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Abstract

While the mechanism design paradigm emphasizes notions of efficiency based on
agent preferences, policymakers often focus on alternative objectives. School districts
emphasize educational achievement, and transplantation communities focus on patient
survival. It is unclear whether choice-based mechanisms perform well when assessed
based on these outcomes. This paper evaluates the assignment mechanism for allo-
cating deceased donor kidneys on the basis of patient life-years from transplantation
(LYFT). We examine the role of choice in increasing LYFT and compare equilibrium
assignments to benchmarks that remove choice. Our model combines choices and out-
comes in order to study how selection affects LYFT. We show how to identify and
estimate the model using instruments derived from the mechanism. The estimates
suggest that the design in use selects patients with better post-transplant survival
prospects and matches them well, resulting in an average LYFT of 8.78, which is 0.92
years more than a random assignment. However, the maximum aggregate LYFT is
13.84. Realizing the majority of the gains requires transplanting relatively healthy pa-
tients, who would have longer life expectancies even without a transplant. Therefore, a
policymaker faces a dilemma between transplanting patients who are sicker and those
for whom life will be extended the longest.
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11 Introduction

Assignment mechanisms are commonly used to allocate scarce resources. Examples include

public schools, public housing, and organ allocation. While the design of these mechanisms

takes choice-theoretic notions of efficiency as a primary objective (Roth and Sotomayor,

1992; Abdulkadiroglu and Sönmez, 2003), this desideratum often differs from the goals of

policymakers – school districts emphasize student achievement and organ transplant systems

emphasize patient survival.

Because canonical choice-based mechanisms are not designed to optimize these outcomes,

they may not perform well on these dimensions. Agents’ choices may not be well-informed

and co-ordination failures may undercut this objective.1 If so, a planner who can dictate

assignments based on estimated benefits may be able to do better. However, agents may

also have private information about the likely outcomes and using a choice-based mechanism

may serve policymakers’ objectives.

This paper evaluates the mechanism used to allocate deceased donor kidneys on the ba-

sis of survival outcomes. We compare the performance and distributional consequences of

the mechanism to alternative assignments. Our benchmark assignments investigate whether

maximizing survival is in conflict with distributional concerns (Atkinson, 1970) or priori-

tarianism which targets the sickest or neediest (c.f. Persad et al., 2009; Waldinger, 2017).

We also assess the role of choice by examining its relationship to survival and considering

alternatives that dictate assignments using observables alone.

We make several contributions in service of this objective. We present the first quasi-

experimental estimates of the Life-Years from Transplantation (LYFT), defined as the differ-

ence between median survival with and without a transplant, as a function of patient/donor-

specific observed and unobserved characteristics. The current state-of-the-art in the medical

literature relies on observational approaches (Wolfe et al., 2008), in part because conducting

randomized control trials is both challenging and creates ethical issues. We use insights from

the literature on generalized Roy selection to analyze a joint model of choices and outcomes in
1Moreoever, in the kidney allocation context, surgeons who advise patients may suffer from agency

problems that can misalign decisions relative to maximizing survival outcomes.
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an assignment mechanism. In contrast to the standard framework with multiple treatments

(e.g. Lee and Salanié, 2018; Heckman and Pinto, 2018), assignment contexts often do not

have a small number of treatments, in our case because each donor is unique. We therefore

model potential outcomes as a function of patient, donor and match-specific characteristics,

some of which are unobserved. Our results show how to identify and estimate the effects of

counterfactual assignments by using variation in offers made to patients and choice shifters

that are excluded from outcomes.

Deceased donor organs are a scarce and valuable resource. Only a sixth of the approximately

100,000 patients waiting for a kidney are transplanted annually, and thousands die while

waiting.2 Increasing LYFT is an important policy goal: transplantation committees use

observational estimates of LYFT to evaluate proposed reforms.3 When a kidney becomes

available, patients on the waitlist are offered the organ in a priority order. Patients, or

surgeons acting on their behalf, may choose to reject an offer and instead wait for a future

organ. This decision may depend on the perceived benefits of a transplant from the offered

organ.

We jointly model acceptance decisions and survival outcomes to incorporate the potential

for selection. The first component of our model considers the choices patients make; the

second and third components respectively model patient untransplanted survival and post-

transplant survival with the offered organ. These models use a rich set of patient and

organ attributes as well as time to treatment. Given our focus on evaluating alternative

assignments, we also include patient- and patient-donor level unobservables.

Identification of the model is challenging because transplanted patients can be selected on

untransplanted survival, post-transplant survival from an average kidney, or patient-kidney

match-specific survival. Selection on these margins can be induced both because choices

can depend on survival prospects and because patient waiting time is prioritized in the

mechanism.
2See https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/.
3Reports to the OPTN Kidney Transplantation Committee generated by the Scientific Registry of Trans-

plant Recipients (SRTR) of alternative designs use average LYFT as a summary measure of performance.
The committee’s meeting minutes indicate that this measure is focal. In fact, the U.S. has considered a pri-
ority system based on LYFT in the past, and the U.K. uses a “transplant benefit score” to allocate kidneys
(Watson et al., 2020).
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We identify our model by combining two sources of variation. The first source is randomness

in the offers made to a given patient, conditional on the patient’s priority-type in the mech-

anism. It allows us to compare the survival outcomes of patients whose final assignments

differed due to the organs they were offered. Using standard arguments (e.g. Imbens and

Angrist, 1994), we show that this instrument identifies a treatment effect for the select group

of patients whose assignment is affected by an offer.

An important limitation of this estimand is that it does not allow us to predict survival

from counterfactual assignments. It cannot consider changes in the set of patients who are

transplanted or changes in the kidneys to which a patient is matched. To fill this gap, we first

use novel arguments to identify our choice model. We then show that a continuous shifter

of choices that is excluded from outcomes can be used to identify the effects of alternative

assignments. Related approaches have been used in other settings by Geweke et al. (2003);

Heckman and Navarro (2007); Lewbel (2007); Hull (2018) to correct for selection and to

estimate marginal treatment effects (Heckman and Vytlacil, 2005). Our choice shifter is

based on organ scarcity controlling for geography and time. We estimate the model using a

Gibbs’ sampler similar to Geweke et al. (2003).

Our estimates suggest that choices and assignments are positively correlated with survival

outcomes due to both observed and unobserved factors. Patients are more likely to accept

kidneys that result in longer survival and those with match-specific benefits. Partly because

of this, transplanted patients have a higher LYFT from the average organ as compared

to untransplanted patients. Thus, prior approaches that do not account for selection on

unobservable factors (e.g. Wolfe et al., 2008) yield biased estimates.

Next, we benchmark the observed assignment from the perspective of a utilitarian planner

who’s objective is to maximize LYFT. We focus on survival effects because it is a focal

outcome for kidney allocation, and compare the observed assignment to alternatives ranging

from a random assignment to one that maximizes LYFT. Because distributional constraints

may limit the ability to select which patients get a transplant, we also consider alternatives

that re-assigns organs while fixing the set of transplanted patients. Finally, we measure the

LYFT increase that can be achieved by a planner who can dictate assignments based only

on observed patient and donor characteristics.
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The observed assignment produces higher LYFT than random allocation – 8.78 years versus

7.87. Most of this gain comes from allowing patient choice. Assignment to patients based

on existing priority rules without allowing for choice only achieves an average LYFT of 8.01.

The drop from the observed assignment suggests that choice may not be dispensable if the

unobserved types are private information.

But, there is significant room for improvement – the maximum possible LYFT given the

available organs is 13.84. The increase comes from selecting patients who benefit more from

the transplant and matching these patients to donors who are more suitable for them. A

significant portion of these gains can be achieved if a planner can dictate assignments using

observables in our dataset.

These potential improvements in LYFT have important distributional consequences that may

present real-world challenges. Although a priori unclear because the sickest may also have

benefited the most from a transplant, increasing LYFT requires transplanting patients who

would have lived longer without a transplant because LYFT and survival without a trans-

plant are strongly correlated. Such re-distribution creates distributional concerns because it

increases the dispersion in remaining life-years (Atkinson, 1970). While some medical ethi-

cists may still support maximizing total survival benefits especially in the presence of scarce

resources, others consider worst-off prioritarianism for the sickest as important (see Persad

et al., 2009, and references therein). Our results indicate that the planner faces a dilemma

between these two goals.

Related Literature: We provide an alternative perspective for evaluating assignments to the

literature studying assignment mechanisms (Roth and Sotomayor, 1992). For example, the

theory of school choice typically bases welfare on student preferences (Abdulkadiroglu and

Sönmez, 2003), and the empirical literature uses a willingness to travel measure for welfare

comparisons (see Agarwal and Somaini, 2020, for a survey).

Instead of survival outcomes, the economics literature on organ donation focuses either on

the number of transplants (e.g. Teltser, 2019; Dickert-Conlin et al., 2019) or on decision-

theoretic notions of welfare (Agarwal et al., 2021), with an influential literature focusing on

expanding living donor kidney exchange (e.g. Roth et al., 2004; Agarwal et al., 2019). Yet,
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the vast majority of kidney transplants come from deceased donor organs.

Our paper also relates to recent approaches that leverage quasi-experimental variation in

school choice mechanisms to estimate school quality (e.g. Abdulkadiroglu et al., 2017). This

literature estimates a local average treatment effect, which is not sufficient for analyzing

outcomes from counterfactual assignments because of changes in the set of compliers. We

address this issue using a choice shifter. In contemporaneous work, Kapor et al. (2020) use

this message of our paper to study outcomes in a college admissions setting.

The techniques we use build on a large literature studying selection models (Roy, 1951).

Our model is related to models that combine outcomes with choice models to correct for

selection when estimating treatment effects (Geweke et al., 2003; Heckman and Navarro,

2007; Lewbel, 2007; Hull, 2018), causal survival models (Abbring and Van den Berg, 2003),

and models of multi-valued treatments (Lee and Salanié, 2018; Heckman and Pinto, 2018).

The main difference relative to these papers is that patients may have match-specific benefits

from an organ, resulting in a large number of unique treatments. This issue is important

in assignment contexts whenever there are a large number of heterogeneous objects. We

address it by using a model with rich observed heterogeneity across objects and unobserved

heterogeneity in outcomes along three dimensions – baseline outcomes, average outcomes

given observable characteristics of the transplanted organ, and match-specific effects – with

each dimension correlated with unobservables in the choice model.

Overview: Section 2 describes the institutions and the data. The model and the instruments

are desribed in Sections 3 and 4. Section 5 presents the identification results and the empirical

model. The estimates, LYFT in the observed mechanism and counterfactuals are in Sections

6, 7 and 8 respectively.

2 Background, Data, and Descriptive Evidence

2.1 Institutional Features

Basics of Kidney Transplantation: Approximately 750,000 patients are afflicted with End-

Stage Renal Disease (ESRD) in the United States (USRDS, 2018). Medicare provides near
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universal coverage for costs related to ESRD, irrespective of age, costing the taxpayer $35.4

billion in 2016 (7.2% of Medicare claims (USRDS, 2018), approximately 1% of the federal

budget).

Transplantation is considered the best treatment for ESRD. Each transplant is estimated to

extend a patient’s life by several years (Wolfe et al., 2008) while also saving between $195,000

– $400,000 in dialysis costs (Irwin et al., 2012; Held et al., 2016). These estimates are based

on survival models and comparisons of healthcare costs with and without a transplant. We

improve on the former set of estimates by using quasi-experimental variation.

There is significant potential for heterogeneity in survival effects, even amongst compatible

patient-donor pairs (Danovitch, 2009). First, survival both with and without a transplant can

differ across patients. Some patients tolerate dialysis better than others and co-morbidities

influence post-transplant survival prospects. Second, donor quality – circumstances of the

donor’s death, kidney function, and the donor’s health prior to death – can significantly

influence transplant outcomes. Finally, there may be match-specific factors that affect post-

transplant survival. Examples include size and weight match as well as tissue-protein simi-

larity between patient and donor.

The Allocation of Deceased Donor Kidneys: The allocation of deceased donors organs is

organized using a prioritized waiting list. Patients receive offers when an organ becomes

available and may choose to accept or reject it. Each donor’s kidneys are allocated to the

highest-priority patients on the waitlist who are willing to accept the organs.

During our sample period, priority was based primarily on waiting time and tissue-type

similarity between the patient and donor. Each kidney was first offered to patients with

a perfect tissue-type match, then to patients from the local area in which the organs were

recovered, then regionally, and finally nationally. Within each priority group, a points system

that emphasized waiting time was used to order patients (see OPTN, 2014, for details). This

allocation system evolved over time with incremental changes to enhance efficiency (Smith

et al., 2012).4

4A revision to the system aimed at improving survival benefits was implemented on December 4, 2014.
This system also uses a priority-based waiting list that emphasizes waiting time, geography and patient
sensitization. The change gives greater priority to the patients in the top quintile of expected post-transplant
survival for the top quintile predicted organ quality.
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There are three features of the kidney allocation system that are worth highlighting. First,

unlike the assignment systems for some other organs (for example, livers and hearts), the

kidney assignment system does not use patient urgency to determine priority. Second, pa-

tients who reject an offer remain on the list and may choose to accept the next offer with

no penalty in priority for refusing an offer. Third, the design is based on heuristics aided by

simulations and compromises in consideration of distributional effects rather than a formal

mechanism design approach (see Stegall et al., 2017, for a historical perspective).

2.2 Data and Descriptive Analysis

2.2.1 Data Sources

This study uses data from the Organ Procurement and Transplantation Network (OPTN).

The OPTN data system includes data on all donors, wait-listed candidates, and transplant

recipients in the US, submitted by the members of the OPTN. The Health Resources and

Services Administration (HRSA), U.S. Department of Health and Human Services provides

oversight to the activities of the OPTN contractor.

The data include detailed information on patient and donor characteristics, and survival out-

comes from the Standard Transplantation Analysis and Research dataset. They also include

all offers made by the system and accept/reject decisions from the Potential Transplant Re-

cipient dataset. These data are populated using information gathered during the allocation

process, forms submitted by transplant centers from patient follow-ups after a transplant is

performed, and patient death dates merged from social security records

We restrict attention to patients who first joined the kidney waiting list between January 1st,

2000 and December 31st, 2010. From this set, we exclude patients who needed multiple organ

transplants and those that received a living donor kidney (see Appendix A for a detailed

discussion). Correspondingly, we only use data on donor offers and acceptance decisions for

our sample of patients.

The survival records are consistently populated until December 31st, 2015, allowing us to

track survival outcomes for up to sixteen years from registration for our sample of patients.5

5Our data use agreement allows for periodic updates, which we plan to include in future iterations of the
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For patients without death records, we use information from the waitlist for untransplanted

patients and from annual post-transplant follow-ups for transplanted patients to construct

a censored measure of patient survival.

2.2.2 Descriptive Analysis

Table 1: Patient Characteristics
Table 1: Patient Characteristics and Outcomes

All Patients

Mean S.D. Mean S.D.

New Patients per Year 15956 8393

Panel A: Outcomes

Died by Year Five (%) 27.4 44.6 9.3 29.1

Survived Five Years (%) 64.2 47.9 86.2 34.4

Censored by Year Five (%) 8.4 27.7 4.4 20.6

Transplanted by Year Five (%) 47.2 49.9 89.7 30.4

Panel B: Characteristics

Age at Registration 51.4 14.2 48.9 15.2

On Dialysis at Registration (%) 77.3 41.9 75.1 43.2

Diabetic Patient (%) 42.9 49.5 33.4 47.2

BMI at Registration 28.2 5.9 27.6 5.7

Received Deceased 
Donor Transplant

Notes: 202,364 patients registered their first wait list listing between 2000 and 2010. 
Transplant records and survival data are available through 12/31/2015. Patients from whom 
we do not observe death are censored, which observed survival duration computed differently 
for each patient based on the dates and status when we last observe the patient. Outcomes 
presented in Panel A are measured by time are since registration. 

Notes:
Sample includes 175518 patients who registered between 2000 and 2010. Transplant and survival data are available through
12/31/2015. Patients for whom we do not observe death are censored. The observed survival duration is computed based on
the date and status of the patient when we last observe her. See A.4 for detailed computation of observed survival. Durations
presented in Panel A are time since registration.

Patients and Donors: Patients face extreme scarcity, with a significant fraction dying while

awaiting a transplant. Panel A of Table 1 shows that an average of 15956 patients registered

each year on the kidney waiting list, of which 27.4% die within five years of registering

and only 47.2% receive a transplant during this time period. The chances of receiving a

transplant decline after the first five years, with only 54% of patients ultimately receiving a

deceased donor kidney. The remaining patients either still await a kidney or leave the list.

Panel B shows that patients receiving a transplant are younger and appear to have been

in better health at the time of registration. Transplanted patients are less likely to be on

dialysis at the time of registration, are less likely to be diabetic, and have a lower body mass

index. Thus, observed characteristics induce correlation between probability of receiving a

transplant and survival without a transplant.
paper.
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Table 2: Donor Characteristics

Table 2: Donor Characteristics and Kidney Recipient Outcome

All Donors Any Kidney Discarded

Yes No

Mean S.D. Mean S.D. Mean S.D.

Number of Donors per Year 6181 1169 5012

Median Number of Offers per Donor 51 482 40

Average Number of Offers per Donor 543.5 1927.9 1890.5 3684.3 229.3 946.7

Donor Age 39.2 18.4 52.0 16.6 36.2 17.5

Cause of Death -- Head Trauma (%) 39.7 48.9 19.5 39.6 44.5 49.7

Hypertensive Donor (%) 28.6 45.2 55.4 49.7 22.4 41.7

Donor Creatinine 1.2 1.0 1.4 1.1 1.1 0.9

Non-Heart Beating Donor (%) 7.9 26.9 10.4 30.6 7.3 26.0
KDPI 0.5 0.3 0.8 0.2 0.4 0.3

Notes: Panel A contains statistics for donors whose kidneys were recovered between 2000 and 2010.
Notes: Sample includes deceased donors offered between 2000 and 2010 to patients in the sample.

Patients exercise choice despite scarcity, often rejecting undesirable organs. Table 2 shows

that the number of offers per donor is 543.5, but the median is much lower, at 51. This skewed

distribution arises because undesirable kidneys are rejected by many, while desirable kidneys

are accepted quickly. Indeed, 18.9% of donors have at least one viable kidney discarded.

Organs from these donors were refused by 1890.5 patients on average.

Predictors of organ quality are correlated with number of offers and discards in expected

ways. Donors whose kidney(s) was/were discarded are older, less likely to have died from

head trauma, more likely to be diabetic or hypertensive, have higher creatinine levels (an

indicator of lower kidney function), and more likely to have donated after cardiac death

(Table 2). An aggregate of these and other characteristics is the Kidney Donor Profile Index

(KDPI), which indicates the fraction of donors with a lower estimated risk of graft failure.

Survival: We focus on survival as the primary outcome of interest for several reasons. First,

this outcome is arguably the most important one from the perspective of the patient and also

the policy-makers. Predicted LYFT from observational models was explicitly used by the

OPTN Kidney Transplantation Committee to evaluate proposed designs. Second, moving an

ESRD patient from dialysis to transplantation saves on expensive dialysis treatment. While

we do not directly evaluate this component, future research can use our estimates to revisit

cost-benefit analyses. Third, this outcome can be measured relatively easily. The other most
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commonly discussed effect is on quality of life, which is hard to quantify.

Figure 1 shows survival curves for transplanted and untransplanted patients, separated by

young and old patients (above/below the median age of 54) and by whether or not the

transplanted patient received a kidney from a donor with a discarded kidney. Donors with

a discarded kidney are more likely to be undesirable because only one patient accepted the

donor’s kidneys. As indicated by the waiting times shown via the vertical dashed lines, the

average waiting time for a patient who receives a kidney from a donor without a discard is

higher than that for a donor with a discard.

Figure 1: Patient Survival

Notes: The figure shows Kaplan-Meier survival curve for young and old patients (above/below the median age of 54) who
registered on the waitlist between 2000 and 2010. Survival with transplant is measured as time since registration.

These survival curves show that transplanted patients live significantly longer than patients

who do not receive a transplant. Moreover, they are substantially different for young versus

old patients and for patients transplanted with a desirable versus undesirable organ. Only

about half of the young patients who do not receive a transplant survive more than 7.9
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years, but more than half of the young patients who receive a transplant from a donor with

desirable organs live past 16 years. These statistics are 5.4 and 11.3 years, respectively, for

older patients, indicating that older patients have shorter half-lifes both with and without a

transplant.6 For both groups of patients, a transplant from an undesirable organ is associated

with half-lives that are shorter by about a year or more.

These observations also point to the potential for choices and assignments to be correlated

with survival outcomes. Next, we turn to a model that incorporates these features.

3 A Model of Decisions and Outcomes

Our model considers assignment mechanisms in which organs, indexed by j, are assigned to

patients, indexed by i. When an organ arrives, offers are made to patients on a waiting list

who must decide to accept or reject it. These decisions translate into an assignment, and an

outcome is realized.7

3.1 Assignment Mechanism and Observed Outcomes

Organs arrive sequentially, their index j denotes their arrival order. The mechanism orders

patients on the waiting list according to an organ-specific priority score that may depend

on the time that a patient has waited. Offers are made in this priority order. Acceptance

by i of an offer for organ j is denoted with Di,j = 1. Organs are assigned to the highest

priority patients that accept an offer. Finally, patients that have been assigned an organ are

removed from the list. Other patients may also leave the list.

Consider the set of organs that are feasible for patient i. Holding fixed the decisions of the

other patients, let Ji be an ordered set of organs offered to patient i if she refuses all offers

made to her and she was registered indefinitely. Because patients may die before assignment,

she receives a subset of offers denoted by J̃i. Thus J̃i = (j ∈ Ji : Yi,0 ≥ ti,j), where ti,j is the
6We focus on median survival instead of expected life-years because we can track survival for up to sixteen

years. This choice is consistent with prior work measuring the life-year benefits from transplantation (see
Wolfe et al., 1999, 2008, for example).

7In our empirical context, patient decisions may be delegated or made jointly with a surgeon. We do not
distinguish between the these alternatives.
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time between patient i’s registration and donor j’s arrival, and Yi,0 is untransplanted survival.

Patient i’s assignment depends both on the feasible set of organs and her decisions. Let

Ti,j = 1 denote patient i being assigned organ j. Note that

Ti,j =
∏

j′<j, j′∈J̃i

(1−Di,j′)Di,j,

where Di,j = 1 if patient i accepts organ j. Therefore, each patient i is assigned to the first

organ that she accepts from the set J̃i. We assume that the analyst observes the offer set J̃i
and the decisions Di,j for the offers made j ∈ J̃i. Observing the choice set and decisions is

typical when administrative data from an assignment mechanism is available.

The observed outcome Yi depends on whether a patient is assigned and to which organ she

is assigned. It is given by

Yi =
∑
j∈J̃i

Ti,jYi,j +
1−

∑
j∈J̃i

Ti,j

Yi,0,
where Yi,j is the survival outcome of patient i from being assigned organ j.

This formulation abstracts away from potential truncation of observed survival for simplicity

of notation. In our empirical context, we only observe a censored survival outcome for

some patients, allowing us to deduce that Yi > Y C
i , where Y C

i is the censoring time. We

will account for this censoring, making the standard assumption that the censoring time is

independent of the latent duration (see equation 20.22 in Wooldridge, 2010).

3.2 Latent Outcomes and Decisions

There are three key sets of primitives in our model:

Unassigned Outcome: The outcome for patient i if the patient is not assigned any organ

is given by

Yi,0 = g0 (xi, νi,0) , (3.1)

where xi ∈ Rdx are patient-specific observables; νi,0 ∈ R denotes a patient-specific

unobservable; and Yi,0 ∈ R.
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Assignment Outcome: The outcome of patient i from being assigned organ j is given by

Yi,j = g1 (qj, xi, νi,1, εi,j,1) , (3.2)

where xi ∈ Rdx is a vector of patient-specific observed characteristics; qj ∈ Rdq denotes

the observed characteristics of organ j, which we will refer to as organ-types; νi,1 ∈ R

denotes a patient-specific unobservable; εi,j,1 ∈ R denotes an unobservable that are

patient- and organ-specific; and Yi,j ∈ R.

Since Yi,j and Yi,0 denote survival outcomes in our application, they can be written as

arising from survival models with time-varying hazard rates that depend on unobservables.

This model allows for rich heterogeneity along observable and unobservable dimensions.

It also allows for time to treatment effects since xi and qj can include the dates on which

patient i and organ j arrive. Moreover, there are multiple levels of unobserved heterogeneity.

Outcomes are heterogeneous across i due to νi,1 and νi,0, and within treatment types (defined

by qj) for a given i because of εi,j,1.

Decision Equation: We model the acceptance decision as

Di,j = gD (qj, xi, zi, νi,D, εi,j,D) ∈ {0, 1} (3.3)

where Di,j = 1 denotes accept; νi,D ∈ R denotes unobserved selectivity of patient i;

εi,j,D ∈ R is a shock that is specific to the patient and the organ; and zi ∈ Rdz are

observables that influence the decision of a patient. Without loss of generality, we

assume that gD is non-increasing in vi,D and non-decreasing in εi,j,D.

The choice model nests several primitive models of decisions. It is consistent with both

myopic decision rules and a dynamic decision process in which patients do not have fore-

sight over future offers, but base their decisions on their beliefs about the distribution of

offers. Although we remain agnostic about the micro-foundations, this formulation and our

empirical specification nests the optimal stopping problem in Agarwal et al. (2021). 8

8In this model, an offer is accepted if the (perceived net present) value from accepting the organ exceeds the
option value of waiting. Specifically, let gD = 1 if Ui, (qj , xi, εi,j,D) > V (xi, νi,D) where U (·) is the net present
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The main difference between xi and zi is that the latter is excluded from the outcome

equations. For example, zi could include variables that influence this decision, say through

the distribution of future offers, but is unrelated to the benefits of accepting a given organ.

This exclusion restriction, combined with Assumption 1(i) below, introduces instruments in

the model that we will use in the empirical strategy. The specific instruments zi used in our

application are discussed in Section 4.

Our data generating process samples a set of patients and a set of organs independently

along with their respective characteristics (xi, zi, νi) and qj, where νi = (νi,0, νi,1, νi,D). It

then samples the match-specific unobservables εi,j = (εi,j,1, εi,j,D) . We make the following

restriction on this process:

Assumption 1. (i) εi = {εi,j}j and νi are mutually independent conditional on (xi, zi) and

(qj)j.

(ii) The random vector νi is distributed independent and identically distributed (i.i.d.) across

i.

(iii) The random vector εi,j is distributed i.i.d. across i and j.

The assumption allows for dependence between the components of νi and the components

of εi,j, thereby allowing for Yi,j and Yi,0 to be correlated with each other and with Di,j. The

independence assumptions imply that patients’ outcomes do not depend on other patients’

treatment assignment, which implies the stable unit treatment value assumption.

Our goal is to identify the function gD (·) and the marginal distributions of Yi,j and Yi,0 condi-

tional on the vector (xi, qj, zi, εi,j,D, νi,D). The residual uncertainty in the distribution of Yi,0
is only because of patient-specific unobservables νi,0, whereas it is due to both match-specific

effects εi,j,1 and patient-specific effects νi,1 for Yi,j.9 Incorporating these sources is necessary

for capturing unobserved match-specific drivers of outcomes. Identifying these distributions

value of accepting an offer for j, V (·) is the option value of waiting. Agarwal et al. (2021) estimate this model
by first estimating conditional choice probabilities using a probit model where gD = 1 {f (qj , xi, εi,j,D; θ) > 0}
using a reduced-form function f parametrized in terms of θ. Their empirical specification is more restrictive
than ours as it omits νi,D and zi, and does not consider survival effects from transplantation.

9For example, the first moments of the marginals we identify are
E [Yi,0 |xi, zi, νi,D ] =

∫
g0 (xi, ν) fν0|νD=νi,D (ν) dν and E [Yi,j |xi, qj , zi, εi,j,D, νi,D ] =∫ ∫

g1 (qj , xi, ν, ε) fε1|εD=εi,j,D (ε) fν1|νD=νi,D (ν) dνdε, where, the distributions of νi,1 and νi,0 may
depend on νi,D, and the distribution of εi,j,1 may depend on εi,j,D.
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will also allow us to condition only on a subset of the variables (xi, qj, zi, εi,j,D, νi,D) de-

pending on the quantities on which counterfactual assignments depend.

The model and Assumption 1 together impose three main restrictions. First, unobserved

patient selectivity, νi,D is fixed across all organs and time, implying a fixed ordering of

patients on selectivity for all organ types. Second, selectivity and survival outcomes can be

correlated through νi, but we abstract away from time-varying information about survival

that is unobserved to the econometrician and also affects decisions. Relaxing these two

restrictions is challenging because patients in our setting can accept at most one offer and

we observe a single survival outcome (see also Abbring and Van den Berg, 2003; Unkel et

al., 2014). Third, a patient’s decision does not depend directly on the specific decisions of

other patients for a given organ since νi and εi,j are independent of νi′ and εi′,j′ .

In addition, we rule out statistical dependence between the subset of organs offered to a

patient and her unobservables:

Assumption 2. The sequence of offers Ji is conditionally independent of (νi, εi) given xi.

Assumption 2 is satisfied if xi controls for a sufficiently rich set of patient characteristics such

that the remaining variation in potential offers is independent of unobserved determinants

of a patient’s outcomes and decisions. The assumption allows for Ji to depend on the

unobservables of other patients i’. But, because Ji is excluded from i’s potential outcomes

and affects assignment, it is an instrument for which organ is assigned to i. Section 4.1

argues that the assumption is plausible in our empirical setting.

An implication of this assumption is that, patients cannot alter their decisions or their

outcomes in response to specific future offers, ruling out foresight over the organs that

will be offered in the future. This restriction parallels the “no anticipation” assumption in

Abbring and Van den Berg (2003). Nonetheless, recall that our choice model nests the model

in Agarwal et al. (2021) where forward-looking patients strategically refuse offers based on

the distribution of future offers.

The sequential nature of choices and treatment assignment in our model resembles that

of Heckman and Navarro (2007). There are two main differences. First, outcomes and

choices for a patient from different organs of the same type qj are heterogeneous in our
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framework whereas the standard framework uses a finite set of known types. This allows for

the realistic possibility that choices and survival outcomes of a patient can vary across two

observationally identical donors. Capturing such match-specific effects can be important in

other assignment problems with highly heterogeneous agents. Second, our choice shifter zi
varies and the individual level, not at the individual-treatment level. As we discuss below,

we combine this instrument with variation in offers Ji to identify treatment effects.

3.3 Sources of Selection

The model allows for selection into transplantation on three dimensions: untransplanted

survival Yi,0; average survival across transplants Ȳi = 1
|J |
∑
j Yi,j; and match-specific survival

Yi,j − Ȳi. There are two potential sources of selection: selection due to patient choices and

selection due to patient mortality. Selection on these sources creates endogeneity in Ti,j that

our framework addresses.

Selection due to choice occurs if choices Di,j are correlated with survival outcomes Yi,0 or Yi,j.

Choice can induce selection on Yi,0 if, for example, patients with higher expected survival

without a transplant due to unobserved health conditions are more selective. That is, if

E [Yi,0 |νi,D, xi ] varies with νi,D, where expectations are taken over νi,0. Similarly, choice

can induce selection on average transplanted survival, Ȳi, if E [Yi,j |νi,D, xi, qj ] varies with

νi,D, where expectations are taken over νi,1 and εi,j,1. Choice can also induce selection on

match-specific survival Yi,j − Ȳi if patients are more likely to accept an organs with high

Yi,j − Ȳi.

Selection due to mortality occurs because longer-lived patients (high Yi,0) are prioritized and

have a higher chance of receiving a transplant. Moreover, such selection can also occur due to

either time-to-treatment effects or correlation between νi,0 and νi1. Our model also features

mortality-induced selection because J̃i only includes organs that arrive prior to Yi,0.

4 Instruments

We now describe and probe the two instruments described above. Section 5 will formally

prove identification.
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4.1 Conditionally Independent Potential Offers

The first instrument exploits randomness in the objects offered to an agent, relying on

Assumption 2. We argue that this assumption is plausible in our setting on theoretical and

empirical grounds. Our theoretical justification is based on the mechanism used to allocate

deceased donor kidneys. Recall that Ji is the sequence of offers to agent i if the agent refuses

all offers made to her and participated in the mechanism indefinitely. Thus, Ji depends only

on the kidneys that arrive after a patient registers on the waiting list, the decisions of other

patients, and determinants of the agent’s priority. It does not depend on the decisions made

by agent i or her survival outcome. Our knowledge of the mechanism allows us to include

determinants of each patient’s priority in xi as controls. The remaining variation in Ji is

only due to the stochastic arrival of organs and the decisions of agents other than i. It is

plausible to assume that the arrival of organs is independent of (νi, εi) because it depends

primarily on deaths in the local area. And, the decisions of other agents are independent of

(νi, εi) in a natural equilibrium model of the the waiting list (Agarwal et al., 2021).

We now empirically investigate these assumptions using a specific function of Ji. To do

this, we construct a set of desirable donors that are achievable for patient i in the two

years following the patient’s registration. Specifically, we calculate whether patient i would

be placed above the patient in the 10th position on the list for a given donor. A patient

is highly likely to receive an offer for an organ from such a donor because only 22.7% of

deceased donors are offered to fewer than ten patients. We then calculate the number of

donors that would satisfy this criteria for each patient in the two years following the patient’s

registration date.

The variation in this variable comes from two sources: variation in the organs that arrived

in the two years following patient i’s registration and variation in the patients on the waiting

list and their decisions when the organ arrived. Our results use fixed effects to control for

differences in a patient’s priority, geographical area, and time trends. Therefore, Assumption

2 needs to be satisfied conditional on these controls. The first source of variation is indepen-

dent of i’s decisions because specific patients are not considered in organ donation decisions.

Indeed, we cannot detect a correlation between patient characteristics and donor character-
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istics conditional on the controls mentioned above (not reported due to space constraints,

available on request). The second source of variation is also plausibly exogenous because,

given a particular organ, other patients’ decisions should be independent of the selectivity

and outcomes of patient i.10 Consistent with this claim, Appendix Table D.5 shows that this

measure varies substantially across patients and is not significantly correlated with the vast

majority of patient characteristics.

Given this exclusion restriction, we establish relevance by showing that potential offers

strongly influence whether or not a patient receives a transplant and also the type of or-

gan transplanted. Columns (1) to (4) in Table 3 present estimates from linear probability

models to examine the relationship between whether the transplanted organ is high quality

(as measured by KDPI) and the number of potential top 10 offers from donors from the

corresponding group. Columns (1) and (2) show that the number of offers in both donor

categories are positively related to the probability of a transplant, whether or not we con-

trol for a rich set of patient characteristics. Columns (3) and (4) show that the type of

organ transplanted is positively correlated with the number of potential offers from the cor-

responding type of donor. The F-statistics point to a strong first-stage relationship as they

are much higher than the conventional cutoff of 10 used to assess whether an instrument is

strong (Stock and Watson, 2012).

4.2 A Choice Shifter: Scarcity

Our second set of instruments are measures of scarcity zi that alters an agent’s acceptance

decisions Di,j but are excluded from latent outcomes Yi,j. Patients who expect greater

transplant opportunities in the future (lower scarcity) should be less willing to accept a given

kidney than otherwise identical patients with fewer opportunities (higher scarcity). These

instruments must be correlated with decisions but independent of latent outcomes. Formally,

Assumption 1(i) requires that, conditional on xi, (νi, εi) is distributed independently of zi.

We construct two measures of scarcity. The first is a predictor of offers a patient can expect
10The only potential effect is if patient i accepts a kidney that would otherwise have been accepted by

another patient who would been pivotal in determining whether i would be in the top ten positions for a
different donor.
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Table 3: Top 10 offers: First Stage

Any Kidney Any Kidney

KDPI <= 

50%

KDPI > 50% 

or Missing

(1) (2) (3) (4) (5) (6)

log(1 + # Top 10 Offers in 2 Years)

KDPI <= 50% 0.0322*** 0.0334*** 0.0439*** -0.0105*** -0.0163* -0.0321***

(0.00441) (0.00441) (0.00306) (0.00287) (0.00730) (0.00736)

KDPI > 50% or Missing 0.0303*** 0.0297*** -0.0128*** 0.0425*** 0.0000307 -0.00321

(0.00475) (0.00478) (0.00314) (0.00294) (0.00711) (0.00715)

DSA FE, year FE, and blood type FE x x x x x x

Control for Pediatric at Listing x x x x x x

CPRA Category Controls x x x x x x

Patient Characteristics x x x x

F-statistic 93.20 92.23 108.0 130.6

Number of Observations 132715 131105 131105 131105 132715 131105

R-Squared 0.210 0.219 0.171 0.065

Transplant Hazard Rate

Notes: * p<0.05, ** p<0.01, *** p<0.001. The sample restricts to patients who registered between 2000 and 2008 because the
instrument is calculated using offers in the two years post registration. All regressions control for donor service area (DSA) fixed
effect, registration year fixed effect, blood type fixed effect, and priority characteristics (an indicator for pediatric at registration,
and indicators for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA missing at registration). Patient characteristics
include an indicator for female; indicators for age 18-35, 35-50, and 50-65; indicators and linear controls for dialysis time 1-3,
3-5, 5-10, and >10 years; and an indicator for diabetes. Standard errors, clustered by DSA, registration year, and blood type
are in parentheses. F-test tests against the null hypothesis that the coefficients on the instruments are zero.

in the future. Fix an offer for donor j made to patient i in the calendar quarter t. Consider

the set of offers made in the four quarters before t to other patients in a comparison group

consisting of other patients with the same blood type as i that registered in the same DSA

as i. We count the subset of offers made to this group of patients when they had the same

number of waiting time priority points as patient i when she received the offer for donor j.

The second is a predictor of donor supply, which is constructed analogously to the first but

counts the number of unique donors in this set of offers.

Our analysis will include fixed effects for the DSA, blood-type, and the calendar year of the

assignment. Therefore, both instruments exploit variation in scarcity in a patient’s DSA

while controlling for secular trends. To assess balance, we investigated whether variations

in our measures of scarcity significantly correlate with the characteristics of patients that

register in a given year. Reassuringly, Table D.6 in the appendix shows that our scarcity
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instruments are not significantly correlated with patient characteristics (age, diabetes, fe-

male, height, and weight). Our scarcity instruments are also uncorrelated with measures of

donor quality (not reported due to space constraints, available on request). The threat to

the instrument therefore needs to be a DSA-specific trend in scarcity that is correlates with

survival outcomes due to factors beyong patient or donor characteristics.

Table 4: Scarcity Instruments: First Stageall KDPI FS+RF

Page 1

Acceptance Hazard Rate

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log(1 + No. Donors) -0.0490*** -0.0479*** -0.0365*** -0.0360*** -0.0107 -0.0328

(0.00341) (0.00338) (0.00324) (0.00323) (0.0207) (0.0208)

Log(1 + No. Offers) -0.0536*** -0.0528*** -0.0439*** -0.0409*** -0.0156 -0.0371**

(0.00185) (0.00183) (0.00183) (0.00182) (0.0113) (0.0115)

Offer Year FE x x x x x x x x

Priority Type FE x x x x x x x x x x x x

DSA FE and blood type FE x x x x x x x x x x x x

Years Waited at Offer FE x x x x x x x x x x x x

Patient Characteristics x x x x x x x x

Donor Characteristics x x x x x x

Match Characteristics x x x x x x

F-statistic 205.8 842.1 200.5 829.8 126.7 575.2 124.2 506.3

Number of Observations 912889 912761 912889 912761 900794 900669 900794 900669 64703 64703 63959 63959

R-Squared 0.166 0.172 0.169 0.174 0.263 0.233 0.265 0.268

Notes: * p<0.05, ** p<0.01, *** p<0.001. We use the first 100 offers from each donor between 2000 and 2009, and the
dependent variable is acceptance of an offer. All regressions control for DSA fixed effect, blood type fixed effect, and a fixed
effect for the number of years waited at the offer, and priority characteristics (an indicator for pediatric at registration, and
indicators for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA missing at registration). Patient characteristics
include an indicator for female; indicators for age <=18, 18-35, 35-50, and 50-65; indicators and linear controls for dialysis time
1-3, 3-5, 5-10, >10 years; and an indicator for diabetes. Donor characteristics include linear age, indicators and linear controls
for donor creatinine > 0.6 and >1.8, and indicators for diabetes, donation after cardiac death, and expanded criteria donor.
Match characteristics include the number of Human Leukocyte Antigen (HLA) mismatches via indicators for 0 HLA mismatch,
0 and 1 DR antigen mismatch, identical blood type, local offers, and linear controls for (+) and (-) age difference, interactions
between CPRA indicators and # HLA mismatches, donor age over 40 and pediatric patient, donor age over 55 and patient age
18-35, donor age over 60 and patient age 35-50, and donor age below 60 and patient age 50-65. Standard errors clustered by
DSA, offer year, number of years waited at offer, and blood types in parentheses.

These instruments are relevant to decisions if they are correlated with beliefs about future

offers. This hypothesis is based on the idea that transplant surgeons, who advise patients on

decisions, are likely aware of the recent availability of kidneys. Columns (1) to (8) of Table

4 show the results from a linear probability model that regresses a dummy on whether an

offer is accepted on the two measures of scarcity and a variety of controls. Both measures

of scarcity are negatively correlated with acceptance. Columns (1) and (2) show that the
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number of donors or number of offers to patients made in the past to the comparison group

is negatively correlated with acceptance rates, controlling for patient priority type and fixed

effects for DSA, allocation year, and years waited. These magnitudes are robust to adding an

extensive set of controls for patient characteristics (columns 3 and 4), and not very sensitive

to additional controls for donor and match-specific characteristics (columns 5 through 8).

A residualized binscatter plot suggests that these relationships are monotonic (not reported

due to space constraints, available on request).

5 Identification and Estimation

We now show that the instruments introduced in the previous section, Ji and zi, to identify

target quatities described in Section 3. Our results condition on the patient type xi and omit

it for simplicity of notation. We assume the analyst observes the organ types qj, the choices

Di,j if i is offered j, the set of organs offered to each patient J̃i and the survival outcome

for each patient. Our estimator does not require observing the potential offer sequence Ji as

long as Assumption 2 is satisfied.11

The argument proceeds in three parts. First, we use standard arguments to show that

variation in the offers received by a patient can be used to recover distributions of the

outcomes conditional on certain sequences of choices. Second, we show that the choice

model described in equation (3.3) is identified. Third, we combine continuous variation in

scarcity with results from the first part to identify the effect of key unobservables on the

distribution of outcomes. All proofs are in Appendix C.

5.1 Identifying Conditional Expected Outcomes

We start by using variation in offers. Given a realization of Ji, let j (i, n) denote the n-th

organ offered to i and qi =
(
qj(i,1), qj(i,2), . . . , qj(i,|qi|)

)
be the sequence of offer-types offered

to i. Our first result shows that variation in the offer-types can identify a conditional
11Nonetheless, we can simulate Ji in our context using knowledge of the mechanism and data on the offers

made for each donor.
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average treatment effect for patients who accept the n−th offer.12 Formally, let Ni be

one greater than the number of offers that i rejects prior to the first acceptance, that is,

Ni = min
{
n : Di,j(i,n) = 1

}
.

Lemma 1. Suppose that Assumptions 1 and 2 are satisfied. Fix z and qi. The marginal dis-

tributions of Yi,j(i,n) and Yi,0 conditional on Ni = n, zi = z and qi are identified for all n ≤ |qi|

such that P
(
Ni = n| qi, z, Yi,0 ≥ tj(i,n)

)
> 0, and

(
qj(i,1), . . . , qj(i,n)

)
and

(
qj(i,1), . . . , qj(i,n−1)

)
belong to the support of the distribution of offer-types induced by the distribution of Ji.

This result uses standard arguments (e.g. Imbens and Angrist, 1994) to identify counter-

factual outcomes for patients who would have accepted and be assigned to the n−th organ

offered. Since we directly observe the outcomes Yi,j(i,n) for patients (facing same scarcity

level zi and receiving the same offer-type sequence qi as i) who are assigned to the n-th

organ offered, the challenge is to estimate the unassigned outcomes for these patients. We

do this by focusing on the set of unassigned patients who receive either exactly n − 1 or

exactly n offers with sequence of types
(
qj(i,1), . . . , qj(i,n−1)

)
and

(
qj(i,1), . . . , qj(i,n)

)
. The for-

mer group contains patients with Ni > n−1 whereas the latter group only contains patients

with Ni > n, with weights given by the observed quantity P
(
Ni = n| qi, z, Yi,0 ≥ ti,j(i,n)

)
.

Monotonicity of the instrument is implied by our model because a patient cannot be assigned

a kidney without receiving an offer.

This result allows us to evaluate the life-years gained in the observed assignment because the

alternative is that all patients are unassigned. Identifying the distributions above, however,

is not sufficient for evaluating their values under a counterfactual assignment of kidneys to

patients because the distributions condition on Ni = n, and are therefore selected on νi,D

and εi,j,D. We address this selection problem below.

5.2 Identifying the Choice Model

The next step uses the variation in offers identify the function gD (·). To simplify exposition,

focus on the case when ti,j = 0 where ti,j denotes the time difference between donor arrival
12Observe that our model and setting do not allow for always takers since a patient cannot be assigned

an organ without receiving an offer for one.
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and patient arrival. In this case, νi is unselected due to survival while waiting on the list.

Therefore, we normalize the marginal distributions of νi,D and εi,j,D to be uniform and

assume that z is supported in the unit interval. These normalizations are without further

loss of generality because we have not placed restrictions on the functional form of gD (·).

Because our empirical setting involves dynamic assignments, we prove results for the case

when ti,j > 0 and differs across j in appendix C.5.

We need to introduce some notation in order to develop our result. For each value of z and

donor type qj, consider two sets of pairs (νD, εD) such that one set yields gD (qj, z, νD, εD) = 0

and the other yields gD (qj, z, νD, εD) = 1. These two sets are separated by the function

v (εD; qj, z) = sup
{
νD ∈

[
0, 1

]
: gD (qj, z, νD, εD) = 1

}
, where we adopt the convention that

the supremum of the empty set is 0. Since εD and νD are uniformly distributed, observe that

v (εD; qj, z) is equal to the fraction of patients that reject an offer of an organ with type qj
with probability at most εD when faced with scarcity z. Therefore, identifying the function

v (εD; qj, z) is equivalent to identifying gD (·).

Our next result makes the following assumption on v (·; qj, z):

Assumption 3. For each qj and z, (i) the function v (·; qj, z) is differentiable, and (ii) for

any νD ∈ (0, 1) there exists εD ∈ (0, 1) such that v (εD; qj, z) = νD.

The main restriction is in part (ii). It requires that there are no (interior) values of νD for

which the patient either accepts or rejects all organs of type qj when faced with scarcity z.

In other words, there are high (low) enough match-specific shocks εD that would result in

acceptance (rejection) of an offer, where the pivotal value of εD depends on νD, qj and z.

This condition would violated only if acceptance probabilities were degenerate for some qj,

z and νD ∈ (0, 1). With this assumption, we show that variation in offers can be used to

identify the function gD (·):

Lemma 2. Let qnj be a sequence composed by n offers of type qj with ti,j = 0, and let

vn−1 (·; qj, z) be the (n− 1)-st order Fourier-Legendre approximation of v (·; qj, z). If As-

sumptions 1 - 3 are satisfied, and qnj is in the support of the distribution of offer-types

induced by Ji, then vn−1 (·; qj, z) is identified for each z ∈ (0, 1) and qj. In particular, if the

hypotheses hold for all n, then v (·; qj, z) and therefore P (Di,j = 1| νi,D = νD) is identified.
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The main challenge is that there are two latent reasons that drive a patient’s decisions,

namely νi,D and εi,j,D. We observe the probability P
(
Di,j(i,1) = . . . = Di,j(i,k) = 0

∣∣∣ qnj , z) for

all k ≤ n. Because v (εD; qj, z) is the CDF of rejection probability across patients given qj
and z, we can write

P
(
Di,j(i,1) = . . . = Di,j(i,k) = 0

∣∣∣ qnj , z) =
∫ 1

0
εkDdv (εD; qj, z) .

Therefore, the quantity P
(
Di,j(i,1) = . . . = Di,j(i,k) = 0

∣∣∣ qnj , z) is the k-th moment of a ran-

dom variable with cumulative distribution function v (·; qj, z). Learning the function v (·; qj, z)

is therefore equivalent to the well-known Hausdorff moment problem (Casella and Berger,

2002) because we know the moments if we interpret v (·; qj, z) as a CDF. This can be done

if an infinite number of moments are known.

In fact, our result is stronger: we show that data with finite n is informative even without

variation in the number of offers because v (·) can be well-approximated by observing deci-

sions from a given sequence of offer-types qnj . This follows because the moments described

above determine the n-th order Fourier-Legendre approximation of v (·), which converges to

the true function v (·; qj, z) in the L2 norm as n becomes large.

5.3 Identifying Selection on Unobservables

Next, we turn our attention to identifying the components that determine selection on un-

observables using an additional regularity assumption:

Assumption 4. (i) For each z ∈ (0, 1) and qj, the derivative v′ (·; qj, z)= ∂
∂εD

v (·; qj, z) is a

continuous, cube-integrable, and strictly positive function of εD ∈ (0, 1).

(ii) For each εD and qj, the functions E [Yi,0| νD] and E [Yi,j| νD, εi,j,D ≥ εD, qj] are contin-

uous in νD, and the first four moments of Yi,0 and Yi,j exist.

The first part strengthens the differentiability of v (εD; qj, z) imposed in Assumption 3 by

requiring a strictly positive in L3([0, 1]). Given the interpretation of v (·) above, observe that

v′ (·; qj, z) is the density function of the distribution of the probability with which a patient

rejects an offer of an organ with type qj. Therefore, we require that this density function is
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bounded and is non-zero for all interior values of εD and z. The second part imposes weak

regularity assumptions on conditional moments of Yi,0 and Yi,j, where expectation is taken

over νi,0 and (νi,1, εi,j,1) respectively.

Our main result shows identification of the expected values of Yi,0 and Yi,j given νi,D and

εi,j,D. The result also implies identification of the analogous quantities for any bounded

transformation ψ (·) of Yi,0 and Yi,j, thereby implying identification of their marginal distri-

butions.

Theorem 1. Suppose that Assumption 4 and the hypotheses for Lemma 2 hold for all n.

Then, the quantities E [Yi,0| νi,D = νD] and E [Yi,j| νi,D = νD, εi,j,D ≥ εD] are identified for

all εD ∈ (0, 1) and νD ∈ (0, 1) such that there exists z in the support of its distribution with

νD = v (εD; qj, z).

Thus, the expected value of outcomes conditional on values of selectivity and idiosyncratic

preferences is identified. We sketch the argument for E [Yi,0| νD] since the intuition for

identifying E [Yi,j| νD, εi,j,D ≥ εD] is similar in spirit.13 The proof begins by using results in

Lemma 1 to identify the conditional expectations given scarcity z, offer-types and Ni. Next,

we use the identification results for v (·) and arguments in Lemma 2 to recover the objects

of interest. For example, Lemma 1 implies that E
[
Yi,0 × 1 {Ti = 0}| qkj , zi

]
is identified from

variation in offers. This quantity can be re-written as

E
[
Yi,0 × 1 {Ti = 0}| qkj , zi

]
=
∫ 1

0
E [Yi,0| νD = v (εD; zi, qj)] εkDdv (εD; zi, qj) .

If we observe this quantity for all k ≤ n, then we can recover the n−th order Fourier-

Legendre approximation of E [Yi,0| νD = v (εD; qj, z)] v′ (εD; qj, z) when viewed as a function

of εD, which converges uniformly to the true function in Cesàro mean (Talenti, 1986; Freud,

1971). Finally, since v′ (εD; qj, z) > 0 and bounded and the function v (εD; qj, z) is identified

(Lemma 2), we can identify E [Yi,0| νD] for all νD ∈ (0, 1) if we can find values of z and εD
such that v (εD; qj, z) = νD.

This last step resembles strategies in Heckman and Vytlacil (2005); Lewbel (2007); Heckman
13One qualitative difference is that identifying E [Yi,0| νD] allows us to use variation in either z or εD to

trace-out νD, whereas the result for E [Yi,j | νD, εi,j,D ≥ εD] must condition on εD.
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and Navarro (2007) whereby a continuous instrument is used to “trace-out” the expected

values of potential outcomes conditional on an unobservable. The scarcity instrument z

does this by changing the set of (νD, εD) whose treatment status changes in response to

the offer instrument. Two differences are worth noting. First, our scarcity instrument is

not treatment-specific because the discrete offer instrument generates variation in treatment

assignments (c.f. Heckman and Navarro, 2007; Hull, 2018, for example). Our assumption that

νi,D does not vary across j allows us to use an instrument that varies only across patients i

but is fixed across j. Second, we do not use “identification at infinity” arguments as values of

z need not push choice probabilities to degenerate values that obviate the selection problem.

Specifically, E [Yi,0| νi,D = νD] and E [Yi,j| νi,D = νD, εi,j,D ≥ εD] are identified as long as we

observe values of z such that νD = v (εD; qj, z). As is common, identification of E [Yi,0] and

E [Yi,j] will require full support of v (εD; qj, z) for fixed εD and qj.

The results in Lemma 2 and Theorem 1 use data from the case when organs arrive at the

same time as the patient (ti,j = 0). Extending our results to the case when ti,j > 0 and differs

across j introduces two issues. First is the direct effect of time to treatment, which can be

captured by including the patient’s registration date and organ’s arrival date in xi and qj.

The second issue, which is the main challenge, is that the distribution of νi,D conditional on

waiting until ti,j is no longer unselected.

Our extension in Appendix C.5 addresses these issues and implies identification of the

marginal distributions and survival hazard functions of Yi,0 and Yi,j (Theorem 2). As in

generalized Roy models more broadly, the joint distribution of outcomes is not identified.

Thus, we cannot attribute the effect of waiting time ti,j on Yi,j to either time-to-treatment

or to correlation between survival outcomes. We ignore this distinction because it is not

relevant for evaluating outcomes under counterfactual assignments.

5.4 Estimation

Although our results above show non-parametric identification, directly estimating these

quantities is challenging for several reasons. First, we wish to incorporate rich observed

and unobserved heterogeneity governing both choices and outcomes. These include patient-
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specific, donor-specific, match-specific and time-to-treatment effects. Second, we observe

only censored versions of our outcome, complicating a non-parametric analysis. Finally, we

would like to incorporate correlations between discrete choices and these censored outcomes.

To solve these challenges, we employ a Gibbs’ sampling technique to estimate a parametrized

version of equations (3.1) – (3.3):14

yi,0 = B (Yi,0; ρ0) = xiβx + νi.0 (5.1)

yi,j = B (Yi,j; ρ1) = χ (xi, qj)αx,q + αηηj + νi,1 + εi,j,1 (5.2)

Di,j = 1 {χ (xi, qj) γx,q + ziγz + ηj − νi,D + εi,j,D > 0} , (5.3)

where Yi,0 is survival since registration without a transplant; Yi,j is survival since transplan-

tation if patient i is transplanted organ j; B (·; ρ) denotes a Box-Cox transformation of the

argument with parameter ρ (Box and Cox, 1964);15 χ (xi, qj) is a flexible function of patient

observables xi and organ observables qj; ηj is distributed N
(
0, σ2

η

)
with the parameter σ2

η to

be estimated; εi,j = (εi,j,D, εi,j,1)′ is distributed N (0,Σε) where Σε,11 is normalized to 1; and

νi is a mean-zero multi-variate normal with a distribution induced by the following factor

structure, which is without loss of generality:

νi,1 = δ1,Dνi,D + νi,f (5.4)

νi,0 = δ0,Dνi,D + δ0,fνi,f + ν̃i,0, (5.5)

where νi,D, νi,f and ν̃i,0 are independently distributed mean-zero normal random variables

with variances to be estimated.

This empirical model maps the patient and kidney types into characteristic space, which re-

duces the number of parameters. It includes ηj, which represents unobserved heterogeneity

in organ quality due to characteristics observed by patients and surgeons but not included
14It is common to use functional form restrictions that are stronger than those necessary for identification

when estimating a model that involves selection due to choices and several types of treatments (see Geweke
et al., 2003; Hull, 2018, for example).

15Formally, B (Y ; ρ) = Y ρ−1
ρ . In the special case when ρ = 0, B (Y, ρ) = log Y . We set ρ by comparing

an estimated survival curve using the non-parametric Kaplan-Meier estimator to those implied by assuming
that B (Y, ρ) is normally distributed.
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in the empirical specifications. We include this term because it may be empirically impor-

tant although our our identification results do not, strictly speaking, cover this case.16Table

D.7, column 5, shows that our headline results using a model that excludes this term are

qualitatively similar.

This choice of functional form is motivated by several considerations. First, we wish to allow

for correlations between νi,0, νi,1, and νi,D and between εi,j,1 and εi,j,D. For example, the

factor νi,f captures the component of a patient’s unobserved frailty that is not correlated

with decisions. Second, decision are binary, suggesting the use of probit choice models.

These two considerations direct us to use multivariate normals to model the distributions

of νi and εi,j. Third, the parametrization allows us to handle censored data and also fit the

shape of the survival curve. Box-Cox transformations yield a tractable likelihood function

while generalizing the functional form (see Spitzer 1982, for example). We hold the Box-Cox

transformation parameters ρ0 and ρ1 fixed and conduct robustness analysis to alternative

choices (see Table D.7).

Directly computing and maximizing the likelihood of this model is difficult because each

patient’s data involves decisions over many donors as well as (potentially censored) survival

outcomes. Computing this likelihood requires integrating a nonlinear function over a high

dimensional space. Instead, we estimate the parameters of the model using a Gibbs’ sampler

(McCulloch and Rossi, 1994; Geweke et al., 2003; Gelman et al., 2014). This method gener-

ates a sequence of draws of the model’s parameters, collected in θ, and the latent variables

νi, εi,j, and ηj given the parameters from their respective posterior distributions. Our chosen

parametrization is amenable to this approach because the latent variables can be partitioned

so that each group has a posterior distribution given the draws of the other groups that can

be solved in closed form. Details on the method are provided in Appendix B.1. Based on

the Bernstein-von-Mises Theorem (see van der Vaart, 2000, Theorem 10.1), we interpret our

estimator as equivalent to maximum likelihood.
16While formal analysis is left to future research, we conjecture that identification results can be obtained

based on an analogy to non-linear measurement error models (Hu and Schennach, 2008) because each donor
has two kidneys, suggesting that dependence between acceptances of a given donor’s first and second kidney
and the associated suvival outcomes can be used for identification.
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6 Survival and Choice Estimates

Table 5 present estimates for survival without and with a transplant, and the probability of

acceptance in panels A, B and C respectively (detailed estimates are available on request).

Our specifications contain a rich set of patient and donor covariates to capture medical

history and match quality, including characteristics used in the leading models for predicting

pre- and post-transplant survival for patients with kidney failure (see Wolfe et al., 2008, for

example) as well as determinants of patient priority. Survival estimates show the marginal

half-life effects associated with select characteristics. Effects are shown for a one standard

deviation increase in a continuous characteristic or a unit change in an indicator.

We present estimates from three different specifications. The first specification only relies

on offer randomness and does not employ the scarcity instruments (columns 1). This spec-

ification assumes that νi,D, νi,0 and νi,1, and εi,j,D and εi,j,1 are mutually independent. The

second specification, which is our preferred one, includes the number of past donors as the

scarcity instrument (columns 2). To assess robustness, we estimate a third specification with

our past offers instrument (columns 3). Table D.7 in the appendix shows robustness of our

headline findings to numerous variations.

Survival: Proxies for baseline patient health predict survival both with and without a trans-

plant. A patient who is older, diabetic, or on dialysis at registration has a significantly

shorter half-life both with and without a transplant, with effects that are slightly larger ef-

fects for post-transplant survival. For example, a diabetic patient’s half-life with and without

transplant is lower than a non-diabetic patient by 2.99 and 1.36 years respectively.

Measures of donor quality, waiting time, and tissue-type similarity also predict post-transplant

survival, but donor characteristics have lower estimated effects as compared to tissue-type

matching and patient characteristics. For example, a donor with a history of hypertension

results in a lower half-life by 0.34 years, which is much smaller than the effects on patient

characteristics described above. Receiving a kidney with a perfect tissue-type match has a

large effect on half-life, consistent with a lower likelihood of an immune responses.

Choice: Measures of donor quality and match-specific benefits are also positively correlated

with acceptance. Patients are significantly more likely to accept kidney offers from younger



30
Ta

bl
e
5:

Su
rv
iv
al

an
d
C
ho

ic
e
Es

tim
at
es

Su
rv

iv
al

 a
n

d
 C

h
o

ic
e 

M
o

d
el

s 
(l

am
b

d
a 

= 
0

.6
 f

o
r 

Y1
 a

n
d

 0
.5

 f
o

r 
Y0

)

Pa
n

el
 A

: S
u

rv
iv

al
 w

it
h

o
u

t 
Tr

an
sp

la
n

t
P

an
el

 B
: S

u
rv

iv
al

 w
it

h
 T

ra
n

sp
la

n
t

Pa
n

el
 C

: A
cc

ep
ta

n
ce

 M
o

d
el

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

(1
)

(2
)

(3
)

P
at

ie
nt

 C
ha

ra
ct

er
is

tic
s

D
ia

b
eti

c
-1

.3
8

0
-1

.3
6

1
-1

.3
6

1
-2

.9
5

9
-2

.9
8

0
-2

.9
7

7
-0

.0
0

3
-0

.0
0

5
-0

.0
0

5

(0
.0

3
0

)
(0

.0
3

0
)

(0
.0

3
0

)
(0

.0
9

9
)

(0
.1

1
3

)
(0

.1
1

1
)

(0
.0

0
0

)
(0

.0
0

1
)

(0
.0

0
1

)

O
n

 D
ia

ly
si

s 
at

 R
eg

is
tr

ati
o

n
-1

.0
1

9
-1

.0
1

3
-1

.0
1

3
-2

.3
8

4
-2

.3
9

5
-2

.3
8

9
0

.0
0

1
0

.0
0

3
0

.0
0

3

(0
.0

4
2

)
(0

.0
4

1
)

(0
.0

4
1

)
(0

.1
1

8
)

(0
.1

2
5

)
(0

.1
2

3
)

(0
.0

0
1

)
(0

.0
0

1
)

(0
.0

0
1

)

A
ge

 a
t 

R
eg

is
tr

ati
o

n
-1

.0
7

0
-1

.0
6

0
-1

.0
6

0
-3

.1
8

3
-3

.1
9

2
-3

.1
8

1
0

.0
0

2
0

.0
0

4
0

.0
0

4

(0
.0

2
5

)
(0

.0
2

5
)

(0
.0

2
5

)
(0

.1
1

8
)

(0
.1

2
6

)
(0

.1
2

4
)

(0
.0

0
0

)
(0

.0
0

1
)

(0
.0

0
1

)

D
on

or
 C

ha
ra

ct
er

is
tic

s

A
ge

 <
 1

8
1

.5
9

5
1

.6
0

4
1

.6
4

7
0

.1
4

0
0

.1
5

3
0

.1
5

4

(0
.9

0
6

)
(0

.9
1

6
)

(0
.9

1
6

)
(0

.0
0

8
)

(0
.0

0
8

)
(0

.0
0

8
)

A
ge

 1
8

-3
5

-0
.2

6
7

-0
.2

8
2

-0
.2

4
9

0
.0

7
9

0
.0

9
8

0
.0

9
8

(0
.9

7
3

)
(0

.9
8

1
)

(0
.9

8
0

)
(0

.0
0

8
)

(0
.0

0
8

)
(0

.0
0

8
)

A
ge

 5
0

+
3

.3
8

3
3

.3
8

1
3

.2
9

6
-0

.0
6

0
-0

.0
7

1
-0

.0
6

9

(2
.2

4
3

)
(2

.2
5

2
)

(2
.2

4
1

)
(0

.0
0

2
)

(0
.0

0
3

)
(0

.0
0

3
)

C
au

se
 o

f 
D

ea
th

 -
 H

ea
d

 T
ra

u
m

a
0

.6
6

2
0

.6
6

5
0

.6
9

1
0

.0
5

7
0

.0
6

5
0

.0
6

4

(0
.3

1
3

)
(0

.3
1

6
)

(0
.3

1
4

)
(0

.0
0

6
)

(0
.0

0
7

)
(0

.0
0

7
)

Ex
p

an
d

ed
 C

ri
te

ri
a 

D
o

n
o

r 
(E

C
D

)
-0

.6
2

2
-0

.6
2

3
-0

.6
5

5
-0

.0
4

5

(0
.1

8
4

)
(0

.1
9

9
)

(0
.1

9
7

)
(0

.0
0

2
)

(0
.0

0
2

)
(0

.0
0

2
)

H
is

to
ry

 o
f 

H
yp

er
te

n
si

o
n

-0
.3

4
0

-0
.3

4
2

-0
.3

5
7

-0
.0

2
5

-0
.0

2
9

-0
.0

2
8

(0
.1

2
2

)
(0

.1
2

4
)

(0
.1

2
3

)
(0

.0
0

1
)

(0
.0

0
1

)
(0

.0
0

1
)

0
.1

0
7

0
.1

8
1

0
.0

0
0

0
.2

2
4

0
.2

1
9

(0
.1

8
3

)
(0

.1
7

7
)

(0
.0

0
0

)
(0

.0
0

2
)

(0
.0

0
2

)

O
ffe

r 
C

ha
ra

ct
er

is
tic

s

Pe
rf

ec
t 

Ti
ss

u
e 

Ty
p

e 
M

at
ch

2
.2

7
2

2
.2

6
9

2
.3

2
2

0
.1

4
6

0
.1

4
3

0
.1

4
5

(0
.9

4
4

)
(0

.9
5

9
)

(0
.9

5
4

)
(0

.0
0

8
)

(0
.0

0
9

)
(0

.0
0

9
)

Lo
g 

W
ai

ti
n

g 
Ti

m
e 

(Y
ea

rs
)

-0
.4

8
7

-0
.5

4
3

-0
.5

3
9

0
.0

1
0

0
.0

2
6

0
.0

1
6

(0
.0

6
2

)
(0

.1
6

8
)

(0
.1

6
1

)
(0

.0
0

0
)

(0
.0

0
1

)
(0

.0
0

1
)

S
ca

rc
ity Lo

g(
1

+#
Pa

st
 D

o
n

o
rs

)
-0

.0
1

0

(0
.0

0
1

)

Lo
g(

1
+#

Pa
st

 O
ff

er
s)

-0
.0

2
0

(0
.0

0
1

)

In
st

ru
m

en
ts

N
o 

In
st

ru
m

en
ts

# 
Pa

st
 D

o
n

o
rs

# 
P

as
t 

O
ff

er
s

N
o 

In
st

ru
m

en
ts

# 
Pa

st
 D

o
n

o
rs

# 
Pa

st
 O

ff
er

s
N

o 
In

st
ru

m
en

ts
# 

Pa
st

 D
o

n
o

rs
# 

P
as

t 
O

ff
er

s

U
n

o
b

se
rv

ab
le

 (
η
j)

N
ot
es
:
Se
le
ct

es
ti
m
at
es

of
th
e
m
ar
gi
na

l
eff

ec
t
on

th
e
pr
ob

ab
ili
ty

of
ac
ce
pt
an

ce
an

d
ha

lf-
lif
e.

M
ar
gi
na

l
eff

ec
ts

ar
e
co
m
pu

te
d
at

th
e
m
ed
ia
n
va
lu
e
of

ob
se
rv
ab

le
co
va
ri
at
es
,

in
te
gr
at
in
g
ov
er

th
e
di
st
ri
bu

ti
on

of
al
lu

no
bs
er
va
bl
es
.
A
ll
eff

ec
ts

ar
e
sh
ow

n
fo
r
a
on

e
st
an

da
rd

de
vi
at
io
n
in
cr
ea
se

in
ea
ch

co
nt
in
uo

us
co
va
ri
at
e
an

d
a
un

it
in
cr
ea
se

in
ea
ch

bi
na

ry
co
va
ri
at
e.

W
e
ge
ne
ra
te

25
00

00
dr
aw

s
an

d
bu

rn
-in

th
e
fir
st

50
00
0
dr
aw

s.
W
e
th
in

th
e
ch
ai
n
by

se
le
ct
in
g
ev
er
y
10

dr
aw

s.
A
ll
co
lu
m
ns

co
nt
ro
lf
or

D
SA

fix
ed

eff
ec
ts
,b

lo
od

ty
pe

fix
ed

eff
ec
ts
,a

nd
re
gi
st
ra
ti
on

ye
ar

fix
ed

eff
ec
ts
.
O
th
er

pa
ti
en
t
ch
ar
ac
te
ri
st
ic
s
in
cl
ud

e
di
al
ys
is

ti
m
e
at

re
gi
st
ra
ti
on

,B
M
I
at

de
pa

rt
ur
e,

pa
ti
en
t
se
ru
m

al
bu

m
in
,a

nd
in
di
ca
to
rs

fo
r

fe
m
al
e,

di
ab

et
ic
,C

P
R
A
=
0,

an
d
pr
io
r
tr
an

sp
la
nt
.
D
on

or
ch
ar
ac
te
ri
st
ic
s
in
cl
ud

e
in
di
ca
to
rs

fo
r
ot
he
r
ca
us
es

of
de
at
h,

ex
pa

nd
ed

cr
it
er
ia

do
no

r,
do

na
ti
on

af
te
r
ca
rd
ia
c
de
at
h,

m
al
e,

an
d
bi
ns

of
cr
ea
ti
ni
ne

le
ve
ls
.
O
th
er

off
er

ch
ar
ac
te
ri
st
ic
s
in
cl
ud

e
in
di
ca
to
rs

fo
r
2
A
,2

B
,2

D
R

m
is
m
at
ch
es
,n

ot
th
e
sa
m
e
bl
oo

d
ty
pe

bu
t
co
m
pa

ti
bl
e,

re
gi
on

al
off

er
,l
oc
al

off
er
,

an
d
in
te
ra
ct
io
ns

be
tw

ee
n
se
ve
ra
lp

at
ie
nt

an
d
do

no
r
ch
ar
ac
te
ri
st
ic
s.

St
an

da
rd

er
ro
rs

ar
e
in

pa
re
nt
he
se
s.



31
donors; donors who died of head trauma; donors without a history of hypertension; and

donors with whom they have a perfect tissue-type match. Kidneys which have higher unob-

servable quality, ηj, are also more likely to be accepted, suggesting that decisions respond to

information about the organ that is not perfectly captured by the observable characteristics.

The last two rows record the scarcity instruments’ effects on acceptance. Consistent with

the results in Table 4, each instrument has a significant negative effect on the probability of

acceptance. Other parameter estimates are similar across the instrumented specifications,

suggesting that the choice between these two instruments is unlikely to be an important

driver of our results.

A comparison of estimates across the panels indicate that many organ quality measures

positively affect both choice and survival. Tissue-type match and donor death by head

trauma are both strongly associated with both choice and survival. That said, the association

is not perfect: organs from younger donors are more likely to be accepted even though the

survival effects are not significant.

Table 6: Correlation Table
Unobservables Table (lambda = 0.6 for Y1 and 0.5 for Y0)

(1) (2) (1) (2)

Probability of Acceptance -0.039 -0.039 0.068 0.066

(0.001) (0.001) (0.001) (0.001)

Post-Transplant Survival 0.008 -0.025 0.022 0.122

(0.138) (0.134) (0.258) (0.251)

Survival without a Transplant 0.330 0.323

(0.060) (0.059)

Instruments # Past Donors # Past Offers # Past Donors # Past Offers

Panel A: Selectivity (ν i,D) Panel B: Match value (ε ij,D)

Notes: Estimated effects of a one standard deviation increase in choice unobservables affects acceptance and survival probabil-
ities. Survival durations are calculated using half-lives. Survival effects from changes in εij,D are computed using the expected
change in εij,1 from a one standard deviation rise in εij,D from zero, given the estimated covariance between εij,D and εij,1.
Likewise, survival effects from changes in νi,D are computed using the expected changes in νi,1 and νi,0 from a one standard
deviation increase in νi,D from zero, given the estimated covariances between νi,D, νi,1, and νi,0. All effects are computed at
the median value of observable covariates.

Selection on Unobservables: Our model measures the correlation between survival and choice

induced by unobservable characteristics. Table 6 shows how a one standard deviation increase

in νi,D (selectivity) and εi,j,D (match value) affects acceptance and survival. The selectivity
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effects are measured by computing the changes on νi,0 and νi,1 induced by their estimated

correlation with νi,D. Likewise, the correlation between εi,j,D and εi,j,1 yields the effects of

match value.

Selective patients typically survive longer without a transplant and benefit less from the

typical transplant. A one standard deviation rise in selectivity lowers the probability of

acceptance by 3.9 percentage points. This effect is of similar order as that of a kidney from

a donor with a history of hypertension. Therefore, there is positive selection into treatment

on the patient-specific component of survival benefits.

In contrast to selectivity, patient-donor specific factors do not induce significant selection via

choices. While we estimate the covariance between εij,D and εij,1 to be positive, the effect is

not statistically significant.

7 Estimated LYFT

7.1 Calculating Life Years from Transplant (LYFT)

For each patient-donor pair, we compute the difference between the median survival time

with a transplant and median survival time without a transplant, measured from the date of

transplant. Specifically, for each pair (i, j), we define LYFT conditional on a set of covariates

Ii,j = {xi, qj, Dij, ηj, νi,D, νi,f} as follows:

LY FT (Ii,j) = M (Yi,j| Ii,j, Yi,0 ≥ ti,j)−M (Yi,0| Ii,j, Yi0 ≥ ti,j) , (7.1)

where M (Y |X) is the median of random variable Y conditional on X and ti,j is the time

between patient i’s registration and the arrival of kidney j.17,18 Therefore, this measure

accounts for selection on unobservables induced by the mechanism.
17Some estimates of LYFT place a weight of 0.8 on life years without a functioning kidney to account for

the lower quality of life (e.g. Wolfe et al., 2008). This quality-adjustment is arbitrary and is omitted in our
specification.

18We use a Gibbs’ sampler to compute the expectation of LY FT (Iij) by drawing ηj , νi,D , and νi,f
from their conditional distributions given observables, decisions, and observed survival outcomes. We fix the
parameters at the estimate θ̂, generate 200,000 draws, burn-in the first half, and use every 1,000-th draw.
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7.2 Life Years from Transplant in the Mechanism

Table 7 presents the average estimated LYFT over all realized transplants. The first row

accounts for patient- and kidney-specific unobservables and the decision to accept. The

second row conditions only on patient and donor observables, integrating LY FT (Ii,j) over

Dij, ηj, νi,D, νi,f . The average LYFT from our preferred specification is 8.64 years (column

2). Ignoring selection on unobservables yields a lower estimate of 7.94, suggesting positive

selection on LYFT into transplantation based on unobservables. The specification that does

not use scarcity instruments yields biased estimates, about two-thirds of a year less than

our preferred estimate (column 1). This suggests observational methods used in the medical

literature may underestimate gains from transplantation.

Table 7: Life-Years from Transplant

(1) (2) (3) (4)

Life Years from Transplant

Accounting for Unobservables 7.93 8.64 8.63 8.63

(0.28) (0.39) (0.33) (0.33)

Observables Only 7.90 7.94 7.83 7.71

(0.28) (0.49) (0.47) (0.50)

Untransplanted Survival

All Patients 7.01 6.95 6.95 6.86

(0.14) (0.17) (0.15) (0.18)

Transplanted Patients 7.34 7.21 7.21 7.17

(0.16) (0.20) (0.18) (0.21)

Post-Transplant Survival 15.28 15.84 15.84 15.80

(0.28) (0.38) (0.33) (0.29)

Instruments No Instruments # Past Donors # Past Offers # Future Donors

lambda = 0.6 for transplanted survival; lambda = 0.5 for untransplanted survival

Notes: Life years from transplant and survival durations presented in the table are calculated using half-lives. Future donors
(offers) is defined as the number of donors (offers) in the next 4 quarters (see Table 4 for detailed definition). All columns
control for patient, donor, and offer characteristics, which are defined analogously as in Table 5 Panel B and Table 5. Standard
errors are in parentheses.

The second pair of rows report average survival without a transplant, separately, for all

patients and the subset of patients who received a transplant. Across specifications, the

untransplanted survival for patients who are transplanted is higher than for patients who

are not. Thus, choices and the mechansim result in selection on untransplanted survival into

transplantation.
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Figure 2: Patient Selection

7.3 Selection and LYFT

The selection on LYFT and untransplanted survival reported in Table 7 above can take place

along two margins: the patients who are transplanted and the kidneys to which they are

matched. We further investigates these sources below.

Patient Selection: There are strong complementarities between baseline health and trans-

plantation. Figure 2(a) presents the joint density of (median) untransplanted survival and

the average (median) LYFT from all potential donors for each patient, overlayed with a bin-

scatter plot. LYFT and untransplanted survival are strongly positively correlated. Patients

who are expected to live longer without a transplant also have the largest life-year gains.

When combined with the observation in Table 7 that transplanted patients have higher

baseline survival, this complementarily suggests that patients who are transplanted likely

have higher LYFT due to selection on baseline health. In addition, there may be patient

selection into transplantation from choice and from the priorities in the mechanism.

The overall selection into transplantation is presented in Figure 2(b), which shows the dis-

tribution of predicted LYFT across all potential transplants. This distribution is shifted
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to the right for transplanted patients, with an average that is 1.2 years higher. Thus, the

mechanism selects patients with larger average LYFT and that some of this selection comes

from transplanting patients who are relatively healthy at baseline.

Patient-Kidney Matching: The realized allocation also matches patients to kidneys from

which they receive greater survival benefits as compared to the average kidney. Figure 3(a)

plots the joint distribution of LYFT from the realized donor for a transplanted patient against

LYFT from all potential donors. The binscatter is below the 45-degree line, indicating that

the realized transplants generate greater than average LYFT for a patient. This finding that

matches are selected advantageously complements the finding that the mechanism selects

patients with higher than average gains from transplantation.

Part of this advantageous matching comes from the correlation of patients’ acceptance deci-

sions with LYFT. Figure 3(b) presents binscatter plots of kidney-patient acceptance proba-

bility against LYFT for all potential transplants, showing two features. First, transplanted

patients have a higher predicted probability of acceptance than untransplanted patients.

Second, the predicted probability of accepting an offer increases in LYFT. As our estimates
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suggest, patients are more likely to accept kidneys with greater life-year benefits (based on

both observable and unobservable characteristics). 19

In sum, we find that the allocation matches kidneys to patients based on LYFT and that at

least some of this selection is induced by choices in the mechanism.

Patient Selection vs. Rematching: Figure 3(a) also provides insight into which of these two

assignment margins dominates. The heterogeneity in survival across patients swamps the

heterogeneity across donors within a patient. In fact, a decomposition of the total variance

in LYFT into patient-specific, donor-specific, and match-specific components (the last being

the remainder) shows that the patient-specific component contributes to 6.58 years of the

standard deviation in LYFT. The donor-specific and match-specific components are much

smaller, accounting for 1.04 years and 0.48 years, respectively.

Thus, the potential for increasing life-years by improving the match between patients and

donors without changing which patients are transplanted (rematching) is limited. Distribu-

tional constraints may therefore limit the potential gains from improved matching. In par-

ticular, maximizing life-year gains may mean reallocating transplants away from the most

urgent cases towards patients with longer expected survival without a transplant, pointing

to a potential trade-off between efficiency and worst-off prioritarianism for the sickest.

8 Potential for Further Increasing LYFT

We now evaluate the performance of the mechanism on LYFT and quantify the importance of

patient selection versus rematching. We compare the average LYFT achieved by the realized

assignment to benchmarks, ranging from a random assignment to one that maximizes LYFT.

Extending patients’ lives is a prima facie objective of the medical profession. But, this

objective may raise distributional concerns or conflict with principles of allocation discussed

in medical ethics. We highlight these trade-offs by comparing the types of patients who are

transplanted under the benchmarks.
19To verify this point, we regressed the expected value of LY FTij conditional on {xi, qj , ηj , νi,D, νi,f} on

the probability of acceptance given these same covariates, controlling for patient- and donor-specific fixed
effects. A one standard deviation increase in the match-specific component of LYFT raises the probability
of acceptance by 0.59 percent.
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We focus on our preferred specification and, to ease computation, we restrict the sample

to the set of patients who registered in 2005. Our results are not sensitive to choice of

instrument; varying the Box-Cox shape parameters of our specification; omitting donor

unobserved heterogeneity ηj; or including time between organ extraction and transplantation

(see Table D.7).

8.1 Comparison with Benchmark Assignments

We start with two extremal benchmarks, random assignment and optimal assignment:

Random assignment is simulated by successively assigning patients to kidneys at random

from the set of feasible kidneys. Feasibility requires that the patient must be biologically

compatible and the kidney should arrive between the patient’s registration date and a sim-

ulated death date without a transplant. The latter is drawn from that patient’s predicted

survival distribution.

Optimal assignment is computed by maximizing the total LYFT from all transplants.

This benchmark considers an omniscient planner who knows xi, qj, νi,D, νi,f , ηj, each pa-

tient’s arrival and untransplanted death dates, and each kidney’s arrival date. The planner

computes LYFT conditional on these characteristics and can dictate assignments. Only

feasible transplants are allowed and each patient can receive at most one transplant.20

The comparison to the random assignment measures the increase in LYFT achieved by the

mechanism. Both selecting patients and advantageously matching kidneys to patients drives

the difference. To decompose these sources, we evaluate an alternative that allocates kidneys

randomly among transplanted patients:

The random amongst transplanted assignment is simulated by re-assigning transplanted

patients to a kidney at random from the set of feasible kidneys.

The increase in LYFT due to the mechanism results from both the mechanism’s priority

rules for kidney offers and the choices made by patients on the waiting list. To separate
20Call the s-th simulated draw for each patient/donor pair LY FT sij . Let aij = 1 if i is assigned j and aij = 0

otherwise. Let cij = 1 if i is feasible for j and cij = 0 otherwise. We solve the problem maxa
∑
i,j aijLY FT

s
ij

subject to aij (1− cij) = 0,
∑
i aij ≤ kj , where kj is the number of kidneys available from donor j, and∑

j aij ≤ 1.
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the gains achieved due to the mechanism’s priority structure from the gains from choice, we

evaluate a counterfactual assignment with no patient choice.

The no choice assignment is computed by assigning each kidney to the patient with the

highest priority among untransplanted patients. Offers cannot be rejected by patients.

Comparing the realized assignment to the optimal assignment bounds the maximum theo-

retical gain in LYFT that could be achieved by any mechanism. As with the comparison

of the realized and random assignments, this gain is driven both by selecting patients and

matching patients to kidneys. To decompose these sources, we evaluate an alternative that

only reassigns kidneys among transplanted patients:

The optimal rematching assignment maximizes the total LYFT using the same informa-

tion set as in the optimal assignment. In addition to the feasibility constraint, a patient in

this assignment can be transplanted only if she was transplanted in the data.

Optimal assignment uses information about factors that induce selection, νi,D, νi,f , and ηj.

However, the first two factors may not be observed by the planner and may be hard to elicit

in a mechanism. Similarly, ηj may be difficult to condition on. These observations motivate

a benchmark that uses only observable information:

The optimal assignment based on observables is computed by maximizing the total

expected LYFT conditional on xi and qj by assigning patients to a feasible kidney. 21The

solution describes the highest possible LYFT that can be achieved by a planner who can

dictate assignments based on this information.

Figure 4 presents the results. The average LYFT for the realized assignment amongst patients

who registered in 2005 is 8.78 years. This is analogous to the results in Table 7 above.

The realized assignment achieves a 0.92 year increase in average LYFT over random assign-

ment. Both selecting patients and matching patients to kidneys are important: random

amongst transplanted yields an increase of only 4.4 months. The remainder of the gain is

due to patient-kidney matching.

Patient choice is a key contributor to the mechanism’s gains in LYFT over random assign-
21For tractibility, we assume the planner has foresight on when patients arrive and depart and when

kidneys arrive. Relaxing foresight would require solving a dynamic assignment problem with uncertainty
about the future.
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Figure 4: LYFT Under Counterfactual Assignments

ment. The no choice assignment results in similar LYFT as the random assignment. Thus,

if the priority rules we used to dictate assignments, then only 15.8% of the LYFT increase

in the realized assignment would be achieved.22

Although the mechanism does better than a random assignment, there is significant scope for

further increasing LYFT. The average LYFT under the theoretical upper bound given by the

optimal assignment is 5.1 years higher than the LYFT achieved in the realized assignment.

Bias in estimates based on observational studies would miss the potential for these gains.23

A significant fraction, 14.4%, of the increase can be achieved by rematching patients and

kidneys while keeping the set of transplanted patients fixed. However, consistent with Figure

3(a), most of the improvements in the optimal allocation come from changing the set of

patients who are transplanted.

Finally, a planner who can dictate assignments using the observable characteristics could

achieve a significant fraction, but not all, of the potential increase. These observables have

been either used to determine priority or considered explicitly in proposed reforms. The

average LYFT under the optimal assignment based on observables is 10.48 years. Although

less than the theoretical maximum, it is about 1.7 years more than the average LYFT
22We also simulated the no choice assignment using priorities in place after 2014 and found similar results

on LYFT.
23A proposed assignment based on maximizing LYFT that uses the specification which omits scarcity

instruments yields an average of 11.05 years when evaluated using our preferred specification.
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Table 8: Characteristics of Transplanted Patients

 

Transplanted 

Patients LYFT

 

Transplanted 

Patients LYFT

 

Transplanted 

Patients LYFT

 

Transplanted 

Patients LYFT

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Age < 18 3.1% 3.2% 14.81 5.9% 13.70 5.4% 14.89 5.4% 18.83

Age 18 - 35 11.6% 12.3% 11.46 11.9% 11.61 13.0% 12.45 16.8% 15.35

Age 36 - 59 54.8% 55.8% 8.07 53.0% 8.17 54.7% 8.86 57.5% 13.70

Age >= 60 30.5% 28.8% 5.20 29.2% 5.11 26.9% 5.61 20.3% 11.68

White 42.0% 43.4% 7.73 47.8% 7.77 46.4% 8.34 40.9% 13.71

Black 32.7% 31.3% 7.67 30.0% 7.90 30.9% 8.72 32.4% 13.67

Hispanic 16.7% 16.5% 8.21 14.8% 8.89 14.5% 9.65 17.5% 14.31

Other 8.6% 8.8% 8.62 7.4% 8.25 8.2% 10.00 9.2% 14.17

Diabetic 41.4% 40.2% 5.94 37.7% 5.80 33.3% 6.51 31.6% 12.14

On Dialysis at Registration 83.0% 82.3% 7.63 82.0% 7.74 80.2% 8.50 80.7% 13.64

0 HLA Mismatches - 0.0% 8.00 15.5% 8.18 12.5% 8.59 8.1% 15.55

0 DR Mismatches - 4.2% 8.55 35.6% 8.11 21.9% 8.86 13.1% 14.87

HLA Mismatches - 4.75 - 3.62 - 3.92 - 3.80 -

Untransplanted Survival 6.68 6.75 - 6.72 - 6.81 - 7.27 -

Optimal AssignmentNo Choice

All Patients

Random Assignment Realized Assignment

achieved by the mechanism. Therefore, in principle, average LYFT could be substantially

raised by targeting transplants using observed characteristics rather than choices.

8.2 The Planner’s Dilemma

Achieving the increases in LYFT described above would require changing the set of pa-

tients who are transplanted. We now show that this change shifts the demographics and

health conditions of transplanted patients, creating a potential barrier due to distributional

considerations or the desire to prioritize patient urgency.

The LYFT increases, from random assignment to the mechanism and finally to the optimal

solutions, require transplanting relatively healthy patients. Table 8 presents the distribu-

tion of patient age, health, and untransplanted survival for patients transplanted under the

random assignment, the no choice assignment, the actual assignment, and the optimal as-

signment. Patients transplanted under the realized assignment are healthier than average –

younger, less likely to be diabetic, less likely to be on dialysis, and have longer untransplanted

survival. Similarly, transplanted patients are also healthier under the optimal assignment

than under the realized assignment. The optimal assignments also reallocates kidneys to-

wards racial/ethnic minority patients who have higher LYFT on average than white patients.
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Comparing the realized assignment and the no choice assignment illustrates the role of choice

in increasing LYFT. The existing priority rules target transplants between patients and

donors with no HLA mismatches. The fraction of zero-mismatch assignments is lower under

the realized and optimal assignments as compared to no-choice. Yet, choice also dramatically

changes the selection of who is transplanted towards patients with high LYFT by shifting

the age distribution towards younger patients and those with longer untransplanted survival.

Therefore, while patients benefit from kidneys with a perfect tissue-type match, reassigning

kidneys to the right set of patients without perfect tissue-type matches can increase LYFT.

These shifts highlight the distributional effects of optimizing LYFT – the realized outcome in-

creases LYFT by selecting younger, healthier patients to transplant. The optimal assignment

exacerbates these distributional changes. These results are driven by the strong correlation

between survival with and without a transplant, illustrated in Figure 2(b). Thus, in or-

der to maximize LYFT given the scarcity of kidneys available, the planner must transplant

healthier patients and let sicker patients go untransplanted.24

This stark trade-off represents a dilemma. Society may have a moral imperative to prioritize

sick patients who may soon die, as done in deceased donor liver allocation. But some medical

ethicists discard this principle when faced with scarcity, arguing instead for maximizing total

survival or treating people equally (random assignment) (see Persad et al., 2009). Our results

suggest that these two priciples are in conflict for kidney allocation, with utilitarian principles

also rasing concerns about discrimination based on patient characteristics such as age and

concerns about increased inequality in patient survival.

9 Conclusion

A hitherto overlooked goal in designing assignment mechanisms is to produce matches that

improve associated outcomes such as patient survival or student achievement. We take a

first step towards an empirical analysis that incorporates these outcomes by studying the

LYFT generated using the pool of deceased donor kidneys. To do this, we show how to
24Indeed, an assignment that transplants the sickets patients first (as measured by Yi,0) results in an LYFT

of 5.67 years.
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use variation generated in an assignment mechanism to estimate and identify a model that

jointly considers choices and outcomes.

We find that the waitlist mechanism used to allocate deceased donor kidneys does better than

a random allocation but leaves much scope for improvement. The mechanism transplants

patients for whom life would be extended longer, as compared to the average patient, and

matches them to more suitable than average kidneys. However, average LYFT could be

boosted by several years. The potential economic value of realizing these gains is enormous.

Aldy and Viscusi (2007) place the value of a statistical life year at $300,000. At even half

this value and ignoring costs savings on dialysis, the potential benefits from 1 more year of

life from the approximately 13,000 deceased donor kidneys transplanted each year accrues

to almost $2 billion per year.

Achieving most of these gains will require confronting important distributional considerations

because survival without a transplant is a strong predictor of life-year gains. Therefore, the

planner faces a dilemma between transplanting the sick and transplanting those for whom

life will be extended the longest.

This work opens several avenues for further research. First, our approach avoids micro-

founding the choice model at the cost of evaluating benchmark assignments rather than the

equilibria of alternative mechanisms. This leaves counterfactual selection in an equilibrium

model to future work. Second, we focus on an aggregate measure of LYFT that abstracts

away from distributional or non-utilitarian ethical considerations. Formalizing these con-

siderations and incorporating them into the design problem could yield a valuable tool for

policymaking. The underlying trade-offs are particularly central to designing mechanisms

when outcomes are the target, and deserve further research in other contexts as well.
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A Data Appendix

A.1 Obtainting Original Data Files

The data reported here have been supplied by UNOS as the contractor for the Organ Pro-

curement and Transplantation Network (OPTN). The interpretation and reporting of these

data are the responsibility of the author(s) and in no way should be seen as an official policy

of or interpretation by the OPTN or the U.S. Government.

We will retain copies of the data until permitted by our Data Use Agreement with the Or-

gan Procurement and Transplantation Network (OPTN). Further, we plan to send OPTN

a copy of our replication archive if and when we are required to destroy our dataset. Re-

searchers interested in using our dataset should directly contact OPTN to obtain permission:

https://optn.transplant.hrsa.gov/data/request-data/. We are happy to provide copies of our

data to researchers with permission and a data use agreement with the OPTN.

A.2 Data Description

Our data on patients, donors, transplants, and offers are based on information submitted

to the Organ Procurement and Transplant Network (OPTN) by its members. The main

datasets are the Potential Transplant Recipient (PTR) dataset and the Standard Transplan-

tation Analysis and Research (STAR) dataset.

The PTR dataset contains offers made to patients on the deceased donor kidney waitlist

that were not automatically rejected based on pre-specified criteria. Information includes

identifiers for the donor, patient, and patient history record that generated the offer; the

order in which the offers were made; each patient’s acceptance decision; and if the offer was

not accepted, a reason of rejection. Each offer record also contains certain characteristics of
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the match, including the number of tissue type mismatches.

The STAR dataset contains separate files on deceased donor characteristics, patient histories,

patient characteristics and transplant outcomes, and follow-up data, which are collected at

six months and then annually, for kidney transplants. The patient and donor characteristics

from these datasets are used to estimate our models of acceptance behavior and patient

survival. The patient characteristics and transplant outcomes dataset contains patient death

information. For patients who received a transplant through the deceased kidney donor

waitlist, the follow-up dataset records whether the patient is still alive at the follow-up point.

This information allows us to compute a survival duration for each patient. UNOS also

provided supplemental information, including the ordering of distinct match runs conducted

for the same deceased donor; the transplant centers of donors and patients in our dataset;

and dates of birth for pediatric candidates, who joined the waitlist before turning 18 years

of age.

The data contain identifiers that allow us to link the offer and acceptance data to patient and

donor characteristics. Each deceased donor has a unique identifier. Similarly, each patient

registration generates a unique patient waitlist identifier. Because patients may move to dif-

ferent transplant centers or be registered in multiple centers simultaneously, some individual

patients have multiple waitlist identifiers. For this study, we focus on the earliest registration

of each patient. The follow-up data contain a unique identifier for each transplant, allowing

us to connect the follow-up information to each transplanted patient. The patient history file

contains a unique patient record identifier corresponding to a particular state of the patient

on the waitlist, including the patient’s CPRA, activity status, and pre-set screening criteria.

Each offer in the PTR dataset contains the identifiers for the donor, the patient registration,

and the patient history record that were used in the match run. When appropriate, we

de-duplicate offers so that each patient can receive at most one offer from each donor.

A.3 Sample Selection

We consider the first waiting period for patients who were actively waiting for a deceased

donor kidney between January 1, 2000 and December 31, 2010. This restriction is to avoid
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selection arising from patients that remain on the list at the begining of the sample period.

We omit patients who received a living donor transplant as their first transplant or were

cross-registered for other organs simultaneously. The outcomes for these patients are likely

very different from patients who receive only a kidney from a deceased donor. Most patients

that can receive a living donor receive one within the first year of registration and would

prefer such a transplant to a deceased donor transplant. The latter restriction is made to

focus on a more homogeneous group of patients.

In addition, we made a number of other more minor adjustments to work with a more

cohesive sample of patients. The number of patients that survive each step of the sample

selection process is described in Table A.1.

A small minority of patients are simultaneously registered in multiple donor service areas,

indicating that multiple listings and moves are not common. Our analysis keeps only one

waitlist record from each patient. If the patient received a kidney transplant through the

deceased donor waitlist before December 31, 2015, we keep the waitlist record with the

earliest transplant date; if the patient remained untransplanted as of December 31, 2015,

we keep the waitlist record with the earliest registration date.25 Next, we exclude a small

number of patients who received a prior kidney transplant to focus on survival effects from

the first transplant. We also exclude patients removed for administrative reasons. These are

patients who were listed on the waitlist by error, who departed because a transplant took

place but no transplant was recorded in the STAR dataset, and who could no longer be

contacted while waiting on the waitlist. These departure reasons are recorded in the STAR

patient and the transplant outcome dataset.

Then, we keep the waitlist records with registration dates between Janurary 1, 2000 and

December 31, 2010 because we do not have data on offers prior to 2000. For example, an

untransplanted patient active between 2000 and 2010 may not be included in the final sample

because said patient’s first waitlist registration is before 2000. This step amounts to be one

of the largest cuts.

Finally, we exclude patients who received a transplant through non-standard allocations
25We use transplant data through December 31, 2015 to be consistent with the sample period during which

we observe patient survival.
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rules. This can occur, for example, if the donor is an armed service member; if the donor

specified a particular recipient (directed donation); if there is a medical emergency or expe-

dited placement attempt; if the kidney is not offered due to operational issue. We identify

these cases by analyzing the PTR data as a large number of offers will be bypassed with

a code indicating one of these reasons. In some cases, there is also text specifying specific

circumstances justifying a rejection, which we parse to identify invalid offers in cases where

the refusal code does not provide a specific reason.

Table A.1: Sample Selection: Patients

Patient's first waiting period that intersects the period 2000-2010 308,370 372,681 

Exclude patients who received living donor transplants in their first waiting period 241,209 295,075 

Exclude patients were waiting for other organs in their first waiting period 213,685 244,580 

Keep one kidney waitlist record for each patient 213,685 213,685 

Patients with multiple waitlist records 32,191 32,191 

Patients with single waitlist record 181,494 181,494 

Exclude patients who had a previous kidney transplant 212,258 -

Exclude patients with administrative waitlist removal reason 207,316 -

Restrict to patients whose remaining waitlist registration is between 2000 and 2010 178,944 -

Exclude patients who received non-standard kidney allocations 175,518 --

Number of 
Patients

Number of Wait 
List Records

Our sample of deceased kidney donors comes from the intersection of the STAR deceased

donor dataset and the PTR dataset. These are deceased donors whose kidneys were allocated

between January 1, 2000 and December 31, 2010 to patients on the waitlist. We further

exclude donors allocated using non-standard rules and restrict to donors who were offered

to patients in the sample.

Table A.2 details the number of donors that survive each filter. The largest cuts come from

the last step. This is because the priority for waiting time implies that many offers are only

given to patiens that registered prior to 2000.

Table A.2: Sample Selection: Donors

Number of Donors

Deceased donors offered to any kidney waitlist patients between 2000 and 2010 71,738 

Exclude deceased donors offered through non-standard kidney allocations 67,993 

Restrict to deceased donors offered to patients in the sample 61,453 
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We consider a sample of offers made betwee January 1, 2000 and December 31, 2010 that

could have resulted in transplants between our patient and donor samples. The PTR dataset

includes records of all initial patient contacts and patients skipped due to administrative

reasons irrespective of whether an offer was made. This happens mainly for three reasons.

First, some patients that were contacted have lower priority than the patients that accepted

and were transplanted the kidneys from a donor. In this case, we determine the cutoff point

for each donor, and exclude all offers made after the cutoff. Second, some match runs were

abandoned due to logistical reasons, and were re-run. We only keep the offers from the last

match run for a donor. Third, in some cases, the PTR dataset records administrative or

logistical reasons for skipping patients in the offer sequence. This can occur, for example, if

the kidney has antigens that would result in an immune response; a patient was bypassed

due to logistical reasons; or if the kidney does not meet the patient’s minimum criteria. We

also exclude non-responsive offers, for example, because either the surgeon or the patient

is unavailable or because the patient is temporarily inactive/unsuitable for transplantation.

Finally, we restrict to offers made to the patients in the sample. This step cuts the offer

sample by 41% because many offers are made to patients that were not in our sample, for

example, to patients that registered prior to 2000. Table A.3 describes how we arrive at the

final sample of offers.

Table A.3: Sample Selection: Offers

Number of Offers

Offers made between 2000 and 2010 from donors in the sample 14,888,539 

Exclude non-responsive offers 14,239,214 

Restrict to offers made to patients in the sample 8,444,106 

A.4 Patient Survival

The patient characteristics and transplant outcomes dataset collects patient death dates from

the waitlist record and periodically from the social security master file. In a small minority

of cases, death dates are inconsistent across multiple waitlist records for a patient, in which

case we assume that earlier death dates take precedence over later ones. Transplant dates
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and death dates are truncated on December 31, 2015, because death records after this date

are inconsistently populated. For patients who received a transplant or died after December

31, 2015, we treat them as untransplanted or alive, respectively, as of December 31, 2015.

Among 175518 patients in the sample, we observe death dates before December 31, 2015

for 80168 of them. Of these, 55476 are untransplanted patients and 24692 are transplanted.

Patients from whom we do not observe death are censored. The censoring rules differ for

transplanted and untransplanted patients. For transplanted patients, we censor on the date

of the second transplant if a second transplant took place before December 31, 2015; on the

day after transplant if there is no follow-up information for the patient corresponding to the

transplant; on the date when the patient is lost to follow-up if the patient is lost to follow-up

prior to December 31, 2015; and on Decmeber 31, 2015 if the patient is known to be alive

as of December 31, 2015. For untransplanted patients, we censor on December 31, 2015 if

the patient is known to be alive as of December 31, 2015; and on the date when the patient

exits the waitlist if no death date is available and the exit day is prior to December 31, 2015.

Table A.4 presents a break down of censor reasons and their corresponding censor dates for

the patient sample. Nearly one half of the patient sample is uncensored, and among censored

patients, the vast majority (73%) are censored on December 31, 2015. Since December 31,

2015 is an exogenously determined date, patients censored on the date should be similar to

uncensored patients in terms of potential outcomes.

Table A.4: Censor Reason

Censor Reason Censor Date # Patients

Transplanted Patients

Retransplant before Dec 31, 2015 Retransplant date 3,581

No follow-up information One day after transplant 979

Lost to follow-up before Dec 31, 2015 Date lost to follow up 5,856

Known to be alive as of Dec 31, 2015 December 31, 2015 57,215

Untransplanted Patients

Known to be alive as of Dec 31, 2015 December 31, 2015 12,370

No death date and depart the waitlist before Dec 31, 2015 Date departing waitlist 15,349
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B Estimation Appendix

B.1 Gibbs’ Sampler

Recall that our model is given by

yi0 = B (Yi0; ρ0) = xiβx + νi,0

yij = B (Yij; ρ1) = χ (xi, qj)αx,q + αηηj + νi,1 + εij,1

Dij = 1 {yij,D = χ (xi, qj) γx,q + ziγz + ηj + νi,D + εij,D > 0} ,

where we allow for νi = (νi,D, νi,1, νi,2) ∼ N (0,Σν) and εij = (εij,1, εij,D) ∼ N (0,Σε).

There are several challenges in estimating this model. First, we often observed censored

values of yi0 and yij. We perform a data augmentation step given the parameters and the

censoring point to solve this issue. For yij, the data augmentation step is necessary only in

cases for which Tij = 1.

Second, Dij is a binary variable. As is standard in discrete choice models, we perform a data

augmentation step to draw yij,D given the observed decisions. This step is necessary for the

observed values of Dij.

Third, the model incorporates rich correlations between the different observations via ηj, νi
and εij. In particular, due to these terms, the covariance matrix between {yi0}i {yij}ij and

{yij,D}ij conditional on the obserables and the parameters does not have a simple block-

diagonal structure that would allow us to compute simple posterior distributions. To solve

this problem, we re-write these variables using a factor structure such that the posterior

distribution of the parameters of each equation is conditionally independent of the others

given the factors. Specifically, we rewrite νi as

νi,D = fi,1

νi,f = fi,2

νi,0 = βν1fi,1 + βν2fi,2 + ε̃i0
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where fi,1, fi,2 and εi0 are each independently distributed mean-zero normal random variables

with variances σ2
1, σ2

2 and σ2
ε̃,0. This structure places no restrictions on the covariance matrix

Σν . Similarly, we write εij as

εij,1 = αεfij,3 + ε̃ij,1

εij,D = fij,3 + ε̃ij,D

where fij,3, ε̃ij,1 and ε̃ij,D are independently distributed mean-zero normal random variables

with variances σ2
3, σ

2
ε̃,1 and σ2

ε̃,D. We normalize the variances σ2
3, and σ2

ε̃,D to 1. Finally, set

ηj = fj,4

with variance σ2
4. The main difference between f·and ε̃· is that it is sufficient to condition on

the former in order to render the models above as conditionally independent.

Therefore, the parameters we are interested estimating in are the co-efficients in each equa-

tion, β = (βx, βν1, βν2), α = (αx,q, αη, αν1, αε), γ = (γx,q, γz), and the variances σ2
ε̃,0 = V [ε̃i0],

σ2
ε̃,1 = V [ε̃ij,1] and σ2

l = V [fl] where l ∈ {1, 2, 4} is the l-th factor.

For simplicity of notation, we will collect the coefficients in the vector θ and the standard

deviations in the vector σ, with σε̃ and σf denoting the sub-vectors for ε̃ and f respectively.

And, with some abuse of notation, we collect yi0, yij and yij,D for all i and j in y.

Following standard practice, we assume diffuse conjugate and independent priors for each of

these parameters. Specifically, we model the priors α, β and γ using a mean-zero independent

normal distribution with variances equal to 1000 and the prior for the variances σ2
ε̃,0, σ2

ε̃,1

and σ2
l using independent inverse-Wishart distributions with parameters (3, 3). These priors

are diffuse; thus, they have a negligible impact on our estimates.

The Gibbs’ sampler starts with an initial draw y0, θ0, σ0 and f 0 and generates a chain of

length K by iterating through the following steps for each k ∈ {0, . . . , K − 1}:

1. Data Augmentation: Sample yk+1
i0 , yk+1

ij for censored observations and yk+1
ij,D for ob-

served decisions given θk, σk and fk from truncated normal distributions.
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2. Sample Coefficients: Sample θk+1 given yk+1, fk, the standard deviations σk and

the prior distribution from a multi-variate normal distribution.

3. Sample Variances: Sample σ2,k+1
ε̃,0 and σ2,k+1

ε̃,1 given yk+1, fk, the parameters θk+1 and

the prior distribution from a inverse-Wishart distribution.

4. Sample Factors: For each l ∈ {1, 2, 3, 4}, sample fk+1
·,l given yk+1, the parameters

θk+1, σk+1
ε̃ , σkf , and the remaining factors fk+1

·,1 , . . . , fk+1
l−1 and fk·,l+1, . . . , f

k
4 .

5. Sample Factor Variances: Sample σ2,k+1
l for l ∈ {1, 2, 4} given fk+1 and the prior

distribution from an inverse-Wishart distribution.

We draw a chain of length K =200,000 and burn 50,000 draws to allow the chain to con-

vergence. We only keep one every 10 draws to save some computation time and reduce the

autocorrelation in the resulting chain. To diagnose the potential for non-convergence, we

visually inspect the chains and, as recommended in Gelman et al. (2014), we also ensure that

the potential scale reduction factor is below 1.1 for each of the parameters. The distributions

in each step can be solved for in closed-form as detailed below:

1. Conditional distributions for yi0, yij and yij,D given θ, f and σ:

(a) For each i, j pair with Dij is observed, the distribution of yij,D conditional on

γ, f and Dij is a truncated normal with mean E [gij,D|γ, fij] and unit standard

deviation. The distribution is truncated below at 0 if Dij = 1 and above at 0

otherwise.

(b) For each i such that yi0 is censored, the distribution of yi0 conditional on β and f is

a one-sided truncated normal with mean E [yi0|β, fi1, fi2] and standard deviation

σε̃,0. The distribution of yi0 is truncated below at the censoring duration.

(c) For each observed transplant with yij censored, the distribution of yij conditional

on αk, fk is a one-sided truncated normal with mean E [yij|α, f ] and standard

deviation σε̃,1. The distribution of yij is truncated below at the censoring duration.

2. Posterior distributions of the co-efficients α, β and γ given y, f , σ and the priors.

Since yi0, yij and yij,D are mutually independent conditional on f , the parameters α,
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β and γ are each co-efficients in a linear regression model with normally distributed

errors. Therefore, the posterior distributions of each of these terms is given by a

multivariate normal distribution with closed-form means and variances (Gelman et al.,

2014, Chapter 14.2).

3. Posterior distributions of σ2
ε̃,0 and σ2

ε̃,1 given y, f , σ and the priors. As above, yi0, yij
are mutually independent conditional on f . Therefore, the distributions of σ2

ε̃,0 and σ2
ε̃,1

are inverse-Wishart with parameters given in Chapter 14.2 of Gelman et al. (2014).

4. Posterior distributions of f given y, θ and σ:

(a) The distribution of fi,1 conditions on the residual

fi,1 + 1
βν1

ε̃i0 = 1
βν1

(yi0 − (xiβx + βν2fi,2))

and σ1 throughout; on the residual

fi,1 + ε̃ij,D = yij,D − (χ (xi, qj) γx,q + ziγz + ηj + fij,3)

for all j such that Dij is observed; and on the residual

fi,1 + 1
αν1

ε̃ij,1 = 1
αν1

(yij − (χ (xi, qj)αx,q + αηηj + +fi,2 + αεfij,3))

if Tij = 1. These residuals have prior mean zero and variances σ2
1 + σ2

ε̃,0
β2
ν1
, σ2

1 + σ2
ε̃,1

and σ2
1 + σ2

ε̃,1
α2
ν1

repectively. The posterior mean of fi,1 is the precision-weighted

average of the residuals corresponding to i, and the posterior variance is the

inverse of the sum of σ−2
1 and the precisions of each residual.

(b) The distribution of fi,2 is analogous, where we condition on σ2 and the residual

1
βν2

(yi0 − (xiβx + βν1fi,1))

throughout; and on the residualyij − (χ (xi, qj)αx,q + αηηj + αν1fi,1) if Tij = 1.
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(c) The distribution of fij,3 is analogous, where we condition on αε throughout; on

yij,D − (χ (xi, qj) γx,q + ziγz + ηj + fi,1) for all j such that Dij is observed; and on
1
αε

(yij − (χ (xi, qj)αx,q + αηηj + fi,2)) if Tij = 1. Note that σ3 is normalized to 1.

(d) The distribution of fj,4 is analogous, where we condition on σ4 throughout; on

yij,D − (χ (xi, qj) γx,q + ziγz + fi,1 + fij,3) for all i such that Dij is observed; and

on 1
αη

(yij − χ (xi, qj)αx,q + fi,2 + αεfij,3) if Tij = 1.

5. The variances σ2
l for l ∈ {1, 2, 4} follow an inverse-Wishart distributions given the prior

and respectively, {fi,1}, {fi,2} and {fj,4}.

C Theoretical Appendix

C.1 Proof of Lemma 1

For simplicity of notation, denote qn =
(
qj(i,1), . . . , qj(i,n)

)
and qn−1 =

(
qj(i,1), . . . , qj(i,n−1)

)
,

which are truncated from qi to the first n and n − 1 offers respectively. Assumption 2

implies that P (Ni = n| qi, z) = P
(
Ni = n| qi, z, Yi,0 ≥ ti,j(i,n)

)
because Ji is orthogonal to

outcomes. The right hand side is observed since it is the probability that the first offer an

agent facing scarcity z, with untransplanted survival at least ti,j(i,n) accepts is the n-th offer.

The conditioning on untreated survival being larger than ti,j(i,n) ensures that we observe the

first n offers made to i. Similarly, if P
(
Ni = n| qi, z, Yi,0 ≥ ti,j(i,n)

)
> 0, then Assumption 2

implies that for any bounded function ψ (·) ,

E
[
ψ
(
Yi,j(i,n)

)∣∣∣Ni = n, qi, z
]

= E
[
ψ
(
Yi,j(i,n)

)∣∣∣Ni = n, qi, z, Yi,0 ≥ ti,j(i,n)
]

is identified. Because ψ (·) is bounded, the expectations above are finite. Therefore, it

remains to show that E [ψ (Yi,0)|Ni = n, qi, z] is identified. First, use Assumption 2 to re-

write E [ψ (Yi,0)|Ni = n, qi, z]P (Ni = n| qi, z) = E [ψ (Yi,0)|Ni = n, qn, z]P (Ni = n| qn, z),

where the right hand side conditions on the subset of agents who receive exactly n offers

with the sequence of types given by qn. By assumption, this sequences of offer types is in
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the support of the sequence of offer types induced by Ji. Now, re-write

E [ψ (Yi,0)|Ni = n, qn, z]P (Ni = n| qn, z)

=E
[
ψ (Yi,0)|Ni = n, qn, z, Yi,0 ≥ ti,j(i,n)

]
P
(
Ni = n| qn, z, Yi,0 ≥ ti,j(i,n)

)
=E

[
ψ (Yi,0)|Ni > n− 1, qn, z, Yi,0 ≥ ti,j(i,n)

]
P
(
Ni > n− 1| qn, z, Yi,0 ≥ ti,j(i,n)

)
− E

[
ψ (Yi,0)|Ni > n, qn, z, Yi,0 ≥ ti,j(i,n)

]
P
(
Ni > n| qn, z, Yi,0 ≥ ti,j(i,n)

)
=E

[
ψ (Yi,0)|Ni > n− 1, qn−1, z, Yi,0 ≥ ti,j(i,n)

]
P
(
Ni > n− 1| qn−1, z, Yi,0 ≥ ti,j(i,n)

)
− E

[
ψ (Yi,0)|Ni > n, qn, z, Yi,0 ≥ ti,j(i,n)

]
P
(
Ni > n| qn, z, Yi,0 ≥ ti,j(i,n)

)
.

The first equality follows from the same arguments as above showing that P (Ni = n| qi, z) =

P
(
Ni = n| qi, z, Yi,0 ≥ ti,j(i,n)

)
, the second equality follows from set inclusion and the last

from Assumption 2. This quantities in the last expression are observed by focussing on the

subset of patients that receive the sequence of offer types qn−1 and qn.

Thus, E [ψ (Yi,0)|Ni = n, qi, z]P (Ni = n| qi, z) is identified. Since the second term equals

P
(
Ni = n| qi, z, Yi,0 ≥ ti,j(i,n)

)
, which identified and strictly positive, E [ψ (Yi,0)|Ni = n, qi, z]

is identified. The marginal distributions of Yi,0 and Yi,j(i,n) conditional on Ni = n, qi and z

are identified because the conditional expectations of ψ (Yi,0) and ψ
(
Yi,j(i,n)

)
are identified

for any bounded function ψ.

C.2 Proof of Lemma 2

For any k ≤ n, Assumptions 1 and 2 imply that the observed probability that Di,j(i,1) =

Di,j(i,2) = . . . = Di,j(i,k) = 0 can be re-written as follows:

P
(
Di,j(i,1) = Di,j(i,2) = . . . = Di,j(i,k) = 0|qnj , zi

)
=
∫ 1

0
εkDdv (εD; qj, zi) .

Observe that ak =
∫ 1

0 ε
k
Ddv (εD; qj, zi) is identified for k ∈ {1, . . . , n}. Moreover, Assumption

3 implies that a0 =
∫ 1

0 1dv (εD; qj, zi) = 1. Therefore, to complete the proof, we need to show

that vn−1 (·; qj, zi) is determined by the values of ak =
∫ 1
0 ε

k
Ddv (εD; qj, zi) for k ≤ n where

vn−1 (·; qj, zi) is the (n− 1)-st order Fourier-Legendre approximation of v (·; qj, z). In what
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follows, we will drop conditioning on zi and qnj for simplicity of notiation.

To complete the proof, we write the co-efficients of (n− 1)−st Fourier-Legendre series of

v (·) in terms of ak. Let Γm (x) be the m-th shifted Legendre Polynomial. Observe that each

Γm (·) is given by Γm (x) = ∑m
l=0 γm,lx

l, with known co-efficients γm,l.26The m−th co-efficient

in the (shifted) Fourier-Legendre series of v (x) is given by

cm = (2m+ 1)
∫ 1

0
Γm (x) v (x) dx

= (2m+ 1)
(∫ 1

0
Γm (x) dx−

∫ 1

0

∫ x

0
Γm (y) dydv (x)

)
,

where the second equality follows from integration by parts. Observe that
∫ 1

0 Γm (x) dx =∫ 1
0 Γm (x) Γ0 (x) dx = 0 for m > 0. Therefore, for m > 0,

cm = − (2m+ 1)
∫ 1

0

∫ x

0
Γm (y) dydv (x) = − (2m+ 1)

∫ 1

0

m∑
l=0

γm,l
1

l + 1x
l+1dv (x)

= − (2m+ 1)
m∑
l=0

γm,l
1

l + 1al+1. (C.1)

And, finally, we have

c0 =
∫ 1

0
Γ0 (x) v (x) dx =

∫ 1

0
v (x) dx = v (1)−

∫ 1

0
xdv (x) , (C.2)

where the last equality follows from integration by parts. The term v (1) = 1 since v (·) is

non-decreasing with image [0, 1]. Equations (C.1) and (C.2) imply that all cm for m < n can

be written in terms of the observed quantities a0, . . . , an. Therefore, vn−1 (·) is identified.

Let Γ̃m (y) be them-th unshifted Legendre Polynomial defined over [−1, 1] satisfying Γ̃m (y) =

Γm
(
y+1

2

)
.27 The (n − 1)-st order Fourier-Legendre approximation of ṽ (y) = v

(
y+1

2

)
is

ṽn−1 (y) = ∑n−1
k=0 c̃mΓ̃m (y) where, c̃m = (2m+1)

2
∫ 1
−1 Γ̃m (y) ṽ (y) dy = cm,where the last equal-

ity follows after a change of variables x = y+1
2 . Since the function ṽ (·) has a compact domain

26The shifted Legendre-Polynomials on [0, 1] satisfy the orthogonality relationship
∫ 1

0 Γm (x) Γn (x) dx =
1

2n+1δm,nwhere δm,n is the Kronecker delta. The first few polynomials are Γ0 (x) = 1, Γ1 (x) = 2x − 1,
Γ2 (x) = 6x2 − 6x+ 1.

27The unshifted Legendre-Polynomials on [−1, 1] satisfy the orthogonality relationship∫ 1
0 Γ̃m (y) Γ̃n (y) dy = 2

2n+1δm,nwhere δm,n is the Kronecker delta. The first few polynomials are
Γ̃0 (y) = 1, Γ̃1 (y) = y, Γ̃2 (x) = 1

2
(
3x2 − 1

)
.
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and image, we have that

∫ 1
−1 ṽ (y)2 dy is bounded. Theorem 8.1 in Pollard (1947) shows that

the Legendre polynomials form a basis in L2([−1, 1]), or equivalently, that ṽn (y) converges

in the L2-norm to ṽ (y) as n→∞. Therefore, ‖vn−1 (·)− v (·)‖2 → 0 as n→∞. Therefore,

v (·) is identified if the hypotheses of the Lemma are satisfied for all n. Since v (·; qj, zi) is

increasing in its argument, P (Di,j = 1| νi,D = v (εD; qj, zi) ; qj, zi) is identified.

C.3 Preliminaries for Theorem 1

Lemma 3. Let fn and gn be sequences of functions such that fn → f and gn → g pointwise.

Assume that f is continuous.

(i) If fn converges to f uniformly in [a, b] and gn (x) ∈ (a, b) for all x, then fn (gn (x))

converges to f (g (x)) for each x in the domain of g.

(ii) If fn and gn respectively converge to f and g uniformly in [a, b] and infx∈[a, b] |g (x)| =

k > 0, then fn(x)
gn(x) converges to f(x)

g(x) uniformly in [a, b].

(iii) If fn converges to f uniformly in [a, b] and f is strictly increasing on [a, b], and the

function f−1
n (y) is defined as inf{x : fn (x) > y}, then for all x ∈ (a, b), f−1

n (f (x))→ x.

Proof. Part (i). By the triangle inequality, we have that

|fn (gn (x))− f (g (x))| ≤ |fn (gn (x))− f (gn (x))|+ |f (gn (x))− f (g (x))|

≤ sup
x∈[a,b]

|fn (y)− f (y)|+ |f (gn (x))− f (g (x))| .

The first term converges to zero since fn converges to f uniformly in [a, b]. The argument

of f in the second term, gn (x), converges to g (x). Since f is continuous, the second term

also converges to zero. Therefore, |fn (gn (x))− f (g (x))| → 0 as n→∞.

Part (ii). By the triangle inequality, we have that

sup
x∈[a,b]

∣∣∣∣∣fn (x)
gn (x) −

f (x)
g (x)

∣∣∣∣∣ ≤ sup
x∈[a,b]

|fn (x)− f (x)| sup
x∈[a,b]

∣∣∣∣∣ 1
gn (x) −

1
g (x)

∣∣∣∣∣ .
+ sup

x∈[a,b]
|f (x)| sup

x∈[a,b]

∣∣∣∣∣ 1
gn (x) −

1
g (x)

∣∣∣∣∣+ sup
x∈[a,b]

∣∣∣∣∣ 1
g (x)

∣∣∣∣∣ sup
x∈[a,b]

|fn (x)− f (x)| .
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By assumption, supx∈[a,b] |fn (x)− f (x)| converges to zero and supx∈[a,b]

∣∣∣ 1
g(x)

∣∣∣ = k−1 is finite.

Further, supx∈[a,b] |f (x)| if finite because f is continuous and [a, b] is a compact set. There-

fore, the left-hand side converges to zero as required if supx∈[a,b]

∣∣∣ 1
gn(x) −

1
g(x)

∣∣∣ converges to

zero. To show this, observe that

sup
x∈[a,b]

∣∣∣∣∣ 1
gn (x) −

1
g (x)

∣∣∣∣∣ ≤ sup
x∈[a,b]

∣∣∣∣∣ 1
gn (x)

∣∣∣∣∣ sup
x∈[a,b]

∣∣∣∣∣ 1
g (x)

∣∣∣∣∣ sup
x∈[a,b]

|gn (x)− g (x)|

converges to zero. Since limn→∞ supx∈[a,b] |gn (x)− g (x)| = 0 and supx∈[a,b]

∣∣∣ 1
g(x)

∣∣∣ = k−1 exists

by assumption, it is sufficient to show that supx∈[a,b]

∣∣∣ 1
gn(x)

∣∣∣ exists. Let N be such that for

all n > N , we have that supx∈[a,b] |g (x)− gn (x)| ≤ k
2 . Such a value of N exists because

gn converges to g uniformly in [a, b] and infx∈[a,b] |g (x)| = k > 0. Hence, for all n > N ,

supx∈[a,b]

∣∣∣ 1
gn(x)

∣∣∣ < 2
k
, which is finite.

Part (iii). Define f−1
n (y) = inf {x : fn (x) > y}. Fix x ∈ (a, b). For any ε > 0, define

ε̃ = min
{
ε
2 , x− a, b− x

}
and δε̃ = min {f (x+ ε̃)− f (x) , f (x)− f (x− ε̃)} . Observe that

ε̃ > 0 and δε̃ > 0 because and f is strictly increasing. Pick N such that for all n > N

supx′∈[a,b] |fn (x′)− f (x′)| < δε̃. Such an N exists because fn converges to f uniformly in

[a, b]. To complete the proof, we will show that for all n > N , f−1
n (f(x)) > x − ε and

f−1
n (f(x)) < x+ ε.

Since f is strictly increasing, for all x′ < x− ε̃, f (x′) + δε̃ < f (x). Therefore, for all n > N

and x′ < x− ε̃, fn (x′) < f (x). Hence, f−1
n (f(x)) ≥ x− ε̃ > x− ε for all n > N .

Similarly, for all x′ > x + ε̃, f (x′) − δε̃ > f (x). Therefore, for all n > N and x′ > x + ε̃,

fn (x′) > f (x). Hence, f−1
n (f(x)) ≤ x+ ε̃ < x+ ε for all n > N.

Lemma 4. Let g ∈ L2([0, 1]) be continuous and sn (g;x) be its Fourier-Legendre approxi-

mation of degree n evaluated at x. For any [a, b] ⊂ (0, 1), the partial average Sn (g;x) =
1
n

∑n−1
k=0 sk (g;x) converges to g (x) uniformly in [a, b].

Proof. The result is a corollary of Theorem IV.3.2 in Freud (1971). To apply this result,

we will use the cumulative distribution function of the uniform distribution on [0, 1] as the

function α (x).

Let pn (dα;x) for n = 0, 1, 2... be the sequence of orthogonal polynomials defined in Theorem
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I.1.2 of Freud (1971). It is straightforward to check that, for our chosen α (x), pn (dα;x) =
√

2m+ 1Γm (x) ,where Γm (x) be the m-th shifted Legendre Polynomial on [0, 1],28

satisfied the conditions in Theorem I.1.2 because (i) each Γm (x) is a polynomial, (ii) the

leading co-efficient of Γm (x) is positive and (iii)
∫

Γn (x) Γm (x) dx = δmn where δmn is the

Kronecker delta. Moreover, pn (dα;x) is unique as noted in the remark below Theorem I.1.2

in Freud (1971).

Therefore, it remains to show that pn (dα;x) satisfies requirement (3.2) in Chapter IV of

Freud (1971). As noted following this requirement, it is sufficient to show that for every pair

x2 and x1 in a neighborhood of x0 ∈ [a, b] ⊂ (0, 1), α(x2)−α(x1)
x2−x1

≥ m > 0,for some constant m.

This the case because for our chosen α (x), because the left hand side is identically equal to

1 for every x1, x2 ∈ (0, 1) .

Finally, sk (g;x), as defined in equations IV(1.1) and IV(1.2) of Freud (1971) is the k−th

order shifted Fourier-Legendre approximation of g. Therefore, by Theorem IV.3.2 in Freud

(1971), Sn (g;x) converges to g (x) uniformly in [a, b] ⊂ (0, 1).

Lemma 5. Let v′n (·; qj, z) be the n-th order Fourier-Legendre approximation of v′ (·; qj, z).

If the hypotheses of Lemma 2 are satisfied, then v′n (·; qj, z) is identified for each z ∈ (0, 1)

and qj.

Proof. We drop the parameters z, qj for simplicity of notation as they are held fixed. As

argued in the proof of Lemma 2, Assumptions 1 and 2 imply that the quantities ak =∫ 1
0 ε

k
Ddv (εD; qj, zi) are identified for all k ≤ n. Let bm be the (shifted) m−th Fourier-

Legendre co-efficient of v′ (·) defined on [0, 1], bm = (2m+ 1)
∫ 1
0 Γm (x) v′ (x) dx where Γm (·)

is the m−th shifted Legendre polynomial on [0, 1]. Observe that each Γm (·) is given

by Γm (x) = ∑m
l=0 γm,lx

l,with known co-efficients γm,l. Therefore, the co-efficients bm =

(2m+ 1)∑m
l=0 γm,l

∫ 1
0 x

lv′ (x) dx = (2m+ 1)∑m
l=0 γm,lal, are identified. The second equality

follows from the definition of al.
28The shifted Legendre-Polynomials on [0, 1] satisfy the orthogonality relationship

∫ 1
0 Γm (x) Γn (x) dx =

1
2n+1δm,nwhere δm,n is the Kronecker delta. The first few values are Γ0 (x) = 1, Γ1 (x) = 2x − 1, Γ2 (x) =
6x2 − 6x+ 1.
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C.4 Proof of Theorem 1

Identification of E [Yi,0| νi,D = ν]. Define y0 (ν) = E [Yi,0| νi,D = ν] =
∫
g0 (ν̄) fν0|νD=ν (ν̄) dν̄.

For a given ν, fix z such that there exists εD ∈ (0, 1) with v (εD; qj, z) = ν and drop the

conditioning on z in what follows, for simplicity of notation.

Let s and s̃ be a pair of models satisfying the hypotheses of Theorem 1, and let {y0 (·) , v (·)}

and {ỹ0 (·) , ṽ (·)} be features that are associated with s and s̃ respectively. We will show

that if {y0 (·) , v (·)} 6= {ỹ0 (·) , ṽ (·)}, then there exists n, such that if qkj is in the support of

the distribution of offer types for all k ≤ n, then the joint distribution of Yi,0, {Ti,j, . . . , Ti,j}

conditional on qkj differs for some k ≤ n under models s and s̃.

Consider a value of ν̄ ∈ (0, 1) such that y0 (ν̄) 6= ỹ0 (ν̄) and ν̄ = v (x̄; qj) for some x̄ ∈ (0, 1).

Lemmas 2 and 5 imply that if either v (x̄; qj) 6= ṽ (x̄; qj) or v′ (x̄; qj) 6= ṽ′ (x̄; qj) for some x̄ ∈

(0, 1), then there exists N such that for all n > N the joint distribution of
{
Ti,j, . . . , Ti,j(i,n)

}
conditional on qkj for some k ≤ n differs for models s and s̃. Therefore, it is sufficient to focus

on the case when v (x̄; qj) = ṽ (x̄; qj) and v′ (x̄; qj) = ṽ′ (x̄; qj). Moreover, since x̄ ∈ (0, 1), we

have that v′ (x̄; qj) > 0 (Assumption 4(i)) implying that it is sufficient to show that that if

y0 (v (x̄; qj)) v′ (x̄; qj) 6= ỹ0 (v (x̄; qj)) v′ (x̄; qj), then the joint distribution of Yi,0, {Ti,j, . . . , Ti,j}

conditional on qkj differs for some k ≤ n under models s and s̃.

We prove this by showing that if y0 (v (x̄; qj)) v′ (x̄; qj) 6= ỹ0 (v (x̄; qj)) v′ (x̄; qj), then there

exists n such that if qkj is in the support of the distribution of offer types for all k ≤ n, then

Yi,0, {Ti,j, . . . , Ti,j} conditional on qkj differs for some k ≤ n under models s and s̃.

To do this, we first show that the Fourier-Lebesgue approximation of the function u (x) =

y0 (v (x; qj)) v′ (x; qj) can be determined from observables. Assumptions 1 and 2 imply that

for each k ≤ n, we can re-write

E
[
Yi,0 × 1 {Ti = 0} |qkj

]
=
∫ 1

0
E [Yi,0| νD = v (x; qj)]xkdv (x; qj) =

∫ 1

0
xky0 (v (x; qj)) v′ (x; qj) dx.

The argument in the proof of Lemma 5 implies that the n−th order Fourier-Legendre ap-

proximation of u (x; qj) = y0 (v (x; qj)) v′ (x; qj), denoted as un (x; qj), is a function of the

observables
{
E
[
Yi,0 × 1 {Ti = 0} |qkj

]}n
k=1

. Similarly, let ũn (x; qj) be the (shifted) Fourier-
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Legendre series associated with model s̃ with associated feature {ỹ0 (·) , ṽ (·)} such that ṽ = v.

Lemma 4 implies that for any subinterval [a, b] ⊂ (0, 1), 1
n

∑n−1
k=0 uk (x; qj) converges uniformly

to u (x; qj) if u (x; qj) is square-integrable and continuous. Assumption 4(i) and (ii) imply

continuity of u (x, qj) since the product of continuous functions is continuous. To show

square-integrability of y0 (v (x; qj)) v′ (x; qj) observe that

∫ 1

0
y0 (v (x; qj))2 v′ (x; qj)2 dx =

∫ 1

0
E [Yi,0| v (x; qj)]2 v′ (x; qj)2 dx

=
∫ 1

0
E [Yi,0| ν]2 v′

(
v−1 (ν; qj) ; qj

)2
dν ≤

∫ 1

0
E [Yi,0| ν]4 dν

∫
v′ (x; qj)3 dx.

where the second line follows from changes of variables and Holder’s inequality. To show that

the right hand side is bounded, observe that Assumption 4(i) implies that
∫
v′ (x; qj)3 dx is

finite, and that Jensen’s inequality implies

∫ 1

0
E [Yi,0| ν]4 dν ≤

∫ 1

0
E
[
Y 4
i,0

∣∣∣ ν] dν = E
[
Y 4
i,0

]
,

which is finite by Assumption 4(ii). Therefore, ūn (x, qj) converges uniformly to u (x; qj).

An identical argument implies that 1
n

∑n−1
k=0 ũn (x; qj) converges uniformly to ũ (x; qj) over

x ∈ [a, b]. Since x̄ ∈ (0, 1), we can pick [a, b] such that x̄ ∈ [a, b].

Now, let δ = |y0 (v (x̄; qj)) v′ (x̄; qj)− ỹ0 (v (x̄; qj)) v′ (x̄; qj)| > 0. Pick n such that

∣∣∣∣∣y0 (v (x̄; qj)) v′ (x̄; qj)−
1
n

n−1∑
k=0

uk (x̄; qj)
∣∣∣∣∣ < δ

2 and
∣∣∣∣∣ỹ0 (v (x̄; qj)) v′ (x̄; qj)−

1
n

n−1∑
k=0

ũk (x̄; qj)
∣∣∣∣∣ < δ

2 .

Such an n exists because Lemma 4 implies that 1
n

∑n−1
k=0 uk (x̄; qj) and 1

n

∑n−1
k=0 ũk (x̄; qj) con-

verge to y0 (v (x̄; qj)) v′ (x̄; qj) and ỹ0 (v (x̄; qj)) v′ (x̄; qj) respectively. Therefore, if qkj is in the

support of the distribution of offer types for all k ≤ n, then
∣∣∣ 1
n

∑n−1
k=0 uk (x̄; qj)− 1

n

∑n−1
k=0 ũk (x̄; qj)

∣∣∣ >
0. Because each un (x̄; qj) and ũn (x̄; qj) is determined by E

[
Yi,0 × 1 {Ti = 0}

∣∣∣qkj ] for k ≤ n,

we have shows that the joint distribution of Yi,0, {Ti,j, . . . , Ti,j} conditional on qkj differs for

some k ≤ n under models s and s̃.
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Identification of E [Yi,j|νi,D = ν, εi,j,D ≥ ε, qj]. Define

y1 (ν, ε; qj) = E [Yi,j|νi,D = ν, εi,j,D ≥ ε ≥ εD, qj]

=
∫ ∫

g1 (qj, ν, ε) fε1|εD=ε (ε̄) fν1|νD=ν (ν̄) dνdε.

Consider a pair of models s and s̃. As argued above, we can restrict to pairs such that

v (x; qj, z) = ṽ (x; qj, z) for all x ∈ (0, 1) and all z. For a given ν ∈ (0, 1) and x̄ ∈ (0, 1),

and let z̄ be such that ν = v (x̄; qj, z̄). We will show that if y1 (v (x̄; qj, z̄) , x̄; qj) v′ (x̄; qj, z̄) 6=

ỹ1 (v (x̄; qj, z̄) , x̄; qj) v′ (x̄; qj, z̄), then there exists n such that if qkj is in the support of the

distribution of offer types for all k ≤ n, then the joint distribution of Yi,j, {Ti,j, . . . , Ti,j}

conditional on qkj and z̄ differs for some k ≤ n under models s and s̃.

Assumptions 1 and 2 imply that for each k ≤ n, we can re-write the observed quantity

E
[
Yi,j × 1 {Ti,j = 1} |qkj , z̄

]
=
∫ 1

0
E [Yi,j|νD = v (x; qj, z̄) , εi,j,D ≥ x, qj]xk−1 (1− x) dv (x; qj, z̄)

=
∫ 1

0
xk−1 (1− x) y1 (v (x; qj, z̄) , x; qj) v′ (x; qj, z̄) dx.

Arguments similar to those above imply that for any [a, b] ⊂ (0, 1), we can uniformly ap-

proximate the function

u (x; qj, z̄) = (1− x) y1 (v (x; qj, z̄) , x; qj) v′ (v (x; qj, z̄) ; qj, z̄)

over x ∈ [a, b] ⊂ (0, 1) with 1
n

∑n−1
k=0 un (x; qj, z̄), where un (x; qj, z̄) is determined as a function

of observed conditional distributions given z̄ and qkj for k ≤ n. This claim required continuity

and square-integrability of u (v (x; qj, z̄) ; qj, z̄) in x. Continuity follows because y1 (ν, x; qj),

v (x; qj, z̄) and v′ (x; qj, z̄) are assumed to be continuous (Assumption 4) and the composition

and product of continuous functions is continuous. Square integrability follows similarly to
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the argument above because

∫ 1

0
(1− x)2 y1 (v (x; qj, z̄) , x; qj)2 v′ (x; qj, z̄)2 dx

=
∫ 1

0

(
1− v−1 (ν; qj, z̄)

)2
E
[
Yi,j| ν, εi,j,D ≥ v−1 (ν; qj, z̄)

]2
v′
(
v−1 (ν; qj, z̄) ; qj, z̄

)
dν

≤
∫ 1

0

(
1− v−1 (ν; qj, z̄)

)4
E
[
Yi,j| ν, εi,j,D ≥ v−1 (ν; qj, z̄)

]4
dν
∫
v′ (x; qj, z̄)3 dx

=
∫ 1

0

(∫ 1

v−1(ν;qj ,z̄)
E [Yi,j| ν, ε] dε

)4

dν
∫
v′ (x; qj, z̄)3 dx

≤
∫ 1

0

∫ 1

0
E
[
Y 4
i,j

∣∣∣ ν, ε] dεdν
∫
v′ (x; qj, z̄)3 dx = E

[
Y 4
i,j

] ∫
v′ (x; qj, z̄)3 dx,

where the first equality follows from a change of variables. The third line follows from

Holder’s inequality and another change of variables. The fourth line rewrites the first integral.

The last line follows from Jensen’s inequality and the fact that the integrand is positive. As

above, Assumption 4 implies that
∫
v′ (x; qj, z̄)3 and E

[
Y 4
i,j

]
are finite. Therefore, if

δ = |(1− x̄) y1 (v (x̄; qj, z̄) , x̄; qj) v′ (x̄; qj, z̄)− (1− x̄) ỹ1 (v (x̄; qj, z̄) , x̄; qj) v′ (x̄; qj, z̄)| ,

then, as argued above, Lemma 4 implies that there exists n such that

∣∣∣∣∣ 1n
n−1∑
k=0

un (x̄; qj, z̄)− 1
n

n−1∑
k=0

ũn (x̄; qj, z̄)
∣∣∣∣∣ > 0.

Because each un (x̄; qj, z̄) and ũn (x̄; qj, z̄) is determined by the conditional expectations{
E
[
Yi,j × 1 {Ti,j = 1} |qkj , z̄

]}n
k=1

, we have shown that the joint distribution of Yi,j, {Ti,j, . . . , Ti,j}

conditional on qkj and z̄ differs for some k ≤ n under models s and s̃.

C.5 Dynamic Selection

The results in this subsection explicitly assume that Yi0 denotes survival. Therefore, we will

assume that agent i may be assigned object j only if Yi0 > ti,j. Using waiting time in the

mechanism allows for selection in transplanted survival outcomes.

Our main result requires an additional mild restriction on the conditional distribution of Yi0:

Assumption 5. For any interval I ⊂ R+, P (Yi0 ∈ I| νD) is a continuous function of νD.



21
With this assumption, we show the identification in the presence of dynamic selection:

Theorem 2. Suppose that Assumption 5 and the hypothesis of Theorem 1 hold, allow-

ing for ti,j > 0. Then, the probability P (Dij = 1| νi,D = νD, Yi0 ≥ ti,j) and the expectation

E [ψ (Yij)| νi,D = νD, εij,D ≥ εD, Yi0 ≥ ti,j] are identified for any bounded function ψ (·), and

all εD ∈ (0, 1) and νD ∈ (0, 1) such that there exist z in the support of its distribution with

νD = v (εD; qj, z) and P (Yi0 ≥ ti,j| νD) > 0.

The argument is developed in two steps. In the first step, we identify the conditional dis-

tribution of νD for agents that survive until time t (Lemma 6). The second step takes this

conditional distribution and combines it with the arguments that parallel those in Lemma 2

and Theorem 1.

Let ht (v) be the cdf of νD conditional on surviving until t. It is given by ht (v) =
∫ v P (Yi0≥t|νD)

P (Yi0≥t) dνD.

Lemma 6. Suppose that the hypothesis of Theorem 1 hold. The function ht (v) is identified

for every t ≥ 0.

Proof. Let qj be a donor-type that arrives at the same time time as patient i. Because

the image of v(·, qj, z) is the unit interval (Assumption 3), for any νD ∈ (0, 1) and z, there

exists εD ∈ (0, 1) such that νD = v (εD; qj, z). Theorem 1 implies that for every t ≥ 0,

P (Yi0 ≥ t|νD) = E [1 {Yi0 ≥ t}| νD] is identified. Thus, P (Yi0 ≥ t) and the function ht (v) is

identified.

Define the cdf of the probability that a patient which survives until ti,j rejects a kidney of

type qj as vj (εD; qj, zi) = hti,j ◦ v (εD; qj, zi).

Lemma 7. Suppose that Assumption 5 and the hypothesis of Theorem 1 hold. Then,

vj (εD; qj, zi) and v (εD; qj, zi) are identified for every εD such that

P (Yi0 ≥ ti,j|νD = v (εD; qj, zi)) > 0.

Proof. Fix εD is such that P (Yi0 ≥ ti,j|νD = v (εD; qj, zi)) > 0. Note that hti,j (·) is differen-

tiable because P (Yi0 ≥ ti,j|νD) > 0 and Assumption 5 is satisfied. Moreover, it is increasing
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in v and has image equal to the unit interval. Therefore, we have that vj (εD; qj, zi) satis-

fies Assumption 3. By arguments identical to those in Lemma 2, vj (εD; qj, zi) is identified.

Assumption 5 implies that P (Yi0 ≥ ti,j|νD) is also positive in a neighborhood around νD

and that hti,j is strictly increasing at that point. Thus, v (εD; qj, zi) = h−1
ti,j ◦ vj (εD; qj, zi) is

identified because the terms on the right hand side are identified.

Proof of Theorem 2:

Proof. Take any εD ∈ (0, 1) and νD ∈ (0, 1) satisfying the stated hypotheses. As argued in

the proof of Lemma 7, vj (·; qj, zi) satisfies Assumption 3 and is identified. Since vj (·; qj, zi)

is increasing in its argument, P (Dij = 1| νi,D = v (εD; qj, zi) , Yi0 ≥ ti,j) is identified.

By the chain rule ∂
∂ε
vj (εD; qj, zi) = ∂

∂ν
hti,j (νD) ∂

∂ε
v (εD; qj, zi). Note that ∂

∂ε
v (εD; qj, zi) is

continuous, bounded and strictly positive. Also, ∂
∂ν
hti,j (νD) = P (Yi0≥ti,j |νD)

P (Yi0≥ti,j) is continous,

bounded and strictly positive because the denominator is strictly positive by the assump-

tion that there exists νD with P (Yi0 ≥ ti,j|νD, xi) > 0 and Assumption 5. Therefore,
∂
∂ε
vj (εD; qj, zi) is continuous and bounded and strictly positive. Therefore, the function

∂
∂ε
vj (·; qj, zi) it is strictly positive in a neiborhood of εD. Arguments identical to those used

for proving Theorem 1 imply that E
[
Yij|hti,j (νi,D) = hti,j (νD) , εij,D ≥ εD, Yi0 ≥ ti,j

]
is iden-

tified. Because P (Yi0 ≥ ti,j|νD, xi) > 0, we have that hti,j (νD) is strictly increasing at νD,

the event hti,j (νi,D) = hti,j (νD) is equivalent to νi,D = νD.
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D Additional Figures and Tables

Table D.5: Top 10 offers: Balance

Age Diabetes Female Weight Height

(1) (2) (3) (4) (5)

log(1 + # Top 10 Offers in 2 Years)

KDPI <= 50% -0.0479 0.00134 -0.00158 -0.269* 0.0253

(0.0772) (0.00302) (0.00277) (0.108) (0.0732)

KDPI > 50% or Missing -0.0233 -0.00427 0.000269 0.104 0.0137

(0.0683) (0.00294) (0.00276) (0.101) (0.0819)

DSA FE, Year FE, and Blood Type FE x x x x x

Control for Pediatric at Listing x x x x x

CPRA Category Controls x x x x x

F-test p-Value 0.499 0.267 0.787 0.037 0.828

Number of Observations 128949 127414 128949 127363 126619

R-Squared 0.026 0.022 0.074 0.038 0.034

Distribution of # Top 10 Offers in 2 Years

Mean 16.92 16.97 16.92 16.91 16.88

Std. Dev. 22.86 22.92 22.86 22.82 22.79

Notes: * p<0.05, ** p<0.01, *** p<0.001
The sample for all regressions is patients who registered between 2000 and 2008. Dependent variables are as indicated in the
column headers. All regressions control for DSA fixed effect, registration year fixed effect, blood type fixed effect, an indicator
for pediatric at registration, and indictors for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA missing at registration.
Standard errors, clustered by DSA, registration year, and blood type, are in parentheses. F-test tests against the null hypothesis
that the coefficients on the instruments are zero.
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Table D.6: Scarcity Instruments: Balance
all KDPI Balance

Age Diabetes Female Weight Height

(1) (2) (3) (4) (5)

Log(1 + No. Donors)

Patients Waited 0-1 years -0.319 0.00271 -0.00105 0.151 -0.254

(0.331) (0.0125) (0.0115) (0.516) (0.328)

Patients Waited 1-2 years 0.135 -0.0129 0.00164 0.330 0.0594

(0.299) (0.0117) (0.0109) (0.457) (0.307)

Patients Waited 2-3 years -0.256 0.000252 0.0130 -0.290 -0.0133

(0.272) (0.0104) (0.00902) (0.397) (0.269)

Patients Waited 3-4 years 0.286 0.0160 -0.0272*** 0.114 0.109

(0.223) (0.00910) (0.00800) (0.348) (0.225)

Patients Waited 4-5 years -0.0248 -0.0117 0.0120* -0.393 -0.212

(0.153) (0.00603) (0.00533) (0.220) (0.152)

Log(1 + No. Offers)

Patients Waited 0-1 years 0.395* 0.0165* -0.00352 0.301 0.350

(0.195) (0.00817) (0.00765) (0.323) (0.218)

Patients Waited 1-2 years -0.0375 0.0000856 -0.00111 -0.228 -0.174

(0.215) (0.00847) (0.00764) (0.328) (0.228)

Patients Waited 2-3 years 0.0897 0.000332 -0.00488 0.300 0.0110

(0.213) (0.00817) (0.00698) (0.315) (0.223)

Patients Waited 3-4 years -0.123 -0.0124 0.0189** -0.1000 -0.0956

(0.196) (0.00766) (0.00666) (0.299) (0.196)

Patients Waited 4-5 years 0.0748 0.0125* -0.0130** 0.234 0.114

(0.133) (0.00527) (0.00475) (0.197) (0.132)

Year FE, DSA FE, and blood type FE x x x x x

Control for Pediatric at Listing x x x x x

CPRA Category Controls x x x x x

F-test p-Value 0.319 0.166 0.201 0.555 0.692

Number of Observations 87205 87200 87205 86078 85500

R-Squared 0.025 0.021 0.076 0.036 0.038

Notes: * p<0.05, ** p<0.01, *** p<0.001
The sample for all regressions is adult patients who registered on the waitlist between 1999Q4 and 2005Q4. Each regression is on
patient level, where the dependant variable is the patient characteristics in the column header at registration. Each regression
has five regressors indexed by k = 0, 1, 2, 3, 4, where the kth regressor for patient i is computed as the number of unique donors
(offers) such that: the offer is made to patients who are in the same DSA as i, have the same blood type as i, and have waited
the same number of years as i; the offer is made between 4k+ 1 and 4k+ 4 quarters, inclusive, from the quarter when i registers
(e.g. if i registers in 2002Q1, then the offer must be made between 2003Q2 and 2004Q1 for k = 1. All regressions control for
DSA fixed effect, registration year fixed effect, blood type fixed effect, an indicator for pediatric at registration, and indictors
for CPRA = 0, 20 <= CPRA < 80, CPRA >= 80, and CPRA missing at registration. Robust standard errors, clustered by
DSA, registration year, and blood type, are in parentheses. F-test tests against the null hypothesis that the coefficients on the
five regressors are zero.
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