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Abstract

The recent surge in admission reforms across selective US schools has been a source

of much debate. The achievement consequences of these reforms hinge on which stu-

dents benefit from attending selective schools. I show that Boston exam schools have

heterogeneous effects on achievement, driven primarily by the quality of applicants’

non-exam school alternatives rather than their demographic characteristics. Admis-

sion policies prioritizing students with weaker schooling alternatives thus have more

potential to increase academic achievement than policies targeting specific demographic

groups. Simulations of alternative admission criteria suggest that schemes reserving

seats for such students are likely to yield the largest gains.
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1 Introduction

Exam schools are the most sought-after public high schools in the United States. The un-

derrepresentation of minority students at these elite institutions has been at the center of

the education policy debate for decades. Recently, exam schools have been under pressure

to change their admission criteria in order to increase access for minority and low-income

students. School boards are considering a wide range of options, from lotteries to sophisti-

cated place-based admission schemes.1 Yet, the consequences of these admission systems for

achievement have received little attention.

The impact of admission systems on achievement depends on how different students are

affected by the schools they attend. Research on exam schools focuses mostly on causal

effects for marginal students, that is, students close to admission cutoffs (Dobbie and Fryer,

2014; Abdulkadiroglu et al., 2014; Angrist et al., 2019; Barrow et al., 2020). Although mostly

small and not statistically significant, these estimates for average marginal students might

hide substantial heterogeneity. Applicants’ gains from attending exam schools depend both

on their personal characteristics and on the quality of non-exam school alternatives. These

two sources of differences in potential gains are key to evaluating and comparing the effects

of different elite high school admission criteria on overall academic achievement.

This paper estimates the achievement consequences of counterfactual admission criteria,

accounting for heterogeneity in potential gains. The paper begins with an econometric

framework that isolates sources of heterogeneity. This decomposition is relevant to the exam

school debate because new admission rules are likely to change the demographics of admitted

students as well as the non-exam schools they substitute from. The estimates for Boston

exam schools show substantial heterogeneity in exam school gains, driven by differences in

the quality of students’ non-exam school alternatives. I use these estimates to evaluate
1For instance, Fairfax County (VA) and San Francisco replaced the admission tests at their exam schools

with lotteries in 2020 (Warikoo, 2021). In Boston, exam schools still screen students based on academic
achievement but now give priorities to students living in disadvantaged zip codes (Barry, 2021). Philadel-
phia switched to lottery admission for its magnet schools and introduced some zip code priorities in 2021
(Mezzacappa, 2021). Chicago expanded access to its elite high school entrance test in 2021. Under the new
policy, all public school students take the test, which is administered directly at their schools (Karp, 2021).
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admission reforms and to design a scheme that increases overall academic achievement by

leveraging differences in expected gains.

I estimate causal exam school effects using the IV methods introduced in Abdulkadiroğlu

et al. (2017) and Abdulkadiroglu et al. (2022). To decompose exam school effects, I interact

instruments for exam school enrollment with distances to non-exam Boston public schools.

Distances to schools predict where applicants would enroll if not offered an exam school seat.

Due to the large number of schools, I split non-exam schools into four groups according to

their quality as estimated with an OLS value-added model. This split takes advantage of

the fact that the OLS value-added model provides biased but indicative estimates of school

quality (Angrist et al. (2017)). Hence, the classification based on OLS value-added is likely

to group together schools with similar effects on achievement.

This strategy identifies the exam school treatment effect by non-exam school alternative

under the assumption of constant effects within strata (Hull (2015)). In particular, marginal

changes in the relative distance to each group of schools should not be correlated with the

potential treatment effect of attending an exam school. The data suggests that this assump-

tion is likely to be satisfied, as marginal changes in relative distances are not systematically

associated with variations in demographic characteristics or baseline test scores. Moreover,

over-identification tests do not reject homogeneous treatment effects along relative distance.

Perhaps surprisingly, my empirical analysis suggests that the least selective of Boston’s

exam schools (the O’Bryant School) raises achievement the most. In particular, O’Bryant

increases 7th and 8th grade math test scores by between 0.05 and 0.20 standard deviations

for applicants who would have otherwise attended a Boston public school of below-median

quality. At the same time, gaining admission to the two most selective Boston exam schools

(the Boston Latin school or Boston Latin Academy) appears to actually reduce math test

scores with respect to enrolling in O’Bryant. As a final step to the decomposition, I try to

assess the heterogeneity in exam school effects across students with different pre-treatment

characteristics but same quality of non-exam school alternative. This subgroup analysis

shows small positive exam school effects for Hispanic and Black applicants when substituting
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from low-quality non-exam alternatives, although these estimates are less precise.

I use these results to compare the achievement effects of counterfactual admission schemes.

Two popular alternatives, (i) granting admission to top-ranked middle school applicants and

(ii) replacing exam school entrance test (ISEE) scores with state standardized test (MCAS)

scores, have little impact on achievement. On the other hand, adopting place-based reserves

based on middle school quality would increase 8th grade math test scores by 0.13 standard

deviations for 15% of applicants. All three of these alternative admission schemes increase

minority student representation at exam schools.

The rest of the paper is organized as follows. Section 2 presents a framework that distin-

guishes substitution effects from match effects and discusses the data and the institutional

background related to Boston’s exam schools. Section 3 details the empirical strategy which

decomposes exam school effects by non-exam school alternative. Section 4 presents the exam

school estimated effects on achievement and their decomposition by non-exam school alter-

native. It also discusses heterogeneous exam school effects for different groups of students.

Section 5 simulates the overall achievement gains from adopting several possible admission

schemes. Section 6 concludes.

2 Background

2.1 Going beyond exam school RD estimates

It is crucial to account for treatment effect heterogeneity when evaluating the impact of

different admission criteria schemes on academic achievement. Changes in exam school

admission criteria affect the population of students that attend those schools and, unless the

benefits of attendance are homogeneous, achievement gains estimated using previous cohorts

will not apply to the new wave of admits.

In a setting with multiple treatments such as school choice, heterogeneity arises not

only from differences in match effects between individuals and treatments but also from

differences in outside option across individuals. For instance, Angrist et al. (2019) find
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that negative exam school effects in Chicago are explained by diversions away from high-

performing charters in the Noble Network.2 Similarly, Chabrier et al. (2016) emphasize the

importance of considering the difference in quality of urban and non-urban public schools

when comparing the effectiveness of different kinds of charters. In practice, match effects

and substitution effects interact, and disentangling them requires additional identification

assumptions beyond those typically imposed when estimating elite school treatment effects.

To understand the significance of these sources of heterogeneity, consider a minimal set-

up with individuals (students) indexed by i and treatments (schools) indexed by j. Let Yij

denote the potential academic outcome (academic achievement) of student i if she attends

school j. The treatment effect of attending school 0 (an exam school) instead of school j for

student i can be decomposed as the mean difference in potential outcomes (the substitution

effect) and student i specific difference in potential outcomes (the match effect):

Yi0 − Yij = E[Yi0 − Yij] + εi0 − εij (1)

:= Ȳ0 − Ȳj︸ ︷︷ ︸
substitution effect

+ εi0 − εij︸ ︷︷ ︸
match effect

. (2)

Suppose for simplicity that there is a single discrete student characteristic Xi (e.g. race)

that affects potential outcome Yij differently depending on the school j that the student

attends. This corresponds to a situation where students of different races have different

benefits from attending each school, but gains are otherwise homogeneous. Formally, this

setting can be expressed as εij = E[εij | Xi = xi] + νi. With this simplification, the match

effect corresponds to the covariate specific difference in outcome when switching from school

0 to school j:

Yi0 − Yij = Ȳ0 − Ȳj︸ ︷︷ ︸
substitution effect

+ E[εi0 − εij | Xi = xi]︸ ︷︷ ︸
match effect

. (3)

2In related work, Barrow et al. (2020) show that Chicago exam schools decrease college enrollment for
students from lower-SES neighborhood.
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This decomposition may be used to compare students’ academic achievement under dif-

ferent exam school admission rules. A change in exam school admission rules affects both the

set of schools students are substituting from and the types of students that substitute from

these schools. Academic achievement will be larger if students that enroll in exam schools

substitute from non-exam school alternatives in a way that yields large positive substitution

effects and large positive match effects.

Hence, comparing the performance of different student assignment to schools in terms

of overall academic achievement requires knowing the substitution effect and match effect

for each pair of schools and student characteristic. When trying to find the exam school

assignment scheme that maximizes academic achievement, substitution effects determine

from which school students should be principally reallocated, while match effects indicate

which students from within each school should be reallocated. Similarly, the impact of

modifying exam school admission criteria will depend on the substitution and match effects

with respect to exam schools for the students being displaced by the change.

2.2 Boston exam schools

Boston is a compelling setting for studying the impact of different elite school admission

criteria on achievement. Admission rules at the city’s exam schools have been a contentious

topic since Judge W.A. Garrity ordered in 1978 Boston Latin School, the most selective

Boston exam school, to set apart 35% of seats to minority applicants. After the unsuccessful

attempt of McLaughlin v. Boston Sch. Comm. (1996), Wessmann v. Boston Sch. Comm.

(1998) put an end to seat reserves for minority applicants. Admissions thus went back to

being solely based on grades and entrance exam results. In July 2021, the Boston School

Committee adopted a new admission regime which introduced seat reserves for applicants

based on the socioeconomic conditions of their neighborhoods.3 Accurately predicting the

achievement effect of a change in admission criteria is thus immediately policy-relevant.
3In 2020, the Boston school Committee had already approved a temporary change of admission regime,

in part as a response to the challenges created by the Covid-19 pandemic. The plan suspended the entrance
exam for a year and set apart seat reserves for the city’s different zip codes.
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Boston has three elite high schools: Boston Latin School (BLS), Boston Latin Academy

(BLA) and the O’Bryant School of Mathematics and Science (OBR). Students can apply

for admission either in 7th grade or in 9th grade. Applicants can decide to apply to all three

schools or to a subset of them and may express their preferences over schools by submitting a

rank-order list. Admission at each exam school is based on a school-specific weighted average

of middle school GPA and of the Independent School Entrance Examination (ISEE). Each

applicant receives a rank at each school she applies to.

Exam school offers, reconciling applicant preferences, rankings and school capacities, are

generated using deferred acceptance. This mechanism produces admission cutoffs for each

exam school that can be exploited to identify exam school achievement effects. Boston Latin,

with an admission rate of 27%, is the most selective of the three schools. It is closely followed

by Latin Academy, which on average admits 46 % of its applicants. Finally, O’Bryant admits

56% of its applicants, making it the most easily attainable exam school. While more than

95% of admitted students at Boston Latin and Latin Academy accept their offer, take-up is

only 80% at O’Bryant.

Applicants who fail to gain entrance into any of the exam school may enroll in one of

Boston public schools. The performance of these schools in raising test scores is heteroge-

neous, as suggested by Figure 1 which displays the distribution of the average estimated

value-added of BPS schools on 8th grade MCAS English and math test scores.4 Schools at

the bottom of the estimated value-added distribution increase 8th grade test scores by one

standard deviation less than schools at the top of the estimated value-added distribution.

Exam schools appear to perform slightly better than the median Boston public school.

Boston Latin and O’Bryant appear particularly effective at raising math test scores, while

Boston Latin and Latin Academy are among the best schools for increasing English test

scores. Although these value-added estimates could be misleading as they are not necessarily

unbiased, their dispersion suggests that changing exam school assignment could result in

achievement gains. Indeed, exam school applicants with non-exam school alternative in the
4School value-added is computed following the same model discussed in Section 3 for each year between

2004 and 2016. This model controls for student demographics and flexible functions of baseline test scores.
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lower tail of the value-added distribution could benefit from attending an exam school.

2.3 Data on Boston students

Students can apply to exam schools either in the spring of their 6th grade for enrollment in 7th

grade, or in the spring of their 8th grade for enrollment in 9th grade. Each year, approximately

two thousand 6th graders apply to one of these schools. Applicants come from both private

sector schools and public sector schools (which include charters). Applicants who do not

receive an offer, or who decline their offer, can choose to enroll in the public school system

or in a private school. Admission to most of Boston’s regular public schools and charter

schools occurs in 6th grade. Admission in 7th grade is thus a peculiarity of exam schools, so

the non-exam school alternative of most applicants is the school they are enrolled in when

they apply. This feature, combined with the fact that it is the larger application round,

motivates my focus on applications to 7th grade.

The analysis sample includes 7th grade applicants from years 2004–2016 for which both

baseline and outcome test scores are available.5 Since I am interested in studying substi-

tutions from regular public schools, I restrict the analysis sample to students enrolled in a

non-charter BPS school in the Boston area prior to application. This excludes students who

enroll in a charter school after applying to an exam school, since admissions to Massachusetts

charter schools occur either in 5th or 6th grade through lotteries.6 Hence, the analysis only

considers students who either enroll in an exam school or in a non-charter BPS school.

Boston Public Schools (BPS) is the source of the application files for exam schools. The

Massachusetts Department of Elementary and Secondary Education (DESE) provided the

enrollment files and MCAS data. Application, enrollment and test scores files are merged

using the State unique identifier (SASID). The distance from each sending middle school to

each potential school of enrollment is computed using the shortest road distance between the

two. Only schools where at least one student enrolled after application during the 2004-2016
5Baseline test scores correspond to MCAS 4th grade test scores. Thus, students who were not enrolled in

a Boston Public school in 4th grade are excluded from my analysis.
6Among applicants who do not receive an offer from any exam schools, only 3% of non-charter applicants

subsequently enroll in a charter school, while 73 % of charter applicants remain in a charter school.
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period are included in the set of potential non-exam school alternatives. I include a more

detailed description these data sets, how I constructed the distance variable, and the sample

restrictions in Appendix A.

3 Empirical strategy

3.1 Instrument for exam school enrollment

The identification of exam school achievement effects requires an instrument since exam

school students are positively selected. I use exam school offer conditional on the probability

of receiving an offer to instrument exam school enrollment. Receiving an exam school offer

strongly predicts exam school enrollment and is as good as randomly assigned conditional on

the propensity score of receiving an offer (Abdulkadiroğlu et al., 2017; Abdulkadiroglu et al.,

2022). To compute the propensity score of admission at each exam school, I exploit the rank

order list of applicants following the methodology in Abdulkadiroglu et al. (2022). Appendix

B describes the method in more detail. Although this method is also based on discontinuities

at admission cutoffs, it is more general than the approaches used in Abdulkadiroglu et al.

(2014) and Dobbie and Fryer (2014) because it combines the variations at each exam school’s

cutoff.

In practice, since the match yields a single offer, the sum of each exam school’s propensity

score corresponds to the risk of being assigned at any of the exam schools.The exam school

effect on any outcome Yi can thus be estimated with a just-identified 2SLS procedure that

uses an offer from any exam school Di = ∑
s Dis to instrument for enrollment at an exam

school Ei, controlling for linear control functions gs(·) and hs(·) of the running variables

Ris, and for the exam school propensity score p̂i. The sample is limited to applicants whose

probability of receiving an exam school offer is not equal to 0 or 1. As suggested by the

descriptive statistics reported in Appendix Table A1, this sample is nearly representative of

the exam school applicant population. Specifically, I estimate the following regression:
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Yi = βEi +
∑

x

αxI(p̂i = x) +
∑

s

gs(Ris) + εi. (Second stage)

Since there are three exam schools in Boston, the propensity score takes on three different

values x = {0.895, 0.75, 0.5} for applicants with non-degenerate risk of any exam school offer.

For more flexibility, I allow the coefficients associated with each of these values to vary by

cohort. The linear control function for each school’s running variable is also allowed to vary

by cohort. I parameterize these functions as

gs(Ris) = ω1sais + κis [ω2s + ω3s(Ris − τs) + ω4s(Ris − τs)I(Ris > τs)] .

where ais indicates whether applicant i applied to school s, and κis = ais× I(τs− δs < Ris <

τs + δs) selects applicants in a bandwidth of size δs around an admission cutoff τs.

The corresponding first stage is

Ei = γDi +
∑

x

δxI(p̂i = x) +
∑

s

hs(Ris) + νi. (First stage)

This approach can also identify the treatment effect of each of the exam schools separately.

The multi-school specification instruments the dummy for enrollment at each exam school

(E1i, E2i and E3i) by the corresponding school offer and controls for the values of each exam

school’s propensity score. In this case, the sample includes applicants in the bandwidth of

any of the three exam schools.7

Table 3 presents encouraging evidence of covariate balance by offer status. In particular,

receiving an offer from any of the exam schools is not correlated with higher baseline test

scores, which bolsters confidence in the validity of the instrument.
7Since the school-specific sample includes all applicants with assignment risk at BLS and BLA, it is more

positively selected than the sample of applicants with non-degenerate risk of being offered any exam school.
This is confirmed by the descriptive statistics reported in Appendix Table A1.
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3.2 Estimation of exam school treatment effect heterogeneity

3.2.1 Econometric framework

The 2SLS estimators of exam school effects for all applicants and subgroups of applicants

identify a mix of match effects and substitution effects, and are thus not suitable for per-

forming counterfactual analyses.8 The problem with these estimators is that they fail to

address substitution effects, since they ignore the fact that students are substituting away

from different alternatives.9

Substitution effects are hard to pin down as they correspond to unobserved choices that

need to be inferred. Behaghel et al., 2013; Kline and Walters, 2016; Blackwell, 2017; Lee and

Salanié, 2018; Mountjoy, 2022 consider non-parametric identification of multiple treatment

channels and multiple treatment-specific instruments.10 This paper follows most closely the

method outlined in Hull (2015), where treatment alternatives are unobserved but vary along

observable dimensions. In this case, interacting the instrument with covariates predicting

individuals’ outside option is an intuitive way of identifying substitution effects. Nonetheless,

this approach only allows for identification of both substitution and match effects under

additional assumptions. In particular, Hull (2015) establishes that covariate interactions

identify treatment effect by outside option only under the assumption of constant treatment

effect within strata.

Formally, let Si denote the school in which student i enrolls. Si takes values from 1 to

J for non-exam schools and value 0 for the exam school. Assume there exists a set of J − 1

covariates {Wik}J
k=2 satisfying Assumption 1. Then Proposition 1 states that interacting

these covariates with the instrument for school 0 identifies the treatment effect by non-exam

school alternative .

Assumption 1
8See Appendix C for details on what LATE identifies.
9Heckman and Urzúa (2010) underlines that IV cannot identify treatment effects for different margins of

choice without additional structural assumptions.
10Kirkebøen et al. (2017) show how an IV strategy identifies counterfactual specific LATEs when preferred

treatment alternatives are directly measured.
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1. Relevance: For all j and for at least some wj ̸= w′
j, holding fixed wik ∀k ̸= j,

Pr[Si = j | Wij = wj, {Wik}k ̸=j] ̸= Pr[Si = j | Wij = w′
j, {Wik}k ̸=j].

2. Partial unordered monotonicity: For any wj < w′
j, holding fixed wik ∀k ̸= j,

Pr[Si = j | Wij = wj, {Wik}k ̸=j] ≥ Pr[Si = j | Wij = w′
j, {Wik}k ̸=j]

and Pr[Si = k | Wij = wj, {Wik}k ̸=j] ≤ Pr[Si = k | Wij = w′
j, {Wik}k ̸=j].

3. Constant treatment effect within covariate: For all j and vector w,

E[Yi0 − Yij | Wi = w] = E[Yi0 − Yij | Wi ̸= w] where Wi is the vector of covariates

{Wik}J
k=2.

The first condition of Assumption 1 is a first stage condition: the set of covariates must

predict applicant non-exam school alternative. The second condition generalizes the standard

monotonicity assumption from the binary case: each covariate shift renders each treatment

either weakly more attractive for all individuals or weakly less attractive for all individuals.

This rules out the possibility of compliers flowing in and out of each outside option in

response to a shift in the corresponding covariate. The third condition entails that the

treatment effect of attending one school instead of another is independent of the covariates

predicting the non-exam school alternative. In the previous framework, it implies that

E[Xi | Wik] = E[Xi] ∀k since Xi is the only student-specific determinant of school potential

effects. This assumption guarantees that variations along interacted covariates influence

outcomes only through changes in the outside option.

Proposition 1 (Identification of treatment effect by non-exam school alternative )

Suppose there exists a valid instrument Zi for enrollment in school 0, and a vector of J − 1

covariates {Wik}J
k=2 that satisfies Assumption 1.

1. Conditioning on {Wik}J
k=2 and Zi, the interaction of Zi and (1, {Wik}J

k=2) identifies

E[Yi0 − Yij | Di1 > Di0], ∀j = 1, ..., J .

2. For any covariate Xi, conditioning on {Wik}J
k=2 and Xi, the interaction of Zi, (1, {Wik}J

k=2)

and Xi identifies E[Yi0 − Yij | Xi, Di1 > Di0],∀j = 1, ..., J .
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Proposition 1 establishes that the interaction of covariates predicting applicant outside

options with an instrument for enrolling in an exam school identifies exam school treatment

effects with respect to each non-exam school alternative, as long as the covariates satisfy the

constant treatment within covariate assumption. This proposition is along the lines of Hull

(2015) with more than two outside options, its proof in Appendix D considers the case of

continuous interacted covariates.

Imposing constant treatment effect within the interacted covariates is less demanding

than assuming constant treatment effect in general, or assuming that interacted covariates

are exogenous. Constant treatment effect would rule out any match effect between students

and schools since it entails that any two students should benefit equally or lose equally from

attending an exam school instead of another school. Exogeneity would limit the set of valid

covariates since it requires covariates to not be correlated with potential outcomes (not only

treatment effects). Constant treatment effect within interacted covariates, however, only

rules out heterogeneity in treatment effect along dimensions that vary substantially with the

covariates predicting outside options. It allows heterogeneous match effects between schools

and different types of students as long as these types are distributed equally along values of

the covariates used to predict non-exam school alternatives.

Testing for a constant treatment effect within the interacted covariates is nonetheless

challenging. Over-identification tests of homogeneous treatment effects are typically con-

ducted across covariates, since these tests compare the treatment effect induced by different

covariates, not different values of the same covariate. A conclusive over-identification test

would thus require all interacted covariates to induce variations of a similar type (e.g. age

variations, race variations or geographic variations).

3.2.2 Estimation of exam school effect by non-exam school alternative

To identify heterogeneity in exam school achievement effect by non-exam school alternative,

I interact distance to schools with the exam school instrument. A long-standing literature

has used distances to predict students’ school of enrollment (Card, 1995; Neal, 1997; Booker
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et al., 2011; Walters, 2018; Mountjoy, 2022). Nonetheless, contrary to the approach taken in

these papers, I do not use relative distances as instruments for school enrollment, but instead

as covariates to be interacted with an instrument for enrollment. Hence, my strategy does

not require exogeneity of relative distances but rather homogeneity of treatment effect along

relative distances.

Considering the large number of potential non-exam school alternatives, I need to group

schools.11 The decomposition of treatment effect aims at identifying which schools perform

worse than exam schools so that students substituting from those would gain from attending

an exam school instead. Hence, it is appropriate to group together schools of similar qual-

ity.12 Sorting schools based on their estimated OLS value-added (VA) is likely to result in

groups of schools with similar effects on achievement as the bias in VA models controlling for

observables and past achievement is typically small (Chetty et al., 2014; Angrist et al., 2017).

Moreover, Angrist et al. (2017) argues that, bias notwithstanding, policy decisions in Boston

middle schools based on conventional VA models could generate substantial achievement

gains.

Schools are sorted based on their estimated value-added from a “lagged score” OLS

VA model. The model includes indicators for sex, race, subsidized lunch eligibility, special

education status (SPED), English-language learner status (ELL) and school year, along with

cubic functions of all the baseline math and ELA test scores available.13 For each application

year, I estimate the model on the two previous years’ sample of BPS schools enrolling more

than 25 students, which captures the value-added of each school at the time of application.

As each school’s estimated Value-Added is year-specific, a school may be classified in different

groups across years.

Choosing the number of groups represents a trade-off between informativeness, identifi-
11Moreover, it is not possible to identify the treatment effect of each specific school using distances, as any

other point is uniquely defined by its distance from 3 non-collinear reference points on a plane.
12Using this method, one may explore classification of schools according to other attributes believed to be

relevant. Whichever characteristic is used to categorize schools, the 2SLS procedure should produce unbiased
estimates of exam school treatment effects with respect to each group of schools.

13MCAS exams for English and math were progressively introduced for each grade in the 2000s. By 2006,
BPS students were tested in every grade between 3rd grade and 8th grade, providing a rich set of past test
scores.
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cation and precision. Appendix Table A2 offers a comparison of results for different sample

splitting procedures. While constant treatment seems to be satisfied to the same extent,

estimates become quite imprecise when using more than five groups. The most precise and

informative estimates are achieved with four groups, since exam schools appear to perform

as well as the median non-exam school alternative. Schools are thus sorted according to the

quartiles of the estimated VA distribution for each application year.

As described in Table 1, schools in the bottom quartile have the lowest estimated Math

VA with an average of −0.22, while schools in the top quartile have the largest estimated

math VA with an average of 0.19. Exam schools have an average estimated math VA of 0.05,

which makes them similar to a school in the bottom of the third quartile - i.e. just above

the median. According to these estimates, Boston Latin is the most effective school with a

math VA of 0.20, O’Bryant is second at 0.11 and Latin academy lies behind at −0.15. Math

and English VA appear to be correlated: schools with low estimated math VA also tend

to have low estimated 7th grade English VA. Nevertheless, Latin Academy has the largest

English VA of 0.16, while Boston Latin is second at 0.13 and O’Bryant is third at −0.13.

Surprisingly, Table 1 does not reveal substantial heterogeneity between groups of schools in

terms of ethnic composition, share of English learners, SPED, native speakers or student

baseline achievement. If anything, schools in the bottom quartile appear to concentrate a

larger share of Asian students than schools in other groups.

To disentangle counterfactual-specific treatment effects, I estimate the following specifi-

cation where {Sik}4
k=1 are dummies indicating enrollment at a school in the kth quartile of

the estimated VA distribution:

Yi = β0 +
4∑

k=1
βkSik + εi.

This specification is similar to a value-added model with exam schools as the reference

group, so that βk gives the effect of attending a school in the kth quartile with respect to an

exam school. This model is evaluated on the sample of applicants that have non-degenerate

risk, i.e., applicants that are only marginally offered a seat at one of the three exam schools.
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To construct instruments for enrollment in each group of non-exam school alternatives,

I interact receiving an exam school offer with distances between applicants’ middle schools

and junior high schools. These distances plausibly predict applicants’ non-exam school

alternative, since applicants that do not receive an exam school offer are likely to either stay

in the school they were enrolled in at the time of application or move to a school in the same

neighborhood. Specifically, I interact the distance dik of each applicant’s middle school to

the closest school in the kth VA quartile with a dummy for receiving an exam offer Di. Thus,

enrollment at a school in quartile k ∈ {1, ..., 4} is instrumented as

Sik = γkDi +
K∑

j=1
λkj(dij ×Di) +

K∑
j=1

ϕkjdij +
∑

x

δkxI(p̂i = x) +
∑

s

hks(Ris) + ηik.

Table 2 presents the estimated first stages for each group of schools. Relative distance

is a good predictor of non-exam school alternative as the first stage estimates appear to be

strong, with F-statistics between 63 and 78. The coefficient on the distance to the closest

school of each group is systematically negative, meaning that students prefer either staying at

the school they attend at the time of application or moving to a school close to it. Moreover,

the interaction between the exam school offer and the minimum distance to each group is

positive, meaning that an exam school offer shifts students from a school only if it is close

enough to constitute one of the potential non-exam school alternatives.

3.2.3 Test of the constant treatment effect assumption

Proposition 1 states that the set of covariates interacted with the exam school instrument

must satisfy the assumption of constant treatment effect within covariate to identify exam

school treatment effect by non-exam school alternative. Since the model controls for the

distance to the closest school of each group, the identifying variation comes from differences

in relative distances to each group’s closest school. The constant treatment effect assumption

thus requires marginal changes in relative distance to the closest school of each group not

to be correlated with changes in the potential treatment effect of attending an exam school.
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Otherwise, variations in relative distance would not exclusively impact the outcome through

changes in the non-exam school alternative, and would thus not identify the pure substitution

effect.

To make this assumption clearer in our context, consider an example with three groups

of schools and two students, A and B. These students are equidistant from a group 1 and

a group 2 school, but student A lives closer to a group 3 school. The constant treatment

effect assumption assumes that student A does not gain more or less than student B from

attending an exam school instead of a group 3 school. This seems plausible since students

A and B only differ in their relative position to a school of group 3.

As a check for the constant treatment effect assumption, Table 3 assesses whether char-

acteristics that could influence treatment effects vary along relative distances to the closest

school of each group. All the coefficients are small and only one is significant. While the

probability of being a Black student appears to change along relative distances, past test

scores do not vary significantly. This mitigates the concern that results will be affected by

heterogeneity in treatment effect along relative distances.14

Finally, the constant treatment assumption can be tested through an over-identification

test when distances are used as interacted covariates. The model is over-identified since

the exam school enrollment dummy is omitted, but the exam school offer dummy and its

interactions with distances from all groups are used as instruments. The inclusion of one

additional distance in the set of instruments allows for an over-identification test of ho-

mogeneous treatment. This test is particularly powerful since it compares the estimated

treatment effect values by varying the geographic definition of complier groups. It is thus a

test of homogeneity along variations in the characteristic used to identify the outside option.
14Additionally, Appendix Table A3 shows limited differential attrition along relative distances for appli-

cants who receive an exam school offer.
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4 Empirical results

4.1 Overall exam school effect

Panel A of Table 4 reports the LATE of enrolling in any of the exam schools on academic

achievement. Despite the differences in sample and in method, I find that exam schools

have a null or negative effect on test scores, consistent with Abdulkadiroglu et al. (2014)

and Dobbie and Fryer (2014). Overall, exam school enrollment appears to reduce English

scores by −0.107 SD in 7th grade and by −0.058 SD in 8th grade, while it is associated with

insignificant changes in math achievement of −0.052 SD in 7th grade and 0.029 SD in 8th

grade.15

The estimated exam school effect is mainly driven by O’Bryant, the least selective exam

school. Indeed, the estimation strategy can only pin down the effect of enrolling in any of the

exam schools for applicants with non-degenerate any exam offer risk. These applicants are

more likely to be offered and enroll in O’Bryant as suggested by Figure 2. Among applicants

with non-degenerate exam school risk, 92 % of offered compliers enroll at O’Bryant and 8%

enroll at Boston Latin.

Exam school offer compliers are more likely to enroll at O’Bryant because most applicants

rank Boston Latin first, Latin Academy second and finally O’Bryant third.16 As a result,

most marginal applicants to Boston Latin or Latin Academy clear the admission cutoff at

either Latin Academy or O’Bryant. This is supported by Figure 2 which reports that 80%

of non-offered compliers to a Boston Latin offer enroll either at Latin Academy or O’Bryant,

whereas 98% of non-offered compliers to a Latin Academy offer enroll at O’Bryant. Only

compliers to an O’Bryant offer enroll a traditional public school more than 40% of the time

when not admitted at O’Bryant.

Hence, any comparison between exam schools and traditional public schools is a compar-

ison between O’Bryant and the traditional sector. Most applicants at risk of a Boston Latin
15In contrast, OLS estimates in Appendix Table A4 entail positive achievement effects of attending an

exam school for all applicants, regardless the quality of their non-exam school alternative.
1661% of applicants in my sample submit these exact preferences, an additional 14 % of applicants invert

the order of Boston Latin and Latin Academy, and only 8% of applicants rank O’Bryant first.
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or Latin Academy offer have a certain probability of receiving an offer from one of the three

exam schools, thus they do not identify the effect of attending an exam school rather than a

traditional public school. This also implies that the decomposition of exam school effect by

outside option provide estimates of the effect for the different groups of schools with respect

to O’Bryant.

4.2 Decomposition of exam school effect

While the estimates in Table 4 panel A confirm that enrolling at O’Bryant does not increase

academic achievement on average, panel B shows substantial heterogeneity in the O’Bryant

treatment effect by non-exam school alternative. Applicants with non-exam school alterna-

tives in the bottom two quartiles of estimated VA benefit from attending O’Bryant. O’Bryant

enrollment increases the 7th and 8th grade math test scores of these applicants by between

0.05 SD and 0.18 SD, although only the 8th grade coefficient for the first quartile and 7th

grade coefficient for the second quartile are statistically different from zero.17 On the other

hand, applicants whose non-exam school alternatives belong to the top two quartiles of es-

timated VA achieve worse English and math test outcomes when they enroll at O’Bryant.

For instance, a top quartile school increases 8th grade English MCAS scores by 0.13 SD and

8th grade math MCAS scores by 0.21 SD with respect to O’Bryant.

Overall, these estimates correspond to lower O’Bryant achievement effects than those

implied by the estimated math and English VA presented in Figure 1. Likewise, schools in

the bottom two quartiles of estimated VA perform similarly according to the 2SLS estimates

even though their estimated average math and English VA are different. This suggests either

the existence of some bias in the value-added estimation or heterogeneity in VA for marginal

exam school applicants.

The over-identification test provides reassuring evidence that the assumption of a con-

stant treatment along relative distances is likely to be satisfied. The p-values for the test
17The estimates in this panel correspond to the effect of enrolling in a school from each group instead of an

exam school. Hence, a negative coefficient indicates that applicants would benefit from attending O’Bryant
instead of a school of the corresponding group.
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reported in the bottom of panel B do not reject the null of a homogeneous effect, except

marginally for 7th grade math MCAS. Moreover, the implied LATE, computed by weighting

each coefficient in panel B by the estimated share of compliers for the corresponding group

of non-exam school alternatives, is similar to the actual LATE reported in panel A.18 A stark

difference between the two figures would have suggested that the decomposition was picking

up some variation not linked to the heterogeneity in non-exam school alternative.

As a further step to the decomposition, I try to assess the heterogeneity in average

effect across compliers with different pre-treatment characteristics. In particular, I explore

potential match effects for applicants with a high baseline score, and for Black and Hispanic

applicants. Interacting the distance and offer instruments with dummies for each group

recovers match effects within each group of non-exam school alternatives. Nonetheless, the

increase in the number of endogenous variables comes at the cost of decreased precision,

making the results hard to interpret.

Appendix tables A5 and A6 report the results for the decomposition by baseline math

score and minority status. Although the estimates are noisy, match effects appear to be

smaller than substitution effects. Moreover, match effects are not consistent across non-

exam school alternative groups and test scores. Only minority applicants with a group 1

non-exam school alternative appear not to gain from enrolling in an exam school while their

non-minority peers do benefit. This suggests that, once accounting for differences in outside

options, there is no systematic heterogeneity in treatment effect across students.

4.3 Difference in treatment effect of each exam school

Applicants whose non-exam school alternative is of below-median quality gain from attending

O’Bryant, but would they be better off getting admitted to Latin Academy or Boston Latin

instead? As underlined in Section 4.1, my estimation strategy can only pin down the effect of

each exam school with respect to the outside option of applicants with non-degenerate offer
18The share of compliers with a non-exam school alternative in each group is estimated by regressing a

dummy for enrollment in a given group on a dummy for not enrolling at an exam school instrumented by
not receiving an exam offer. The second bar of Figure 2 summarizes these results.
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risk. Given the enrollment destinies presented in Figure 2, it follows that students marginally

offered Boston Latin may be used to estimate the effect of attending Boston Latin rather

than Latin Academy; while students marginally seated at Latin Academy identify the effect

of attending Latin Academy rather than Boston Latin or O’Bryant.

Table 5 presents the results of these comparisons by adding to the model enrollment

dummies for each individual exam school.19 These dummies are instrumented by exam

school-specific offers, which are interacted with distances to groups of traditional public

schools in order to account for potential differences in substitution patterns.20 The dummy

for enrolling at O’Bryant is excluded from the specification, so that each coefficient cor-

responds to the effect of attending that school rather than O’Bryant. As expected, the

inclusion of individual exam school enrollment dummies does not substantially affect the

coefficients on the non-exam school alternatives, since these were already implicitly with

respect to O’Bryant in the any exam school specification.

Contrary to what applicants seem to believe, estimates reported in Table 5 suggest that

it is more beneficial to enroll at O’Bryant than at Latin Academy, and that gaining access to

Boston Latin from Latin Academy does not make a substantial difference. Attending Latin

Academy as opposed to O’Bryant reduces MCAS math test scores by 0.12 SD in 7th grade

and by 0.36 SD in 8th grade. The difference in 8th grade MCAS English test score is not

statistically different from zero, while Latin Academy appears to increase 7th grade MCAS

English test score by 0.15 SD. Moreover, the table shows no statistically significant gains of

enrolling at Boston Latin instead of Latin Academy.21

19For all exam school specific specification, the sample includes all applicants with a non-degenerate risk of
admission for at least one of the three schools, even those who receive an offer from one of the three schools
with probability one.

20These differences are unlikely to be critical as only a small share of non-offered Boston Latin compliers
enroll at a traditional public school, and they tend to enroll equally in schools of the four VA groups.

21Appendix table A7 explores potential heterogeneity in gains for minority students and applicants with
baseline math test scores above the median. Overall, there appears to be no substantial additional gains
from getting into a more selective exam school for students in these two groups.
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5 Counterfactual admission criteria

The previous analysis uncovered the effects of Boston’s three exam schools on educational

attainment for applicants close to each school’s admission cutoff. In this section, I use

these estimates to evaluate which change in exam school admission criteria would lead to

the highest increase in overall achievement. Estimates for marginally seated applicants are

particularly relevant for this analysis, as alternative admission criteria primarily change

which applicants get admitted at the margin.

The optimal admission rule would give priority to applicants whose non-exam school

alternative is of low quality. Indeed, the decomposition by non-exam school alternative

uncovered significant heterogeneity in achievement gains from enrolling at an exam school

depending on the quality of an applicant’s outside option, While it found little scope for

match effects. Changing exam school admission criteria to leverage this heterogeneity in

treatment effect by non-exam school alternative could thus increase overall achievement.

Since non-exam school alternatives are not observable, this policy is not implementable in

practice. Nonetheless, I can estimate the optimal assignment and use it to benchmark the

effects of feasible changes in admission criteria.

As for feasible policies, I simulate three alternative admission schemes: granting admis-

sion to top-ranked middle school applicants, replacing ISEE scores with MCAS scoresand

a place-based priority system. First, I consider the effect of implementing a “Texas top10”

style rule. Specifically, I simulate the exam school selection process when granting admission

to applicants whose 6th grade GPA places them in the top 5 or 10% of their middle school.22

Second, I explore the impact of replacing ISEE scores with MCAS scores in the composite

score used to rank applicants. This policy was suggested by Rucinski and Goodman (2022)

as a feasible alternative to race-based priorities. Finally, I implement a place-based prior-

ity system in which applicants, whose closest school belongs to the two lowest quartiles of
22To simulate this change in admission criteria, I assume top middle school students’ application behavior

is unaffected. That is, all the top students that currently apply would also apply under the new policy, and
top students that currently do not apply would still not apply under the new policy.
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estimated VA, have priority for 25%, 50% or 75% of reserved seats.23

As the non-exam school alternative for each applicant is not directly observable, I use a

linear model with distances to each group of schools as regressors to predict applicants’ non-

exam school alternative.24 Panel A of Table 6 explores the accuracy of the prediction model

by comparing the actual distribution of non-exam school alternatives to the distribution

predicted by the model, for applicants that do not receive an exam school offer. All predicted

shares are less than one percentage point apart from the actual shares.

I use this model to predict the distribution of non-exam school alternatives for admitted

applicants under the different admission schemes, and to estimate the assignment under an

optimal admission regime. The optimal assignment is obtained by maximizing the total gain

in MCAS math 8th grade test scores. This policy corresponds to maximizing the shares

of admitted applicants whose non-exam alternatives belong to the bottom two quartiles of

estimated VA.25

The comparison of the three different admission schemes to the optimal assignment and

the actual assignment in Panel B of Table 6 suggests that only the place-based priority system

is likely to improve applicants’ overall academic performance. Indeed, while the place-based

priority system increases the share of offered applicants whose non-exam school alternative

belongs to the first two quartiles of VA, granting seats to top middle school applicants or

replacing ISEE scores with MCAS scores have almost no effect on the distribution of non-

exam school alternatives among admitted applicants. As a result, the place-based scheme

comes the closest to the optimal assignment. Reserving 75% seats to students with a low

VA closest alternative increases 8th grade math test score by 0.12 SD for 15% of applicants.
23The address of the school of enrollment at the time of application is used as a proxy for student’s address.

Reserved seats are filled after open seats, which favors applicants that qualify for the reserve (Dur et al.,
2020).

24Any negative predicted probability of enrolling in a group is set to zero. Predicted probabilities are then
normalized by setting their sum to one for each applicant.

25The performance of the different groups of non-exam school alternatives was gauged with respect to
O’Bryant. Nonetheless, as different demographic groups do not seem to benefit more or less from gaining
access to Boston Latin or Latin Academy, estimates by non-exam school alternative specify the relative
gain or loss from diverting a student from a given school, even when the student enrolls at Boston Latin or
Latin Academy. Hence, these estimates may be used to compute the gain from changing the distribution of
non-exam school alternatives for applicants admitted at any of the three exam schools.
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For comparison, the optimal assignment results in a similar increase of 0.13 SD for 20% of

applicants. On the other hand, granting admission to the top students from each middle

school or replacing the ISEE with MCAS affects the test scores of at most 1% of applicants,

and the average gain varies between −0.04 SD and 0.02 SD.

The relative performance of each admission criteria can be explained by the correlation

between the criteria used and the quality of applicants’ non-exam school alternatives. Con-

sidering Table 1, the average baseline MCAS score for students does not vary systematically

with the estimated quality of schools. Thus, students with MCAS scores that are higher

than their ISEE scores are not more likely to have a low VA non-exam school alternative.

Similarly, each VA group contains the same number of schools and is not concentrated ge-

ographically. Selecting applicants from each school of origin is thus not likely to affect the

distribution of non-exam school alternatives. On the other hand, an applicant’s middle

school is expected to be her outside option, so giving priority to applicants with low VA

middle schools is quite effective.

One of the main arguments for reforming exam school admission is that Black and His-

panic students tend to be underrepresented at these elite institutions. Interestingly, all of the

alternative admission criteria increase minority students’ representation at exam schools, al-

though none targets these students directly. For instance, the 75% reserve for students with

a low-quality outside option increases the share of Blacks and Hispanics among admitted

applicants to 48%, that is, by 6 percentage points compared to the actual assignment.

However, the magnitude of the increase is not correlated with the effectiveness of the

admission scheme. Indeed, the admission scheme resulting in the largest minority share

(48%) is the priority for the top 10% of students from each middle school, which has no

effect on academic achievement. This discrepancy can be explained by the fact that Black

and Hispanic students do not appear to have systematically worse outside options (as shown

in Table 1). Thus, only some minority applicants would actually benefit from attending

an exam school instead of their non-exam school alternative. In general, Table 1 suggests

that no observable characteristic is strongly correlated with the quality of a student’s non-
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exam school alternative. Hence, targeting based on observable characteristics is unlikely to

improve academic achievement.

To sum up, granting admission to top-ranked middle school applicants or replacing ISEE

scores with MCAS scores does not leverage the heterogeneity in the exam school treatment

effect. Thus, implementing these changes would probably not result in substantial changes in

overall achievement. On the other hand, directly targeting applicants based on their middle

school leverages most of the relevant heterogeneity and results in significant improvements.

6 Conclusion

Existing regression discontinuity estimates of exam school effects find zero gain from attend-

ing these schools. Nonetheless, I show that these estimates aggregate important heterogene-

ity in treatment effects and are thus not suitable for performing counterfactual analyses. In

particular, applicants whose non-exam school alternative has an estimated math VA in the

bottom two quartiles of Boston public schools benefit from attending an exam school.

It follows that changing the admission scheme for Boston exam schools could increase

overall achievement. This improvement comes from identifying and targeting applicants who

benefit from attending exam schools. These students are not characterized by specific demo-

graphics but rather by low-quality non-exam school alternatives. This distinction highlights

the necessity of separately identifying heterogeneity in substitution effects from match effects

when attempting to compare different allocation of students to schools.

More generally, in any setting with multiple treatments, an accurate counterfactual anal-

ysis should always involve a full decomposition of the treatment effect. Although identifying

these different sources of heterogeneity is challenging, my analysis shows how to leverage

applicants’ locations. This strategy is particularly relevant since it allows for a compelling

test of the identifying assumptions, and my approach may be applicable in other settings

where treatment is related to spatial position.
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Figure 1: English and Math Value-Added of Boston Public Middle Schools

Note: This figure shows the distribution of Boston public middle schools’ English and Math value-added for
years 2004-2016. The plots display the mean value-added of each school over the period.
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Figure 2: Enrollment Destinies by Exam School
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Note: This figure shows the enrollment destinies of exam school compliers when offered and not offered an
exam school seat. Enrollment compliers are applicants who attend an exam school when offered a seat but
not otherwise. The 1st bar plots exam destinies for applicants when accepted in any of the three exam
schools. The 2nd bar plots non-exam destinies for applicants rejected from all exam schools. The 3rd bar
plots destinies for rejected Boston Latin applicants, the 4th bar for rejected Latin Academy applicants and
the 5th bar for rejected O’Bryant applicants. Destinies are estimated as in Abdulkadiroglu et al. (2014).
Enrollment rates are measured in the fall following exam school application.
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Table 1: Characteristics of Groups of Schools

Exam schools Quartile 1 Quartile 2 Quartile 3 Quartile 4
(1) (2) (3) (4) (5)

Mean math VA 0.05 -0.22 -0.07 0.00 0.19
Mean English VA 0.09 -0.23 -0.10 -0.10 0.08

N schools 3 7 7 7 7
N students at risk 4920 861 762 867 734

% Female 0.55 0.46 0.46 0.47 0.47
% Hispanic 0.18 0.32 0.36 0.41 0.39
% Black 0.24 0.34 0.40 0.40 0.32
% White 0.31 0.08 0.06 0.08 0.10
% Asian 0.23 0.22 0.14 0.08 0.13
% Other ethnicity 0.04 0.05 0.03 0.04 0.06
% FRPL eligible 0.47 0.81 0.82 0.82 0.80
% Native speaker 0.66 0.50 0.54 0.56 0.57
% SPED 0.01 0.19 0.20 0.24 0.22
% English learners 0.03 0.22 0.23 0.20 0.20

MCAS English 4th 1.18 -0.16 -0.27 -0.24 -0.17
MCAS English 6th 1.18 -0.20 -0.30 -0.26 -0.08
MCAS Math 4th 1.23 -0.12 -0.26 -0.23 -0.18
MCAS Math 6th 1.39 -0.18 -0.34 -0.20 -0.12

Note: This table reports descriptive statistics for exam schools and the different group of schools. Statistics
are computed for students enrolled in these schools between 2004-05 and 2016-17. Schools in each group
are weighted by the number of students with any-exam offer risk and 8th grade Math MCAS enrolling in
the school. FRPL eligible students are students eligible for free or reduced-price lunch, SPED students are
special education students.
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Table 2: First Stage Estimates for School of Enrollment

Quartile 1 Quartile 2 Quartile 3 Quartile 4
(1) (2) (3) (4)

Exam offer -0.137 -0.256 -0.235 -0.159
(0.039) (0.043) (0.046) (0.043)

Exam offer X distance to quartile 1 0.111 -0.036 -0.043 -0.035
(0.008) (0.006) (0.006) (0.007)

Exam offer X distance to quartile 2 -0.045 0.110 -0.024 -0.037
(0.006) (0.007) (0.006) (0.006)

Exam offer X distance to quartile 3 -0.046 -0.039 0.110 -0.023
(0.006) (0.007) (0.008) (0.007)

Exam offer X distance to quartile 4 -0.035 -0.027 -0.028 0.089
(0.005) (0.006) (0.006) (0.007)

Distance to quartile 1 -0.125 0.039 0.046 0.039
(0.008) (0.007) (0.007) (0.007)

Distance to quartile 2 0.051 -0.119 0.025 0.042
(0.006) (0.007) (0.006) (0.006)

Distance to quartile 3 0.053 0.044 -0.121 0.025
(0.006) (0.007) (0.009) (0.008)

Distance to quartile 4 0.039 0.032 0.030 -0.100
(0.006) (0.006) (0.006) (0.008)

F-statistic 63.2 74.7 78.0 69.7
N 5,978 5,978 5,978 5,978

Notes: This table reports first stage estimates for enrollment in different types of schools for 2004-2016 exam
applicants with non-degenerate any-exam offer risk. The instrumental variables are receiving an exam school
offer and its interactions with distances (in kms) to each group’s closest school, controlling for each group’s
distance (in kms). The sample is limited to applicants with MCAS 8th grade math score. All models control
for any-exam offer risk, school-by-year linear running variables and the set of variables listed in Table 1,
except MCAS 6th grade scores. Standard errors clustered at the school of origin and application year are
reported in parentheses.
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Table 3: Covariate Balance

Any Exam Offer Distance to Quartiles School Specific Offers
Offer gap p-value Joint F test p-value N Joint F test p-value N

(1) (2) (3) (4) (5) (6) (7) (8)

Female -0.031 0.376 1.565 0.197 5,978 1.242 0.294 8,144
Hispanic 0.028 0.333 1.543 0.203 5,978 0.554 0.646 8,144
Black 0.014 0.683 10.83 0.000 5,978 0.669 0.571 8,144
White 0.005 0.828 0.966 0.409 5,978 0.681 0.564 8,144
Asian -0.038 0.172 1.958 0.413 5,978 0.665 0.574 8,144
FRPL eligible -0.003 0.913 0.528 0.664 5,978 1.242 0.294 8,144
Native Speaker 0.056 0.125 2.649 0.048 5,978 2.238 0.083 8,144

MCAS English 4th 0.059 0.321 1.985 0.116 5,978 0.984 0.400 8,144
MCAS English 6th 0.028 0.547 0.294 0.830 4,897 0.501 0.682 6,772
MCAS Math 4th 0.020 0.738 2.201 0.087 5,978 0.358 0.784 8,144
MCAS Math 6th -0.045 0.389 0.132 0.941 5,941 0.335 0.800 8,095

Notes: This table reports estimates of offer effect and distance to groups effects on covariates for 2004-2016 applicants. Columns 1 and 2 report
any-exam offer effects; columns 3-4 show the joint F-statistics of distances to the four groups of schools, columns 5-6 show the joint F-statistics
of school-specific offers. Sample sizes in column 5 count the number of observations with non degenerate risk of any-exam offer, sample sizes
in column 9 count the number of observations in the bandwidth of at least one of the schools. Sample sizes are smaller for 6th grade MCAS
tests since they were first introduced in 2004 and 2006. Models include school-by-year linear running variable controls and either any-exam
offer risk or school-specific offer risk controls, as specified in the text. Standard errors clustered at the school of origin and application year are
reported in parentheses.
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Table 4: 2SLS Estimates of Exam School Effects

MCAS English MCAS Math
7th grade 8th grade 7th grade 8th grade

(1) (2) (3) (4)

Panel A: Overall exam school effect
Enrollment in exam school -0.103 -0.058 -0.058 0.026

(0.049) (0.051) (0.066) (0.070)

First stage coefficient 0.79 0.79 0.78 0.79

Panel B: Exam school effect by non-exam school alternative
Enrollment in quartile 1 school -0.026 -0.026 -0.046 -0.175

(0.063) (0.065) (0.085) (0.091)
Enrollment in quartile 2 school -0.019 0.031 -0.140 -0.131

(0.069) (0.066) (0.081) (0.087)
Enrollment in quartile 3 school 0.196 0.096 0.126 0.038

(0.063) (0.068) (0.090) (0.086)
Enrollment in quartile 4 school 0.276 0.132 0.322 0.205

(0.063) (0.068) (0.090) (0.089)

Over-id p-value 0.575 0.840 0.062 0.309
Implied LATE -0.106 -0.057 -0.061 0.019

N 5,953 5,978 5,429 5,978

Notes: This table reports 2SLS estimates of school enrollment effects for 2004-2016 exam applicants with
non-degenerate any-exam offer risk. The endogenous variable is enrollment either enrollment in 7th grade
at any exam school in panel A or at one of the group of schools in Panel B. Panel B coefficients correspond
to the effect of enrollment at one of the groups of non-exam school alternatives with respect to enrollment
at any exam school. All models control for any-exam offer risk, school-by-year linear running variables and
the set of variables listed in Table 1, except MCAS 6th grade scores. The implied LATE is computed by
taking the negative of the sum of panel B coefficients weighted by the share of compliers going to each group
of non-exam school alternatives. Standard errors clustered at the school of origin and application year are
reported in parentheses.
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Table 5: 2SLS Estimates of Each Exam School Effects

MCAS English MCAS Math
7th grade 8th grade 7th grade 8th grade

(1) (2) (3) (4)

Enrollment in BLS -0.066 -0.009 -0.127 -0.343
(0.062) (0.063) (0.073) (0.072)

Enrollment in BLA 0.145 -0.041 -0.120 -0.359
(0.049) (0.049) (0.058) (0.059)

Enrollment in quartile 1 school -0.039 -0.019 -0.069 -0.155
(0.062) (0.064) (0.084) (0.089)

Enrollment in quartile 2 school -0.013 0.066 -0.109 -0.058
(0.065) (0.064) (0.076) (0.084)

Enrollment in quartile 3 school 0.130 0.065 0.099 0.024
(0.059) (0.054) (0.073) (0.080)

Enrollment in quartile 4 school 0.236 0.155 0.295 0.183
(0.062) (0.067) (0.087) (0.085)

Over-id p-value 0.353 0.121 0.198 0.003
N 8,129 8,144 7,493 8,144

Notes: This table reports 2SLS estimates of school enrollment effects for 2004-2016 exam applicants with
non-degenerate offer risk at one of the exam schools. The endogenous variable is enrollment in 7th grade
at each specific exam school or at one of the group of schools. Enrollment at O’Bryant is omitted from the
model so each coefficient corresponds to the treatment effect with respect to O’Bryant. All models control
for school-specific offer risk, school-by-year linear running variables and the set of variables listed in Table
1, except MCAS 6th grade scores. Standard errors clustered at the school of origin and application year are
reported in parentheses.
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Table 6: Consequences of Alternative Admission Schemes

Panel A: Accuracy of model predicting applicant non-exam school alternative

Non-exam alternative for non-offered applicants
Quartile 1 Quartile 2 Quartile 3 Quartile 4

Actual distribution 25.7% 26.0% 26.8% 21.5%
Predicted distribution 26.2% 25.6% 26.7% 21.5%

Panel B: Comparison of counterfactual admission schemes to actual admission scheme

Characteristics of offered applicants Gains in MCAS Math
Non-exam alternative for offered applicants Net % of Average

Quartile 1 Quartile 2 Quartile 3 Quartile 4 % minority app. affected gain
Actual admission scheme 26% 26% 27% 21% 42%

Optimal admission scheme: priority 37% 35% 18% 10% 53% 20% 0.13
depending on non-exam alternative

Automatic admission for top 5% 26% 26% 28% 21% 44% 0% -0.01
top middle school students top 10% 26% 26% 28% 21% 48% 0% 0.02

Different composite score MCAS instead 25% 26% 27% 21% 44% 1% -0.04
used to ranked applicants of ISEE

Share of seats reserved to 25% reserve 27% 27% 26% 20% 42% 3% 0.13
students whose closest school 50% reserve 31% 30% 22% 18% 43% 10% 0.12
has less than median VA 75% reserve 33% 33% 18% 16% 48% 15% 0.12

Notes: This table reports the distribution of non-exam school alternatives under different admission schemes for 2004-2016 exam applicants
from a BPS school with baseline test scores. Panel A explores the accuracy of the model predicting applicants’ non-exam school alternative
by comparing the distribution of alternative schools predicted by the model to the actual distribution for non-offered applicants. Panel B
compares the distribution of non-exam school alternatives for applicants offered an exam school under four different admission schemes to the
distribution of alternative schools for applicants offered an exam school under the actual admission scheme. The table also displays the average
gain in MCAS Math 8th grade test scores and the net share of applicants gaining under each counterfactual admission scheme.
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A Data

Boston Public Schools (BPS) is the source of the application files for exam schools. The

State of Massachusetts (DESE) provided the enrollment files and MCAS data. Application,

enrollment and test scores files are merged using the State unique identifier (SAS-ID). In

this appendix section, I describe these data sets, the construction of the distance variable

and the additional sample restrictions.

Application data

The exam school application file contains a record for each exam school applicant consisting

of an application ID number, state ID (SAS-ID) number, name, gender, race, date of birth,

application year, grade of application, preferences over the three exam schools, and the

composite score for admission. Each record also includes the school offered to the applicant

(if any). This dataset covers students who applied to exam schools between 1995 and 2017

for entrance in 7th, 9th and 10th grades. Offered applicants enroll in the fall of the application

year. The analysis sample only includes 7th grade applicants from 2004-2016 for which both

baseline and outcome test scores are available. I also exclude from the analysis duplicate

observations and applicants with missing application ID number.

Admission rank cutoffs for each year and each school correspond to the rank of the last

offered applicant, after excluding admitted applicants with incorrect ranks. Applicants are

deemed incorrectly ranked if they are offered an exam school seat although their rank is much

higher than the rank of the last but one admitted applicant at the same school. Based on

these empirical admission rank cutoffs, I construct for each school a simulated offer variable

which is preferred to the actual offer variable throughout the analysis. Despite the identified

irregularities, the match replicates 99% on average.
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Enrollment data

The Massachusetts enrollment file spans school years 2001-2002 through 2017-2018. For each

student enrolled in Boston Public Schools, each file contains snapshots at the start of the

school-year (October) and at the end of the school-year (June) of the student’s grade, school

and demographic information. These records are identified by a unique student identifier

(the SAS-ID). The variables of interest in the enrollment files are grade, year, sex, race,

low-income status, special education status (SPED), and native speaker status. The school

each student was enrolled prior to application is obtained from the end of the school-year

enrollment files while the October enrollment files are used to determine the school each

student enrolls after application. Enrollment data is only available for students enrolled in

Boston Public Schools, which excludes students who enrolled in private schools before or

after applying to an exam school.

Test score data

The MCAS test score file spans school years from 2002 to 2018. Each record includes scores

for two subjects (English and Math), as well as the grade (4th, 6th, 7th and 8th grade) and

the year in which the test was taken. I standardize scores among Boston test-takers by year

and grade. For multiple time test takers, the last test score for each grade is considered. 4th

grade Math and English MCAS test scores constitute the baseline scores. 7th and 8th grade

English and 7th and 8th grade Math MCAS test scores are the main outcomes of interest.

6th grade Math and English scores are only available after 2004 and 2006 respectively, while

the 7th grade Math MCAS test was only introduced in 2006.

Distance to schools

Only non-exam schools where at least one student enrolled after submitting an exam school

application during the 2004-2016 period are included in the set of potential schools of enroll-

ment. The distance between each sending middle school of the dataset and each potential
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school of enrollment is computed using the shortest road distance between the two points.

It does not take into account differences in traffic or in speed limit across roads.

Sample restrictions

The analysis sample is restricted to students enrolled in a non-charter BPS school prior to

application. This excludes the possibility for students to enroll in charter after application

since admissions to Massachusetts charter schools occur either in 5th or 6th grade through

lotteries. Hence, the analysis only considers students that may either enroll in an exam

school or in a non-charter BPS school. Students with no baseline test scores, i.e. who were

not enrolled in BPS during 4th grade, are also excluded from the analysis.

Description of value-added sample and model

The value-added models for math and English are estimated on the sample of all non-charter

BPS schools. Schools with fewer than 25 students enrolled in 7th grade are excluded from

the sample. The math value-added model uses Math MCAS test scores from 8th grade but

considers the school where students were enrolled in 7th grade. The English value-added

model uses 7th grade MCAS English test scores. Both models include indicators for sex,

race, subsidized lunch eligibility, special education status, English-language learner status,

school year, along with cubic functions of all the baseline Math and ELA test scores available

(3rd, 4th, 5th and 6th grades). For each year, the value-added of each school is computed using

the data from two years prior.

B Computation of the propensity scores

Following the methodology in Abdulkadiroglu et al. (2022), I exploit the rank order list of

applicants to compute admission propensity scores at each exam school. Specifically, an

applicant whose score is close to a school’s admission cutoff has a local risk of admission at

this school of one half. Based on the applicant’s rank order list, the overall probability of
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admission at each school can be computed by considering the admission probability at more

preferred schools.

Formally, let s = 1, 2, 3 index exam schools in set S. θi = (≻i) denotes applicant i’s type,

where ≻i is applicant i’s ranking of schools. The school specific ranking of applicant i used

for admission is denoted by Ris; this is the school specific RD running variable. Ri is the

vector of rankings at each school for applicant i. Each applicant gets an offer at school s if

and only if her ranking is below the school specific cutoff τs, i.e. iff Ris ≤ τs.

Considering applicant rank order lists, let Bθs be the set of schools type θ prefers to s

Bθs = {s′ ∈ S|s′ ≻θ s}

Given a bandwidth δ, an applicant type θ and rankings vector Ri, define the risk of being

seated at school s as

Ψs(θ, R, δ) =


0 if Rs < τs − δ or Rb > τb + δ for some b ∈ Bθs

0.5ms(θ,R) if Rs > τs + δ and Rb ≤ τb + δ for all b ∈ Bθs

0.51+ms(θ,R) if τs − δ ≤ Rs ≤ τs + δ and Rb ≤ τb + δ for all b ∈ Bθs

where ms(θ, R) = |{b : b ∈ Bθs and τb − δ ≤ Rb ≤ τb + δ}|

Under the Assumption that the distribution of each running variable is continuous at the

admission cutoff for each applicant type, Theorem 1 of Abdulkadiroglu et al. (2022) shows

that

lim
δ→0

E[Di(s)|θi = θ, Ri = R, Wi = W ] = Ψs(θ, R, δ)

Where Di(s) is an indicator for receiving an offer from school s and Wi is a vector of

observed and unobserved characteristics of student i. Controlling for the propensity score,

offers from school s are locally as good as randomly assigned and can thus be used as

instruments for enrollment.
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Empirically, the propensity score can be computed as the sample equivalent of the theoret-

ical local propensity score described above using the information contained in the applicant

rank order lists and the observed admission cutoffs. Theorem 2 of Abdulkadiroglu et al.

(2022) establishes uniform convergence of the empirical propensity score in an asymptotic

sequence that increases market size with a shrinking bandwidth. This justifies conditioning

on the empirical propensity score to eliminate OVB in school effect estimates.

When computing the scores, I separately estimate bandwidths for each school and cohort

according to Imbens and Kalyanaraman (2012). As an intermediate step, I also estimate

bandwidths for each outcome variable; I keep the smallest bandwidth for each school and

cohort.

C What does 2SLS identify?

As shown in Section 2.1, questions regarding counterfactual assignments cannot be answered

without knowledge of both substitution and match effects. In this section, I show that these

effects are hard to identify separately, and that 2SLS identifies a weighted average of both

effects, even when estimated on a specific subgroup.

I am interested in the treatment effect of enrolling in exam schools, which can indexed

as school 0. Let Di be a dummy equal to 1 when student i enrolls in school 0. School 0

treatment effect is given by β in the regression of Yi on Di,

Yi = α + βDi + ui. (4)

The decision to enroll in a specific school is typically endogenous and correlated with

student characteristics. Hence, the large literature interested in school treatment effects has

leveraged instrumental variables based on specific admission rules (lotteries, admission tests,

etc.) and student characteristics (distance). Suppose there exists a valid binary instrument

Z for enrollment in school 0, and let Di1 and Di0 denote the potential values of Di when

Zi = 1 and Zi = 0 respectively. Since Z is a valid instrument, it satisfies the following
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assumptions.

Assumption 2

1. Instrument relevance: E[Di0] ̸= E[Di1]

2. Random assignment and exclusion: Zi is independent of (Di1, Di0, Yi(Di, Zi))

and Yi(Di, 0) = Yi(Di, 1) = Yi(Di)

3. Monotonicity: Di1 ≥ Di0 ∀i and Di1 > Di0 for some i

Proposition 2 establishes that the LATE obtained from the 2SLS regression which instru-

ments D with Z is a weighted average of pairwise comparisons between exam schools and

non-exam school alternatives indexed by j = 1, ..., J , with weights given by the distribution

of outside options for compliers. The ωj weight captures the share of compliers that have

outside option j, and the ωx|j weight captures the share of compliers with outside option j

that have characteristics x.

Proposition 2 (2SLS identification)

Suppose there exists an instrument Zi for Di that satisfies Assumption 2. The 2SLS regres-

sion using Zi as an instrument identifies

βLAT E = E[Yi0 −
∑

j

ωjYij | Di1 > Di0]︸ ︷︷ ︸
substitution effects

+
∑

x

E[ωx|0εi0 −
∑

j

ωjωx|jεij | Xi = x, Di1 > Di0]︸ ︷︷ ︸
match effects

.

(5)

with weights defined as

ωj = Pr[Si = j | Di1 > Di0], and

ωx|j = Pr[Xi = x | Di1 > Di0, Si = j].

Proof. Z satisfies Assumption 2 thus βLAT E identifies the average treatment effect for com-
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pliers:

βLAT E = E[Yi(Di = 1)− Yi(Di = 0)|Di1 > Di0]

= E[Yi(Di = 1)|Di1 > Di0]− E[Yi(Di = 0)|Di1 > Di0]

Denoting by Ȳi student 4i’s average achievement across schools and using the framework

notation:

E[Yi(Di = 1)|Di1 > Di0] = E[Yi0 + Ȳi + E[εi0|Xi = x] | Di1 > Di0, Di = 1]

= E[Yi0|Di1 > Di0] + E[Ȳi|Di1 > Di0] +
∑

x

ωx|0E[εi0|Xi = x, Di1 > Di0]

E[Yi(Di = 0)|Di1 > Di0] =
J∑

j=1
ωjE[Yij + Ȳi + E[εij|Xi = x]|Di1 > Di0, Di = 0]

=
J∑

j=1
ωj{E[Yij|Di1 > Di0] + E[Ȳi|Di1 > Di0]

+
∑

x

ωx|jE[εij|Xi = x, Di1 > Di0]}

=
J∑

j=1
ωjE[Yij|Di1 > Di0] + E[Ȳi|Di1 > Di0]

+
∑

x

J∑
j=1

ωjωx|jE[εij|Xi = x, Di1 > Di0]}

Replacing and rearranging these expressions in the formula for βLAT E, one obtains the

desired decomposition:

βLAT E = E[Yi0 −
∑

j

ωjYij | Di1 > Di0]︸ ︷︷ ︸
substitution effects

+
∑

x

E[ωx|0εi0 −
∑

j

ωjωx|jεij | Xi = x, Di1 > Di0]︸ ︷︷ ︸
match effects

.

43



Corollary 1 points out that 2SLS estimators for different subgroups do not capture pure

match effects if compliers with different covariate values substitute differently from non-exam

school alternatives. It is thus necessary to compute match effects controlling for non-exam

school alternatives. In other words, one need fist to decompose treatment effect by non-exam

school alternatives before attempting to capture match effects.

Corollary 1 (Subgroup 2SLS identification)

Suppose there exists an instrument Zi for Di that satisfies Assumption 2. Using Zi as an

instrument on the subgroup of observations with Xi = x identifies

βLAT E|Xi=x = E[Yi0 −
∑

j

ωj|xYij | Di1 > Di0]︸ ︷︷ ︸
substitution effects

+ E[εi0 −
∑

j

ωj|xεij | Xi = x, Di1 > Di0]︸ ︷︷ ︸
match effects

, (6)

where

ωj|x = Pr[Si = j | Di1 > Di0, Xi = x].

Proof. This follows directly from Proposition 1 by replacing ωj by ωj|x and dropping the∑
x since X takes only one value in the subsample.

D Proofs

Proposition 1 (Identification of treatment effect by outside option)

Suppose there exists a valid instrument Zi for enrollment in school 0, and a vector of J − 1

covariates {Wik}J
k=2 that satisfies Assumption 1.

1. Conditioning on {Wik}J
k=2 and Zi, the interaction of Zi and (1, {Wik}J

k=2) identifies

E[Yi0 − Yij | Di1 > Di0], ∀j = 1, ..., J .

2. For any covariate Xi, conditioning on {Wik}J
k=2 and Xi, the interaction of Zi, (1, {Wik}J

k=2)

and Xi identifies E[Yi0 − Yij | Xi, Di1 > Di0],∀j = 1, ..., J .
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Proof. To identify the treatment effect of attending an exam school (indexed by 0) by non-

exam school alternative (indexed by j = 1, ..., J), one would like to estimate

Yi = β0 + βSi1 +
J∑

k=2
βjSij + ϵi

The exam school is excluded from the estimation equation. It thus constitutes the school of

reference to which school 1 and the other schools are compared, i.e. β corresponds to the

treatment gain from attending school 1 instead of the exam school.

For simplicity, let’s first consider a case with only two non-exam school alternatives.

The reasoning is similar with more than two outside options but the number of terms is

multiplied.

Define Zi2 = Wi2 × Zi ∀i and assume w.l.o.g. that W2 is a continuous variable. Denote

by Z̃2, Z2 partialled out from W2. Note that since Z is randomly assigned by Assumption 1

Z̃i = Zi ∀i.

The first stage equations give

E[Si1|Zi, Z̃i2] = α1 + α1
1Zi + α2

1Z̃i2

E[Si2|Zi, Z̃i2] = α2 + α1
2Zi + α2

2Z̃i2

Plugging these into the second stage, we obtain the following reduced form

E[Yi|Zi, Z̃i2] = α + β(α1 + α1
1Zi + α2

1Z̃i2) + β2(α2 + α1
2Zi + α2

2Z̃i2)

= α + βα1 + β2α2 + (βα1
1 + β2α

1
2)︸ ︷︷ ︸

α1
y

Zi + (βα2
1 + β2α

2
2)︸ ︷︷ ︸

α2
y

Z̃i2

with E[ui|ZiZ̃i2] = 0 by Assumption 1.

By definition, the 2sls estimator equals the reduced form estimates times the inverse of
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the first stage estimates:  β

β2

 =

α1
1 α1

2

α2
1 α2

2


−1 α1

y

α2
y


Solving the system for β and β2:

β =
α2

2α1
y − α1

2α2
y

α1
1α2

2 − α1
2α2

1

β2 =
α1

1α2
y − α2

1α1
y

α1
1α2

2 − α1
2α2

1

Consider a local evaluation point w2, using the fact that Di + Si1 + Si2 = 1 and the

monotonicity conditions from Assumptions 1 and 2:

α1
y = E[Yi|Zi = 1, Z̃i2]− E[Yi|Zi = 0, Z̃i2]

= E[Yi0 + (Yi1 − Yi0)Si1 + (Yi2 − Yi0)Si2|Z = 1, Z̃i2]

− E[Yi0 + (Yi1 − Yi0)Si1 + (Yi2 − Yi0)Si2|Z = 0, Z̃i2]

= E[Yi1 − Yi0|0← 1](E[Si1|Zi = 1, Z̃i2]− E[Si1|Zi = 0, Z̃i2])

+ E[Yi2 − Yi0|0← 2](E[Si2|Zi = 1, Z̃i2]− E[Si2|Zi = 0, Z̃i2])

= E[Yi1 − Yi0|0← 1]α1
1 + E[Yi2 − Yi0|0← 2]α1

2

where 0 ← 1 denotes instrument Z compliers moving from treatment 1 to treatment 0

at point (w2), i.e. from school 1 to the exam school at point (w2). Similarly, where 0 ← 2

denotes instrument Z compliers moving from school 2 to the exam school at point (w2).
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One can derive a similar expression for α2
y:

α2
y = ∂E[Yi|Zi, Z̃i2]

∂Z̃i2

= E[Yi1 − Yi0|0← 1(w′
2)]α2

1 + E[Yi2 − Yi0|0← 2(w′
2)]α2

2

where 0 ← 2(w′
2) denotes instrument Z compliers moving from school 2 to the exam

school at point w′
2 ↓ w2 but not at point w2, i.e.

E[Yi2 − Yi0|0← 2(w′
2)] = lim

w′
2↓w2

E[Yi2 − Yi0|S2i(Zi = 1, W2i = w′
2) = 0, S2i(Zi = 1, W2i = w2) = 1]

These expressions indicate that the multi-treatment estimate aggregates treatment ef-

fect from different groups of compliers. Nonetheless, the constant treatment effect within

covariate condition from Assumption 2 implies that for any (w2, w′
2)

E[Yi1 − Yi0|0← 1(w2)] = E[Yi1 − Yi0|0← 1(w′
2)]

E[Yi2 − Yi0|0← 2(w2)] = E[Yi2 − Yi0|0← 2(w′
2)]

Thus, plugging in α0
y and α2

y on the expressions for β :

β = α2
2α1

1E[Yi1 − Yi0|0← 1] + α2
2α1

2E[Yi2 − Yi0|0← 2]
α1

1α2
2 − α1

2α2
1

− α1
2α2

1E[Yi1 − Yi0|0← 1] + α1
2α2

2E[Yi2 − Yi0|0← 2]
α1

1α2
2 − α1

2α2
1

β = (α2
2α1

1 − α1
2α2

1)E[Yi1 − Yi0|0← 1]
α1

1α2
2 − α1

2α2
1

β = E[Yi1 − Yi0|0← 1]

and similarly for β2
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β2 = −α2
1α1
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1α1

2E[Yi2 − Yi0|0← 2]
α1

1α2
2 − α1

2α2
1

+ α1
1α2

1E[Yi1 − Yi0|0← 1] + α1
1α2

2E[Yi2 − Yi0|0← 2]
α1

1α2
2 − α1

2α2
1

β2 = (α1
1α2

2 − α1
2α2

1)E[Yi2 − Yi0|0← 2]
α1

1α2
2 − α2

1α1
2

β2 = E[Yi2 − Yi0|0← 2]
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E Additional Tables
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Table A1: Characteristics of BPS Enrolled Students and Exam School Applicants

Enrolled students Exam school applicants
Exam schools With any- With school-

BPS BLS BLA OBR All exam risk specific risk
(1) (2) (3) (4) (5) (6) (7)

% Female 0.49 0.55 0.55 0.54 0.52 0.54 0.54
% Hispanic 0.32 0.11 0.20 0.28 0.24 0.26 0.23
% Black 0.34 0.14 0.24 0.30 0.28 0.30 0.27
% White 0.10 0.36 0.22 0.13 0.19 0.14 0.18
% Asian 0.16 0.34 0.28 0.24 0.23 0.23 0.25
% FRPL eligible 0.82 0.42 0.66 0.79 0.70 0.76 0.70
% Native speaker 0.59 0.64 0.55 0.52 0.58 0.55 0.56
% SPED 0.24 0.01 0.02 0.02 0.06 0.04 0.03
% English learners 0.14 0.00 0.01 0.03 0.06 0.04 0.03

MCAS English 4th 0.00 1.67 1.05 0.79 0.70 0.63 0.84
MCAS English 6th 0.07 1.57 1.08 0.86 0.72 0.72 0.90
MCAS Math 4th 0.02 1.75 1.09 0.88 0.72 0.66 0.88
MCAS Math 6th 0.08 1.79 1.30 1.06 0.82 0.83 1.03

N students 35,979 2,754 2,259 1,288 13,937 6,907 9,297

Notes: This table reports descriptive statistics for students enrolled in BPS schools and exam school applicants. Statistics are computed on
the sample of students enrolled in a BPS school in 6th grade between 2003-04 and 2015-16. Columns 1-4 report statistics for the sample of
7th grade students with demographic information who enrolled in any BPS school and each of the three exam schools respectively. Columns
5-7 report statistics for the sample of exam school applicants with demographic information. Column 6 restricts the sample to applicants with
non-degenerate risk of being offered a seat at any of the three exam schools. Column 7 restricts the sample to applicants with non-degenerate
assignment risk for at least one of the three exam schools, including applicants who are offered an exam seat with probability one. Column 6
sample is a subsample of Column 7 sample. FRPL eligible students are students eligible for free or reduced-price lunch. SPED students are
special education students.
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Table A2: 2SLS Estimates of Exam School Effects by Non-Exam Alternative for Different Group
Splitting

MCAS 7th grade MCAS 8th grade
3 groups 4 groups 5 groups 3 groups 4 groups 5 groups

(1) (2) (3) (4) (5) (6)

Panel A: Second stage for English MCAS
Enrollment in group 1 school 0.015 -0.026 -0.043 -0.003 -0.026 -0.022

(0.059) (0.065) (0.070) (0.061) (0.065) (0.074)
Enrollment in group 2 school 0.065 0.031 0.046 0.046 0.031 0.038

(0.058) (0.066) (0.074) (0.054) (0.066) (0.069)
Enrollment in group 3 school 0.259 0.196 0.068 0.143 0.096 0.075

(0.059) (0.062) (0.066) (0.061) (0.078) (0.063)
Enrollment in group 4 school 0.276 0.243 0.132 0.093

(0.063) (0.065) (0.090) (0.065)
Enrollment in group 5 school 0.204 0.088

(0.075) (0.074)

over-id p-value 0.335 0.575 0.330 0.987 0.840 0.660
N 5,953 5,953 5,953 5,978 5,978 5,978

Panel B: Second stage for Math MCAS
Enrollment in group 1 school -0.071 -0.046 -0.075 -0.191 -0.175 -0.181

(0.078) (0.085) (0.096) (0.084) (0.091) (0.102)
Enrollment in group 2 school 0.010 -0.140 -0.143 -0.042 -0.131 -0.212

(0.070) (0.081) (0.091) (0.077) (0.087) (0.090)
Enrollment in group 3 school 0.281 0.126 0.055 0.182 0.038 0.042

(0.082) (0.086) (0.080) (0.084) (0.082) (0.090)
Enrollment in group 4 school 0.326 0.181 0.205 0.106

(0.090) (0.088) (0.097) (0.097)
Enrollment in group 5 school 0.313 0.139

(0.107) (0.101)

over-id p-value 0.067 0.062 0.132 0.742 0.309 0.605
N 5,429 5,429 5,429 5,978 5,978 5,978

Notes: This table reports 2SLS estimates by non-exam school alternative for different group splitting of
schools. The 2SLS estimates for MCAS English are reported in Panel A; the 2SLS estimates for MCAS
math are displayed in Panel B. All models control for any-exam offer risk, school-by-year linear running
variables and the set of variables listed in Table 1, except MCAS 6th grade scores. Standard errors clustered
at the school of origin and application year are reported in parentheses.
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Table A3: Differential Attrition by Distance to Non-Exam Alternatives

MCAS English MCAS Math
7th grade 8th grade 7th grade 8th grade

(1) (2) (3) (4)

Exam offer 0.023 0.038 0.010 0.038
(0.033) (0.035) (0.032) (0.035)

Exam offer X distance to quartile 1 0.005 0.004 0.005 0.004
(0.005) (0.005) (0.005) (0.005)

Exam offer X distance to quartile 2 0.005 0.004 0.005 0.004
(0.004) (0.004) (0.004) (0.004)

Exam offer X distance to quartile 3 0.006 0.006 0.006 0.006
(0.005) (0.005) (0.004) (0.005)

Exam offer X distance to quartile 4 0.016 0.012 0.015 0.012
(0.004) (0.004) (0.004) (0.004)

N 6,907 6,907 6,907 6,907

Notes: This table reports the effects of receiving an offer by distance to each group’s closest school on follow-
up data availability for 2004-16 applicants. The model controls for any-exam offer risk, school-by-year linear
running variables and the set of variables listed in Table 1, except MCAS 6th grade scores. Standard errors
clustered at the school of origin and application year are reported in parentheses.

52



Table A4: OLS Estimates of Exam School Effects by Non-Exam Alternative

MCAS English MCAS Math
7th grade 8th grade 7th grade 8th grade

(1) (2) (3) (4)

Panel A: OLS for any exam school enrollment
Enrollment in quartile 1 school -0.270 -0.198 -0.406 -0.363

(0.036) (0.032) (0.037) (0.047)
Enrollment in quartile 2 school -0.218 -0.137 -0.369 -0.162

(0.032) (0.035) (0.041) (0.048)
Enrollment in quartile 3 school -0.196 -0.097 -0.227 -0.136

(0.029) (0.030) (0.038) (0.039)
Enrollment in quartile 4 school 0.004 -0.022 -0.101 0.039

(0.029) (0.032) (0.058) (0.052)

N 5,953 5,978 5,429 5,978

Panel B: OLS for school specific enrollment
Enrollment at BLS 0.203 0.160 0.290 0.085

(0.023) (0.023) (0.031) (0.027)
Enrollment at BLA 0.229 0.063 0.040 -0.210

(0.023) (0.024) (0.027) (0.026)
Enrollment in quartile 1 school -0.164 -0.173 -0.407 -0.493

(0.037) (0.035) (0.039) (0.047)
Enrollment in quartile 2 school -0.114 -0.103 -0.361 -0.296

(0.032) (0.036) (0.043) (0.047)
Enrollment in quartile 3 school -0.102 -0.087 -0.244 -0.291

(0.031) (0.031) (0.040) (0.040)
Enrollment in quartile 4 school 0.110 0.009 -0.101 -0.107

(0.032) (0.033) (0.058) (0.051)

N 8,130 8,146 7,495 8,146

This table reports OLS estimates of the effect of enrollment at different schools for 2004-16 exam school
applicants. The OLS estimates for enrollment in any of the exam school are reported in Panel A; the school-
specific OLS estimates are displayed in Panel B. All models control for the set of variables listed in Table
1, except MCAS 6th grade scores. Standard errors clustered at the school of origin and application year are
reported in parentheses.
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Table A5: Exam School Effects for Applicants Below and Above the Median Baseline Math Score

MCAS English MCAS Math
7th grade 8th grade 7th grade 8th grade

(1) (2) (3) (4)

Panel A: Second stage for any exam school enrollment
Enrollment exam school -0.086 -0.027 -0.018 0.056

(0.052) (0.051) (0.068) (0.072)
Enrollment exam school X above median -0.045 -0.082 -0.107 -0.077

(0.035) (0.035) (0.047) (0.046)

First Stage F-statistic 1,402.9 1,411.9 1,300.3 1,411.9

Panel B: Second stage for exam school enrollment by non-exam school alternative
Enrollment in quartile 1 -0.057 -0.063 -0.115 -0.187

(0.071) (0.073) (0.091) (0.096)
Enrollment in quartile 1 X above median 0.087 0.091 0.155 -0.018

(0.075) (0.085) (0.105) (0.105)
Enrollment in quartile 2 -0.055 0.009 -0.168 -0.152

(0.079) (0.068) (0.092) (0.093)
Enrollment in quartile 2 X above median 0.139 0.121 0.127 0.043

(0.105) (0.084) (0.097) (0.103)
Enrollment in quartile 3 0.191 0.056 0.096 0.010

(0.070) (0.062) (0.090) (0.101)
Enrollment in quartile 3 X above median 0.009 0.100 0.055 0.062

(0.064) (0.067) (0.085) (0.095)
Enrollment in quartile 4 0.256 0.093 0.288 0.117

(0.074) (0.071) (0.098) (0.094)
Enrollment in quartile 4 X above median -0.012 0.048 0.158 0.342

(0.091) (0.106) (0.145) (0.133)

First Stage F-statistic 167.1 166.6 158.3 166.6
over-id p-value 0.829 0.447 0.098 0.261
N 5,953 5,978 5,429 5,978

This table reports 2SLS estimates of the effect of enrollment at different schools for above and below median
applicants. The sample is restricted to 2004-2016 applicants with non-degenerate any-exam offer risk. Above
median applicants correspond to applicants with 4th grade Math MCAS test score above the median score of
students with non-degenerate any-exam school risk. Instruments and distance controls are interacted with
above the median status. The set of instruments and controls is otherwise as described in Tables 2 and 5.
Standard errors clustered at the school of origin and application year are reported in parentheses.
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Table A6: Exam School Effects for Minority and Non-Minority Applicants

MCAS English MCAS Math
7th grade 8th grade 7th grade 8th grade

(1) (2) (3) (4)

Panel A: Second stage for any exam school enrollment
Enrollment in exam school -0.065 -0.016 -0.022 0.036

(0.055) (0.057) (0.071) (0.080)
Enrollment in exam school X minority -0.070 -0.075 -0.063 -0.018

(0.043) (0.039) (0.050) (0.061)

First Stage F-statistic 1,194.0 1,192.9 1,046.4 1,192.9

Panel B: Second stage for exam school enrollment by non-exam school alternative
Enrollment in quartile 1 -0.181 -0.074 -0.197 -0.241

(0.075) (0.083) (0.084) (0.111)
Enrollment in quartile 1 X minority 0.276 0.067 0.254 0.114

(0.079) (0.080) (0.096) (0.116)
Enrollment in quartile 2 0.013 -0.012 -0.041 -0.077

(0.095) (0.091) (0.110) (0.116)
Enrollment in quartile 2 X minority -0.082 0.058 -0.176 -0.104

(0.087) (0.091) (0.117) (0.121)
Enrollment in quartile 3 0.193 0.035 0.036 -0.029

(0.082) (0.069) (0.094) (0.100)
Enrollment in quartile 3 X minority 0.002 0.118 0.131 0.114

(0.078) (0.065) (0.082) (0.097)
Enrollment in quartile 4 0.277 0.111 0.385 0.270

(0.080) (0.082) (0.107) (0.110)
Enrollment in quartile 4 X minority 0.029 0.038 -0.073 -0.121

(0.094) (0.098) (0.115) (0.120)

First Stage F-statistic 130.9 129.1 131.2 129.1
over-id p-value 0.479 0.049 0.063 0.579
N 5,953 5,978 5,429 5,978

This table reports 2SLS estimates of the effect of enrollment at different schools for minority and non-
minority applicants. The sample is restricted to 2004-2016 applicants with non degenerate any-exam offer
risk. Minority applicants refer to applicants who are either Black or Hispanic. Instruments and distance
controls are interacted with minority status. The set of instruments and controls is otherwise as described
in Tables 2 and 5. Standard errors clustered at the school of origin and application year are reported in
parentheses.
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Table A7: Heterogeneity in Each Exam School Effects by Non-exam School Alternative

MCAS English MCAS Math
7th grade 8th grade 7th grade 8th grade

(1) (2) (3) (4)

Panel A: Second stage for applicants below and above the median baseline math score
Enrollment in BLS -0.095 -0.020 -0.135 -0.304

(0.067) (0.072) (0.079) (0.078)
Enrollment in BLS X above median 0.060 0.074 0.011 0.010

(0.045) (0.051) (0.054) (0.051)
Enrollment in BLA 0.100 -0.080 -0.135 -0.370

(0.054) (0.052) (0.065) (0.065)
Enrollment in BLA X above median 0.074 0.076 0.019 0.043

(0.043) (0.040) (0.053) (0.052)
Enrollment in Non-Exam 0.048 0.027 0.018 -0.042

(0.053) (0.051) (0.069) (0.072)
Enrollment in Non-Exam X above median 0.100 0.124 0.124 0.129

(0.047) (0.044) (0.061) (0.057)

Panel B: second stage for minority and non-minority applicants
Enrollment in BLS -0.076 -0.011 -0.138 -0.303

(0.065) (0.066) (0.077) (0.075)
Enrollment in BLS X minority 0.021 0.040 0.035 0.011

(0.041) (0.044) (0.047) (0.048)
Enrollment in BLA 0.132 -0.082 -0.106 -0.323

(0.055) (0.052) (0.064) (0.064)
Enrollment in BLA X minority 0.009 0.072 -0.042 -0.051

(0.041) (0.043) (0.046) (0.050)
Enrollment in Non-Exam 0.052 0.014 0.034 -0.004

(0.055) (0.058) (0.073) (0.082)
Enrollment in Non-Exam X minority 0.064 0.109 0.056 0.023

(0.047) (0.047) (0.057) (0.069)

N 8,129 8,144 7,493 8,144

Notes: This table reports 2SLS estimates of the effect enrollment at different schools for minority and non-
minority applicants and below and above the median math baseline Math score applicants. The sample
is restricted to 2004-2016 applicants with non-degenerate offer risk at one of the exam schools. Minority
applicants refer to applicants who are either Black or Hispanic. Above median applicants correspond to
applicants with 4th grade Math MCAS test score above the median score of students within any bandwidth.
Instruments and distance controls are interacted with minority and above the median status respectively.
The set of instruments and controls is otherwise as described in Tables 2 and 5. Standard errors clustered
at the school of origin and application year are reported in parentheses.
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