. The

list of firms is given in Appendix D Table D1.
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Table C1: Sensitivity Analysis of Technology Distortions and Welfare Losses from Markups

LHS ln(x) ln(x) ln(1 + x) ln(1 + x) asinh(x) asinh(x) ln(x) ln(x) ln(x) ln(x) ln(x) ln(x)
Samples Full Full Full Full Full Full Full Full Full Full US US
Frequency 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year 5-year 10-year

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A Parameters Estimated from Regressions
Initial Relative Stock: ρ̂ 0.93 1.11 0.36 0.83 0.38 0.84 0.45 0.48 0.93 1.09 0.94 1.27

(0.03) (0.03) (0.02) (0.04) (0.02) (0.03) (0.04) (0.04) (0.03) (0.03) (0.10) (0.12)
Initial Shifter: χ̂ 0.10 0.14 0.05 0.11 0.07 0.13 0.07 0.10 0.11 0.14 0.32 0.26

(0.01) (0.01) (0.00) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.12) (0.10)

Changes in Shifter: λ̂ -0.004 0.001 -0.01 0.002 -0.01 0.002 -0.04 -0.06 -0.004 0.01 0.26 0.12
(0.02) (0.02) (0.01) (0.01) (0.01) (0.02) (0.03) (0.03) (0.02) (0.02) (0.17) (0.07)

Observations 55,699 37,389 75,399 44,569 75,399 44,569 55,702 37,394 55,625 37,358 1,243 741
Country fixed effects Yes Yes Yes Yes Yes Yes
Disease fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Period-Country fixed effects Yes Yes
Period-Disease fixed effects Yes Yes

Panel B Implied Parameters
Long-run Effects 0.11 0.14 0.15 0.13 0.18 0.16 0.16 0.22 0.11 0.14 0.34 0.26

δ̂ 0.07 0.00 0.64 0.17 0.62 0.16 0.55 0.52 0.07 0.00 0.06 0.00
σ̂ 1.10 1.14 1.05 1.11 1.06 1.13 1.07 1.09 1.11 1.14 1.31 1.26
ε̂ 1.18 1.26 1.09 1.19 1.11 1.24 1.12 1.17 1.19 1.26 1.57 1.47

δ̂σ̂ 0.08 0.00 0.67 0.19 0.66 0.18 0.58 0.57 0.08 0.00 0.08 0.00

Panel C Equilibrium and Welfare Comparison (Markups Only), Baseline
nSP /nEQ 0.43 0.45 0.11 0.39 0.11 0.38 0.17 0.17 0.43 0.45 0.37 0.42
USP − UEQ 0.06 0.06 0.15 0.07 0.15 0.07 0.12 0.12 0.06 0.06 0.07 0.06

Panel D Equilibrium and Welfare Comparison (Markups Only), Production function estimation method 2
nSP /nEQ 0.44 0.46 0.12 0.40 0.12 0.39 0.18 0.18 0.44 0.46 0.38 0.43
USP − UEQ 0.06 0.05 0.14 0.06 0.14 0.06 0.12 0.11 0.05 0.05 0.06 0.06

Panel E Equilibrium and Welfare Comparison (Markups Only), Cost-share based estimation
nSP /nEQ 0.50 0.51 0.16 0.45 0.16 0.45 0.23 0.23 0.50 0.51 0.44 0.48
USP − UEQ 0.04 0.04 0.11 0.05 0.10 0.05 0.09 0.08 0.04 0.04 0.05 0.04

Panel F Equilibrium and Welfare Comparison (Markups Only), Accounting method
nSP /nEQ 0.53 0.55 0.19 0.49 0.20 0.48 0.26 0.27 0.53 0.55 0.47 0.52
USP − UEQ 0.03 0.03 0.09 0.04 0.08 0.04 0.07 0.07 0.03 0.03 0.04 0.03

Notes: This table shows how technology distortions and welfare losses change across the specifications considered in Table B2 for different values of markups. Panels A
and B replicate the same panels in Table B2. The remaining four panels correspond to the four sets of markup estimates, µ̂P1

it , µ̂P2
it , µ̂Cit and µ̂Ait, which are, respectively,

from the first and second production function estimation methods, cost-share estimation method and the accounting method. See Figure C1 and Section 6 on the markup
estimates, and see Table B2 on the parameter estimates and the underlying regression models for the different columns here.

C
9



Quality-Adjusted Life Years

In this section, we describe how differences between preventative and curative technologies in terms of

quality-adjusted life years (QALYs) are estimated.

Methodology

Quality-Adjusted Life Years (QALYs) are a common measure used for evaluating the effectiveness of

medical treatments and interventions. They quantify the overall gains in quantity and quality of life.

QALYs are calculated by multiplying the number of years of life gained by a quality of life scale, which

ranges from 0 (death) to 1 (perfect health). To access cost-effectiveness analyses in a comprehensive

manner, we use the Cost-Effectiveness Analysis (CEA) Registry by the Center for the Evaluation of

Value and Risk in Health, Tufts Medical Center. This registry includes studies on a wide range of health

interventions, including drugs, medical devices, diagnostic tests, and prevention strategies and reports

detailed information on the methods used in and results of each study.

We restrict the sample to modern healthcare innovations with studies conducted in the United States

and benchmark the relevant innovation to the year of Food and Drug Administration (FDA) approval. We

exclude a large number of studies included in the registry that evaluate the effectiveness of immunization

drives and information campaigns. We focus on studies on pharmaceuticals, medical devices, and surgical

procedures, especially those that compare a drug to placebo or no treatment. For these innovations we

extract the QALYs gained per patient from the relevant journal article or website containing the study.

In the case that a drug is compared to another drug instead of a placebo or no treatment, where possible,

we search for auxiliary studies that compare one of the drugs in the main study to placebo and use that

as a reference point to impute the effect and cost of all drugs in the main study relative to placebo.34

Note that the QALY numbers obtained from this procedure can be negative, if new procedures are worse

than no treatment or placebo, and are indeed so in a few cases.

Most estimates give QALY gains per patient. To construct comparable social benefits, I convert these

estimates into QALY gains per dollar. Specifically, I use the following equation for each innovation i:

QALY per dollari =
QALY per patienti ×Number of usersi

Cost per useri ×Number of usersi + R&D costsi
. (C10)

Intuitively, this expression corresponds to total benefits divided by total costs, including R&D costs. In

estimating the number of users, I limit the horizon for each innovation to 20 years, which amounts to

assuming that this innovation will be replaced by a new one on average every 20 years. Given these

estimates, I construct the average quality-adjusted life year gains by preventative and curative technology

groups as

QALY per dollarG =
∑
i∈G

Cost sharei ×QALY per dollari,

where G is either the preventative or the curative technology group, and

Cost sharei =
Cost per useri ×Number of usersi + R&D costsi∑

i′∈G (Cost per useri′ ×Number of usersi′ + R&D costsi′)
.

In these equations, R&D costs are estimated from the medical literature, which provides average of

34In principle, one might wish to obtain QALYs relative to a single dominant treatment that exists before the innovation.
In practice, this did not prove to be straightforward, and hence I opted for making all comparisons relative to placebo or no
treatment.
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R&D costs by class of drugs, e.g., oncological, immunomodulant, therapeutic recombinant proteins and

mAbs, cardiovascular, etc. The medical papers in this literature use a variety of methods to obtain R&D

costs, including using proprietary databases with cost information at the individual drug level, mandatory

SEC filings, and industry surveys. Virtually all papers involve accounting for both failed and approved

drugs, the type and duration of clinical trials, and the status of drug review at the FDA such as fast track,

accelerated approval, or priority review. These papers are helpfully reviewed in Table 1 of Schlander et

al. (2021). We match each innovation to its pharmaceutical category and impute the cost of R&D as the

average cost for that group of drugs. For example, amlodipine is a calcium channel blocker that can treat

high blood pressure and chest pain. As it acts on the cardiovascular system, we impute its R&D cost

as the average R&D cost for all cardiovascular drugs. For surgical procedures, we use the sum of R&D

expenses over several years or total invested capital for the primary manufacturer of equipment used in

the surgical procedure, whichever data are available.

Per-patient usage costs are taken from the same papers that present the QALY benefits. These costs

are often constructed as a sum of a direct treatment cost and an indirect health care cost, which imputes

a production loss due to the patient’s injury and inability to work. Note that both the QALY estimates

and per-patient usage cost are relative to placebo or no treatment, and thus we obtain negative values in

a few cases. This is primarily because treatment avoids other costs patients incur in the future.

We use three methodologies to estimate the number of users. First, we look for direct estimates of

the number of patients using the drug. Such statistics are available on clincalc.com or the Centers for

Disease Control and Prevention (CDC) website. Second, if no direct estimate is available, we estimate

the number of users by dividing the US total sales for the innovation by the annual therapy cost, which is

itself the product of dosage, frequency, and price per dosage. Lastly, if the direct and revenue imputation

approach are infeasible, we gauge the number of patients by multiplying the incidence of disease by the

proportion of patients who undergo treatment by the innovation.

For one-time innovations, such as some surgical procedures, we focus on the number of annual patients

and multiply this by 20. For innovations that involve recurring use, such as antihypertensive medication,

the number of patients is given by the contemporaneous usage prevalence, under the assumption that a

patient uses the drug for the duration of the time horizon.

Finally, given the QALY per dollarG estimates, we set τ̃1 = 0, and compute τ̃2 on the basis of the

relative shortfall of the curative technologies compared to the preventative technologies:

τ̃2 = 1− QALY per dollarcurative
QALY per dollarpreventative

.

List of Procedures

I now provide further details on the procedures and innovations selected in the computation of the QALY

numbers.

The CEA Registry contains roughly 10,000 entries for the United States with QALY outcomes. First,

we manually considered each study to determine if it studied an innovation which constituted a modern

healthcare innovation. This step eliminated immunization drives and information campaigns. Second,

we excluded studies without a placebo or no treatment comparison. This step dropped a significant

proportion of the sample, including studies comparing dosages of a given drug, evaluating different drugs

for a given disease, or assessing the most efficacious treatment combination of a set of drugs (many of

these studies are aimed at better informing clinical use, which is very different from our purpose here).

Third, as screening procedures are not easily categorized into preventative vs. curative, we dropped all
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such studies. Lastly, we sought the background and history of each innovation and kept those which were

commercially developed in the late 20th century.

We then performed a second pass where we actively searched for cost-effectiveness studies relating to

the top 20 drugs in the United States, as listed in clincalc.org. While data were not available for all 20

drugs, we were able to add 9 additional important drugs to our list.

Table D2 in Appendix D (available upon request) lists the 71 procedures we consider. In each case

we provide reference to the source article where the medical information is taken, and list our estimates

of R&D costs, usage costs, total QALY benefits, and our final QALY benefits per dollar. The two panels

correspond to curative and preventative technologies, and at the bottom we summarize the average QALY

per dollar of the two categories.

Additional References for Appendix C

Ackerberg, Daniel, Kevin Caves and Garrett Frazer (2015) “Identification Properties of Recent Pro-
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DechezleprÃatre, Antoine, Richard Perkins, and Eric Neumayer (2012) “Regulatory Distance and the

Transfer of New Environmentally Sound Technologies: Evidence fromthe Automobile Sector.” Working

Paper no. 2012.33, Fondazione Eni Enrico Mattei, Milan.

Feenstra, Robert C., Robert Inklaar, and Marcel P. Timmer (2015) “The Next Generation of the Penn
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