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Abstract

To assign teachers to schools, a modified version of the well-known deferred acceptance
mechanism has been proposed in the literature and is used in practice. We show that this mech-
anism fails to be fair and efficient for both teachers and schools. We identify a class of strategy-
proof mechanisms that cannot be improved upon in terms of both efficiency and fairness. Using
a rich dataset on teachers’ applications in France, we estimate teachers preferences and perform
a counterfactual analysis. The results show that these mechanisms perform much better than
the modified version of deferred acceptance. For instance, the number of teachers moving from
their positions more than triples under our mechanism.
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1 Introduction

Teachers are a key determinant of student achievement, and their distribution across schools can
have a major impact on achievement gaps between students from different ethnic and/or social back-
grounds. Growing concerns that disadvantaged students may have less access to effective teachers
have given rise to policies intended to better distribute effective teachers across schools.1 However,
such policies must be implemented with caution, as they might have unexpected effects on teachers
satisfaction and, ultimately, on the overall appeal of the teaching profession.2 This raises a central
question: How can be designed a teacher assignment procedure that takes into account both teachers
preferences and administration concerns about the distribution of (effective) teachers? This paper
introduces a new assignment procedure and assesses its performance.

In many countries, the labor market for teachers is highly regulated by a central administration
that is in charge of assigning teachers to schools.3 Within such systems, teachers submit ranked
lists of school preferences, and each school ranks teachers. When policymakers design assignment
processes, they must consider several objectives, some of which might be difficult to reconcile. A
first intuitive objective is to maximize teachers satisfaction by implementing all beneficial exchanges
of positions across teachers. Yet, policymakers must ensure that such position exchanges do not
unintentially harm some disadvantaged schools. In many countries, teachers priorities at schools
are primarily determined by their experience, which reflects the administration’s effort to not assign
novice teachers to disadvantaged students. By implementing all beneficial exchanges, one may
increase the number of inexperienced teachers in disadvantaged schools, which is a key concern for
policymakers. Hence, in this context, one natural objective is to allow teachers to exchange positions
only if it does not increase the number of inexperienced teachers in disadvantaged schools.

More generally, the criteria used to define teachers priorities reflect clear social objectives.4

A relevant objective is therefore to allow teachers to exchange positions only if schools are not
assigned teachers with lower priorities. We name this requirement two-sided efficiency. While this
is formally equivalent to an efficiency notion that considers both teachers and schools as welfare-
relevant entities, in our context this requirement is mainly instrumental. It allows us to produce
teacher assignments that respect the administration objectives, as reflected by the priority system.

1Recent initiatives in the U.S. have intended to measure teacher effectiveness and ensure that disadvantaged students
have equal access to effective teachers. See for instance, Teach for America, Teach First in the U.K., and, more generally,
Race to the Top, the Teacher Incentive Fund, and the flexibility policy of the Elementary and Secondary Education Act.

2Two important issues facing the teaching profession are the increasing shortage of qualified teachers (Corcoran,
Evans and Schwab, 1994) and the difficulty of retaining new teachers in the profession (Boyd, Hamilton, Loeb and
Wyckoff, 2005).

3This is the case, for example, in France (Terrier, 2014), Germany, Czech Republic (Cechlárová, Fleiner, Manlove,
McBride and Potpinková, 2015), Italy (Barbieri, Rossetti and Sestito, 2011), Turkey (Dur and Kesten, 2014), Mexico
(Pereyra, 2013), Peru, Uruguay (Vegas, Urquiola and Cerdàn-Infantes, 2006), and Portugal.

4In practice, several other criteria used to determine teacher priorities might also reflect broader social objectives.
For instance, in France, spousal reunification and children reunification give a priority bonus to teachers at schools close
to where their spouse or children live. Again, one can easily see the social objective motivating these priorities, namely,
to allow for position exchanges that are not at the expense of teachers experience in (possibly disadvantaged) schools,
except when an exchange can allow a teacher to join his/her family. This is what our approach will ensure.
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In the empirical section (Section 5) of this paper we examine the French teacher assignment system
and show that its underlying social objectives are better fulfilled when using assignment schemes
that satisfy two-sided efficiency.

The central administration in charge of designing the assignment mechanism faces an additional
fundamental constraint. Many teachers already have positions and want to be reassigned. In practice,
tenured teachers have the right to keep their initial positions if they do not obtain any of the schools
they asked for. Thus, the administration has to offer a teacher a position at a school that he or
she likes at least as much as the one to which he or she is currently assigned. In other words, the
assignment of teachers must be individually rational. To fulfill this constraint, a standard approach
is to use a variation on the well-known deferred acceptance mechanism (Gale and Shapley, 1962)
– DA, for short – to make the assignment individually rational (Compte and Jehiel, 2008; Pereyra,
2013). This variation consists of, first, artificially modifying the school’s ordering of teachers such
that all teachers initially assigned to a school are moved to the top of that school’s ranking. In a
second step, we run the DA mechanism using the modified priorities. This mechanism is used to
assign teachers to schools in France, as well as for the assignment of on-campus housing in several
places around the world (Guillen and Kesten, 2012), and, in many countries, to assign students to
schools when students have the right to stay in their district school.

While, by construction, the modified version of DA is individually rational, a first objective of
this paper is to show that the modification loses an important property of DA by failing to be two-
sided efficient in that one can find alternative assignments whereby all teachers would be better-off
and schools would get matched to teachers to which they assign higher priority.5 Importantly, this
“Pareto improvement” can be achieved while simultaneously improving fairness; i.e., we can reduce
the number of teachers who are refused by a school while other teachers with lower rankings at that
school are accepted. (We use standard terminology and say that such teachers and schools form a
blocking pair.) Hence, the modified DA can be improved both in terms of efficiency—beneficial
exchanges of positions across teachers—and fairness. This lack of trade-off between these two
core notions is in stark contrast with what we know from the college admission and school choice
environments and makes clear that the teacher assignment problem is quite different from previously
studied settings.

The main goal of this paper is therefore to design mechanisms that do not suffer from the same
limitations as the modified version of DA, while keeping the good incentive properties of this mech-
anism, that is, strategy-proofness (meaning that teachers have straightforward incentives to report
their preferences truthfully).6 As we will make clear, merely tweaking the DA mechanism is not
enough to fulfill this objective. We say that a matching is two-sided maximal if (1) compared to the
initial assignment, all teachers are better-off and all schools get teachers with higher priorities, and
(2) the matching cannot be improved in terms of (2i) (two-sided) efficiency and (2ii) fairness. This
requirement is actually quite weak, and two-sided maximal matchings are easily shown to corre-

5Under the (standard) DA, it is well known that one can reassign teachers and make all of them better off, some
strictly. However, this will be done at the expense of schools, given that the (standard) DA is in the Core and, hence,
two-sided efficient. Here, in stark contrast with the standard DA, we show that, under the modified DA, two-sided
efficiency is violated; i.e., both teachers and schools can be made better-off.

6Teachers are the only strategic agents in this teacher assignment context.

3



spond to assignments that are both two-sided efficient and individually rational on both sides of the
market.

To characterize two-sided maximal matchings, we provide an algorithm called the block ex-
change (BE) algorithm. The idea is simple: starting from the initial assignment, if two teachers
block one another’s schools, we allow these teachers to exchange their schools. Obviously, larger
exchanges involving many teachers are possible. As a teacher may be involved in several cycles,
the outcome of the BE algorithm depends on the order in which we select the cycles. A first natu-
ral result shows that any possible outcome of the BE algorithm is a two-sided maximal matching,
and, conversely, any two-sided maximal matching can be achieved with an appropriate selection of
cycles.7 While we obtain a plethora of different possible matchings depending on how we select
exchange cycles in the BE algorithm, our main result shows that there are ways to select cycles that
make this algorithm strategy-proof for teachers. Such mechanisms are called teacher-optimal BE al-
gorithms (TO-BE). The name emphasizes the fact that TO-BE is a teacher-optimal selection of BE.
Our results also give a sense in which adding strategy-proofness drastically reduces the set of pos-
sible mechanisms: in the one-to-one environment, there is a unique two-sided maximal mechanism
that is strategy-proof.

We provide additional theoretical results in two respects. First, we consider a case in which only
teachers are welfare-relevant entities and we want to improve their welfare as well as the fairness
of the allocation. In this context, we provide a similar characterization to that obtained with the BE
algorithm. Depending on how exchange cycles are selected, we once again identify a large class
of mechanisms. Although this approach obviously favors teachers, we show that no mechanism in
this class is strategy-proof.8 Second, we consider a large market approach in which preferences and
schools rankings are drawn randomly from a rich class of distributions.9 We show that when the
market size increases, our mechanisms perform quantitatively better than the modified DA in terms
of utilitarian efficiency and number of blocking pairs. We also identify the potential cost of adopting
a strategy-proof mechanism in terms of utilitarian outcomes and number of blocking pairs compared
to a first-best approach whereby one could select any two-sided maximal mechanism.10

We then use a nationwide labor market to empirically estimate the magnitude of gains and trade-
offs in a real teacher assignment problem. In France, like in several other countries, the central
administration manages teachers assignment to schools. We start by estimating teachers preferences
over regions using an estimation method recently developed by Fack, Grenet and He (2019). We
compare estimations under (i) the standard truth telling assumption, which assumes that teachers

7This result is related to Erdil and Ergin (2017), who characterize two-sided Pareto-efficient stable matchings in
a two-sided matching framework with indifferences. We discuss the connection in more depth later in Section 6. In
particular, while there is no two-sided Pareto-efficient stable matching mechanism that is strategy-proof for agents
on one side of the market (see, Erdil, 2014), we show that, in our environment, some two-sided maximal matching
mechanisms are strategy-proof for teachers.

8In a school choice setting, Dur, Gitmez and Yılmaz (2019) characterize a class of constrained efficient and partially
stable matchings which shares some similarities with ours. We discuss the differences in details in Section 6.

9These markets can involve a large number of agents. For instance, in France, approximately 65,000 teachers ask
for an assignment every year.

10Our arguments build on techniques from random graph theory, as in Lee (2016), Che and Tercieux (2018), and Che
and Tercieux (2019).
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truthfully rank regions, and (ii) the weaker stability assumption, which assumes that teachers may
skip regions that are unachievable for them, an omission that is outcome-irrelevant. We provide
supporting evidence in favor of the second assumption by using formal statistical tests and by show-
ing that stability-based estimations are much better at predicting teachers submitted rank order lists
(ROL). We estimate the preferences of 6,302 teachers in the 9 largest subjects (like French, mathe-
matics, or English).

Then, we use our estimates of teachers preferences to run counterfactuals and quantify our mech-
anisms performance. The results confirm that the modified version of DA (DA∗ for short) is never
two-sided maximal, meaning that assignments can be simultaneously improved in terms of teachers
welfare, “schools welfare”, and fairness. In addition, we show that DA∗ is far from being two-
sided maximal: almost four times more teachers (953.3 vs. 237.9) can be matched when running a
two-sided maximal mechanism Pareto-dominating DA∗. The results also show that TO-BE performs
significantly better than DA∗. The number of teachers moving from their initial assignment increases
by 274.9% under TO-BE, compared to DA∗, and the distribution of teachers ranks (over regions they
obtain) stochastically dominates that of DA∗ up to rank 23 (out of 25). Regarding fairness, the num-
ber of teachers who are not blocking with any region increases by 34.1%. Finally, contrary to DA∗,
under TO-BE, no region has a position for which the teacher assigned to it has a lower priority than
the teacher initially assigned to that position. More importantly, we show that the administration’s
objectives are better fulfilled when using mechanisms that are two-sided maximal. Indeed, the per-
centage of unexperienced teachers in disadvantaged regions diminishes under all the mechanisms
we suggest, and the number of teachers who are assigned a position closer to their partner increases.
This provides some justification for our two-sided maximality notion which, as underlined before,
is an instrument to produce assignments respecting the administration’s objectives, as reflected by
the priority system. Finally, we underline that all the gains we obtain are statistically significant.

Our work stands at the crossroads of different strands of the literature. Our theoretical setup
covers two standard models in matching theory. The first is the college admission problem, in which
schools have preferences that are taken into account for both efficiency considerations and fairness
issues (Gale and Shapley, 1962). Second, our model also embeds the house allocation problem (e.g.,
Shapley and Scarf, 1974, Abdulkadiroğlu and Sonmez, 1999, and Sönmez and Ünver, 2010). In this
framework, individuals own a house and are willing to exchange their initial assignments. Our paper
builds on these two lines of research by incorporating both the initial assignment and the two-sided
efficiency criteria. This mixed model covers important applications. While our paper focuses on
reassignment of teachers to positions, the theory we develop applies more broadly to any transfer
of agents between jobs, especially when transfers are based on priorities. Both public and private
organizations increasingly rely on centralized transfer processes on the ground that they provide
more transparent and fair rules. To give an exemple in each sector, Ireland is currently introducing
the “Civil Service Mobility” scheme that allows Clerical Officers and Executive Officers to apply
for mobility, while EasyJet uses a “Base Transfer Process” to let its pilots transfer base location.11

Despite covering important applications, this mixed model remains understudied, though Guillen

11See this link for a presentation of the “Base Transfer Process” and this link for a presentation of the Irish civil
servant mobility scheme.
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and Kesten (2012) note that the modified version of the DA mechanism is used to allocate on-campus
housing at MIT. Compte and Jehiel (2008) and Pereyra (2013) provide results on the properties of
this mechanism. After explaining that fairness and individual rationality are not compatible, they
propose weakening the notion of blocking pairs and show that the modified version of DA maximizes
fairness under this weakening. By contrast, our work retains the standard definition of blocking
pairs and addresses notions of maximal fairness using the usual definition. More importantly, our
theoretical and empirical results highlight that maximizing their notion of fairness can have high
costs in terms of efficiency and the traditional notion of fairness (See Section 6 for further details).
Dur and Ünver (2019) introduce a matching model to study two-sided exchange markets, such as
tuition or temporary worker exchanges. We discuss the similarities and differences between our
papers in more details in the Section 6.

Our work also relates to the literature on the design of school choice allocation mechanisms. In
this literature, efficiency (where students are the only welfare relevant entities) and fairness have re-
ceived considerable attention. The two goals are incompatible (see Roth, 1982, Abdulkadiroğlu and
Sonmez, 2003 and Abdulkadiroğlu, Pathak and Roth, 2009). Efficient matching mechanisms, such
as the school choice version of top trading cycle (defined by Abdulkadiroğlu and Sonmez, 2003),
attain efficiency but fail to be fair. Fair mechanisms, such as the DA algorithm do not guarantee
efficiency. This trade-off between efficiency and fairness is well studied, with particular focus on
how to attain one objective with the minimum possible sacrifice of the other.12 The designer’s task
often boils down to a choice between two mechanisms: the student-proposing DA mechanism or
the top trading cycle mechanism.13 Yet our work shows that, in the teacher assignment problem, the
individually rational version of DA can be improved in terms of both efficiency and fairness.14 In
addition, we identify a class of mechanisms, closely related to the top trading cycle mechanism (TO-
BE), as natural alternatives for a designer concerned with these two core notions. Our conclusion is
in striking contrast with the previous literature and confirms that the teacher assignment problem is
novel and presents important conceptual differences from previously studied contexts.

Finally, our paper builds on a recent literature that has developed preference estimation methods,
notably for settings in which the reported preferences might fail to be truthfull (Fack et al., 2019;
Abdulkadiroğlu, Agarwal and Pathak, 2017; Agarwal and Somaini, 2018; Calsamiglia, Fu and Güell,
2020)

2 Teacher Assignment to Schools in France

France, like several other countries, has a highly centralized labor market for teachers. The 400,000
public school teachers are civil servants. The French Ministry of Education is responsible for their

12For instance, DA selects a fair matching that Pareto dominates all other fair mechanisms for the proposing side
(Gale and Shapley, 1962), and the top trading cycle mechanism (Abdulkadiroğlu and Sonmez, 2003), which allows
agents to sequentially trade their priorities, can be considered efficient with minimal unfairness (Abdulkadiroğlu, Che,
Pathak, Roth and Tercieux, 2020).

13See also Che and Tercieux (2019) for additional perspectives on this topic.
14Noticeably, both sides of the market are Pareto improved.
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recruitment, assignment to schools, and salary scale.15 This gives us the opportunity to use a na-
tionwide labor market to compare the performance of different assignment algorithms. Prior to
assignment, the central administration defines teachers priorities using a point system that takes
into account three legal priorities (spousal reunification, disability, and having a position in a disad-
vantaged or violent school), as well as teacher characteristics, including total seniority in teaching,
seniority in the current school, time away from the spouse and/or children. This score determines
schools rankings or preferences. We will use the terms “priorities” and “preferences” interchange-
ably (for the rationale behind this terminology, see the Introduction). The point system, defined by
the central administration, is well known by all teachers wishing to change schools.16

The Ministry divides French territory into 31 regions (see the map in the supplementary material
S.1). Since 1999, the matching process has comprised two successive phases. First, during a region
assignment phase, newly tenured teachers and teachers who wish to move to another region submit
an ordered list of regions. A matching mechanism (described in the next section) is used to match
teachers to regions, using priorities defined by the point system. Then, during the second phase, each
region proceeds to school assignment. In each region, teachers matched to the region after the first
phase and teachers who already have a position but wish to change schools within the same region
report their preferences for schools in the region. Matching is completed using the same mechanism
as in Phase 1 and a similar priority-defining point system as in Phase 1. The main difference is that
teachers are limited in the number of schools that they can rank during this phase.

In 2013, just over 25,000 teachers applied in Phase 1, and 75,000 in Phase 2. In practice, the
assignment process is decomposed into as many markets as there are subjects (107), and market size
can differ quite substantially (from Sports, French, and Math that have between 2,000 and 2,500
teachers each to smaller subjects like Esthetics or Thermal Engineering that have between 15 and 60
teachers). As a teacher teaches only one subject and positions are specific to a subject, the markets
are independent from one another.17

A lack of mobility has emerged as a concern for the Ministry. In 2013, of the 17,000 tenured
teachers requesting a new assignment, only 40.9% had their requests satisfied and 29% of the teach-
ers asking to move closer to their families did not obtain a new assignment, many of them for
several consecutive years. Due to this lack of mobility, the Mediator of the French Ministry of
Education (2015), responsible for resolving conflicts between the Ministry and teachers, receives
approximately 700 complaints from primary and secondary school teachers every year related to
assignment issues. In his annual report, he states that “the assignment algorithm opens doors to
difficult personal situations that can eventually tarnish the quality and the investment of human re-
sources”. The lack of mobility discourages students from becoming teachers (Périer and Gurgand,

15Public sector teachers are civil servants. Their salary is completely regulated by a detailed pay scale. Neither
schools nor teachers can influence salary or promotions. All teachers with the same number of years of experience and
who have passed the same exam earn the same salary. Further details on the recruitment and assignment process are
available on the Matching in Practice website.

16An official list of criteria used to compute the point system is available on the government website.
17In practice, couples from different subjects can submit joint applications. Since members of a couple may poten-

tially teach in different fields, this creates some dependencies across subjects. We ignore the issues related to couples in
this paper. In particular, we eliminated all couples from our sample. Details are provided in Appendix S.6.
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2016). This leaves some students without teachers and regularly requires regions to hire last-minute
replacement staff who are not trained to teach. In the least attractive schools, labeled “priority edu-
cation,” 30% of teachers do not have teaching certification, versus 7.6% in other schools. One of the
objectives of this paper is to show that using an alternative mechanism can significantly reduce the
current lack of mobility.

3 Model and basic definitions

Consider a problem in which a finite set of teachers T has to be assigned to a finite set S of schools.
Each school s has qs available seats. Each teacher t has a strict preference relation�t over the set of
schools and being unmatched (being unmatched is denoted by ∅). For any teacher t, we write s �t s′
if and only if s �t s′ or s = s′. Similarly, each school s has a strict preference relation �s over
teachers and being unmatched.18 For simplicity, we assume that all teachers and schools prefer to be
matched rather than being unmatched. A matching µ is a mapping from T ∪S into T ∪S∪{∅} such
that (i) for each t ∈ T , µ(t) ∈ S ∪ {∅} and for each s ∈ S, µ(s) ⊂ T , |µ0(s)| ≤ qs and (ii) µ(t) = s
iff t ∈ µ(s). That is, a matching simply specifies the school to which each teacher is assigned or
that a teacher is unmatched. It also specifies the teachers assigned to each school, if any. We also
sometimes use the term “assignment” instead of “matching”. Thus far, our environment does not
differ from the college admission problem (Gale and Shapley, 1962).

However, in a teacher assignment problem, there is an additional component: teachers have an
initial assignment. Let us denote the corresponding matching by µ0. We assume that µ0(t) 6= ∅
for each teacher t and |µ0(s)| = qs for each school s. Thus, we focus on a pure reassignment
process among teachers. We further discuss this assumption in Section 5.5. All teachers are initially
assigned a school (there is no incoming flow of teachers into the market), and there is no available
seat at schools (there is no outgoing flow of teachers out of the market). We define a teacher
allocation problem as a quadruplet [T, S, µ0,�,q] where �:= (�a)a∈S∪T and q := (qs)s∈S .

Since we are in a many-to-one setting, one has to define schools preferences over groups of
teachers. We adopt a (standard) conservative approach. Consider a school s with q positions to fill
and two vectors of size q, say x := (t1, . . . , tq) and y := (t′1, . . . , t

′
q). Let us assume that each of

these vectors is ordered in such a way that for each k = 1, . . . q − 1, the kth element of vector x
is preferred by s to its k + 1th element; we make analogous assumptions for vector y. We say that
x is (weakly) preferred by the school to y if, for each k = 1, . . . q, the kth element of vector x is
(weakly) preferred by s to the kth element of vector y, i.e. tk �s t′k. The preference is strict if
tk �s t′k for at least one coordinate k. In the following, when comparing two matchings µ and µ′

for a school s, we will abuse notations and note µ′(s) �s µ(s) if µ′(s) is (weakly) preferred by
s to µ(s). We will say that school s weakly prefers or is weakly better under the matching µ′.19

Again, we use the terms “preferences” and “priorities” interchangeably even though, in our context,

18Our results easily extend to the case of weak preferences for schools.
19This is a strong notion. However, even with this conservative notion, we can significantly improve on the standard

mechanisms. Using such a strong notion only strengthen this result.
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schools’ ordering over teachers are priorities given by law. Many of our welfare notions (e.g., two-
sided efficiency defined below) will do “as if” these priorities were the schools’ true preferences
with the motivation that priorities reflect the administration’s normative criteria and so are welfare
relevant (see the Introduction). Again, Section 5 will show that the administration’s objectives are
better fulfilled when using this approach.

We are interested in different efficiency and fairness criteria, depending on whether we regard
both teachers and schools or only teachers as welfare-relevant entities. First, we say that a matching
µ is two-sided individually rational (2-IR) if, for each teacher t, µ(t) is acceptable to t, i.e., µ(t) �t
µ0(t) and, in addition, for each school s, µ(s) is acceptable to s, i.e., µ(s) �s µ0(s).20 Similarly, a
matching is one-sided individually rational (1-IR) if each teacher finds his assignment acceptable.
We say that a matching µ 2-Pareto dominates (resp. 1-Pareto dominates) another matching µ′ if all
teachers and schools (resp. teachers) are weakly better off – and some strictly better off – under
µ than under µ′. A matching is two-sided Pareto-efficient (2-PE) if there is no other matching
that 2-Pareto dominates it. Similarly, we define one-sided Pareto-efficient (1-PE) matchings as
assignments for which no alternative matching exists that 1-Pareto dominates it. We say that under
matching µ, a teacher t has justified envy toward teacher t′ if t prefers the assignment of t′, i.e.,
µ(t′) =: s, to his own assignment µ(t) and s prefers t to t′. Using the standard terminology from
the literature, we say that (t, s) blocks matching µ. A matching µ is stable if there is no pair (t, s)
blocking µ.21 We will sometimes say that a matching µ dominates another matching µ′ in terms of
stability if the set of blocking pairs of µ is included in that of µ′.

A matching mechanism is a function ϕ that maps problems into matchings. We write ϕ(�) for
the matching obtained in problem [T, S, µ0,�,q]. We also write ϕt(�) for the school that teacher
t obtains under matching ϕ(�). It is 2-IR/1-IR/1-PE/2-PE/stable if, for each problem, it selects a
matching that is 2-IR/1-IR/1-PE/2-PE/stable. Finally, a matching mechanism ϕ is strategy-proof
if, for each profile of preferences � and teacher t, ϕt(�) �t ϕt(�′t,�−t) for any possible report �′t
of teacher t.22

4 Theoretical results

In the next sections, we explain why DA is not individually rational and describe its modification
which makes it individually rational. We explain the drawbacks of this modified DA and define new
algorithms which avoid these drawbacks.

20Requiring individual rationality on both the teacher and school sides is non standard, but is equivalent to the
requirement that the assignment Pareto dominates the initial assignment for both teachers and schools. This is consistent
with our motivation for considering both sides of the market as welfare-relevant entities (see the Introduction). Our
empirical analysis indeed points out that this notion allows to better fulfill the administration objectives.

21Usually, one also adds a non-wastefulness condition that requires that there must be no teacher t and school s such
that s �t µ(t) and |µ(s)| < qs. Since we assumed that for any school s, |µ0(s)| = qs and all teachers and schools are
willing to be matched, under any 1-IR or 2-IR matching µ, we have |µ(s)| = qs. Because our analysis focuses on such
matchings, we can omit the non-wastefulness condition.

22Using standard notation, �−t denotes the vector of preference relations (�t′)t′ 6=t.
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4.1 The modified DA and its drawbacks

One of the standard matching mechanisms is DA, as proposed by Gale and Shapley (1962). Because
we discuss a closely related mechanism, we first recall its definition.

- Step 1. Each teacher t applies to his most preferred school. Each school tentatively accepts,
up to its capacity, its most preferred teachers among the offers it receives and rejects all other
offers.

In general,

- Step k ≥ 1. Each teacher t who was rejected at step k − 1 applies to his most preferred
school among those to which he has not yet applied. Each school tentatively accepts, up to its
capacity, its most favorite teachers among the new offers in the current step and the applicants
tentatively selected from the previous step (if any), and rejects all other offers.

While DA is known to be stable and 2-PE, it fails to be 1-IR (and thus 2-IR). This is unavoidable:
in general, there is a conflict between individual rationality and stability. The basic intuition is as
follows: imposing 1-IR on a mechanism yields situations in which a teacher t may be able to keep
his initial assignment µ0(t) =: s, while school s may perfectly prefer other teachers to t. These
other teachers may rank s at the top of their preference relation and hence block with school s. We
summarize this discussion in the following observation.23

Proposition 1 (Gale and Shapley, 1962) DA is a stable and 2-PE mechanism. There is no mecha-
nism that is both 1-IR and stable. Hence, DA is not 1-IR.

Because there is a fundamental trade-off between 1-IR and stability, one may wish to find a
mechanism that restores individual rationality while retaining DA’s other desirable properties, such
as its stability and 2-Pareto efficiency, to the greatest extent possible. An approach followed in the
literature (see, for instance, Pereyra, 2013 or Compte and Jehiel, 2008) and used in practice tries to
achieve this balance by artificially modifying schools preferences such that each teacher t is ranked,
in the (modified) ranking of his initial school s := µ0(t), above any teacher t′ /∈ µ0(s). Other than
this modification, the schools’ preference relations remain unchanged.24 With this modification in
place, DA proceeds, as defined above, using schools’ modified preferences. We denote this mecha-
nism as DA∗. By construction, this is a 1-IR mechanism. It is used in several real-world situations,
including assigning on-campus housing at MIT (Guillen and Kesten, 2012) and, more pertinent to
our interests here, assigning teachers to public schools in France.

As noted above, this mechanism is 1-IR by construction, and therefore, by Proposition 1, we
know it is not stable. Yet, is there a sense in which the violation of stability is minimal? What about

23This is highlighted in Compte and Jehiel (2008) and Pereyra (2013).
24Formally, for each school s, a new preference relation �′s is defined such that t �′s t′ for each t ∈ µ0(s) and

t′ /∈ µ0(s), and for each t, t′ not in the school’s initial assignment µ0(s), we have t �′s t′ if and only if t �s t′. If
t, t′ ∈ µ0(s), we assume similarly that these teachers are ranked according to �s. This is not necessary for the results.
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efficiency: Is DA∗ 2-PE? Furthermore, if the answers to these questions are negative, can we find
ways to improve upon DA∗? The following example illustrates an important drawback of DA∗ to
which we will return in both our theoretical analysis and in our empirical assessment.

Example 1 We consider a simple environment with n teachers and n schools with initial assignment
µ0. Let us assume that a teacher t∗ is initially assigned to school s∗ (i.e., µ0(t∗) = s∗) and is ranked
first by all schools. In addition, school s∗ is ranked at the bottom of each teacher preference relation,
including t∗; hence, t∗ is willing to move. Under these assumptions, no teacher will move from his
initial assignment if we use DA∗ to assign teachers. To see this, note first that t∗ does not move
from his initial assignment. Indeed, because DA∗ is 1-IR, if t∗ were to move, then some teacher t
would have to take the seat at school s∗ (or be unmatched), but since s∗ is the worst school for every
teacher (and teachers prefer to be matched rather than unmatched), this assignment would violate
the individual rationality condition for teacher t, a contradiction. Note that this implies that, under
the DA∗ algorithm, t∗ applies to every school s (but is eventually rejected). Now, to see that no
teacher other than t∗ moves, assume on the contrary that t 6= t∗ is assigned a school s 6= µ0(t). As
mentioned above, at some step of the DA∗ algorithm, t∗ applies to s. Since t∗ is ranked above t in
the preference relation of school s (recall that s 6= µ0(t)), t cannot eventually be matched to school
s, a contradiction.

To recap, under our assumptions, no teacher moves from his initial assignment. Since the initial
assignment can perform very poorly in terms of basic criteria such as stability or 2-Pareto efficiency,
we can easily imagine the existence of alternative matchings that would make both teachers and
schools better off and, thereby, shrink the set of blocking pairs.25

The driving force in this example is the existence of a teacher who is ranked at the top of each
school’s ranking and is initially assigned to the worst school.26 This is, of course, a stylized example,
and one can easily imagine less extreme examples in which a similar phenomenon would occur. The
basic idea is that, for DA∗ to perform poorly, it is enough to have one teacher (a single one is
enough) who has a fairly high ranking for a relatively large fraction of the schools, being assigned
an unpopular school. Our theoretical analysis and our empirical assessment will show that the
described phenomenon is not pathological.

The above example identifies a weakness of DA∗: it can be improved upon in terms of both
efficiency (on both sides) and fairness (i.e., we can shrink its set of blocking pairs). This is an
important difference with the standard college admission DA, which is known to be 2-PE. In DA∗,
the change in schools preferences made before running the algorithm to ensure the 1-IR property
leads to the failure of the 2-PE property. Thus, we are interested in mechanisms that do not have this

25One may argue that the definition of blocking pairs in our setting has to be changed to account for the individual
rationality criterion. This is indeed the route taken by Compte and Jehiel (2008) and Pereyra (2013). We discuss in
details the differences with their approach in Section 6.

26Calsamiglia and Miralles (2016) study a school choice model and show that neighborhood priorities when there is
an unpopular school can decrease students’ welfare by leading most of them to stay at their neighborhood school. The
mechanism driving this welfare loss is similar to that of our example. The main difference is that, in our setting, we
show that one can improve the welfare of both teachers and schools, which is not possible in a school choice framework.
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type of disadvantage. We also wish to retain the elementary property that our mechanism improves
on the initial assignment. This suggests the following definition.

Definition 1 A matching µ is two-sided maximal if µ is 2-IR27 and there is no other matching µ′

such that (1) all teachers and schools are weakly better off and some strictly better off, and (2) the
set of blocking pairs under µ′ is a subset of that under µ.

Consistent with our previous notions, we say that a mechanism is two-sided maximal if it selects
a two-sided maximal matching. Let us note that, if there is a matching µ′ under which all teachers
and schools are weakly better off and some strictly better off than under a matching µ, then the set of
blocking pairs under µ′ is a subset of that under µ. Thus, in the definition of two-sided maximality,
requirement (2) can be dropped. Hence, a matching µ is two-sided maximal if and only if µ is 2-IR
and 2-PE.

4.2 Alternative mechanisms and main result

We define a class of mechanisms that characterizes the set of two-sided maximal mechanisms. The
mechanism will sequentially clear cycles of an appropriately constructed directed graph in the spirit
of Gale’s top trading cycle (TTC hereafter), originally introduced in Shapley and Scarf (1974).

4.2.1 The Block Exchange Algorithm

The basic idea behind the mechanisms we define is the following: starting from the initial assign-
ment, if a teacher t has a justified envy toward t′ and t′ also has a justified envy toward t, then
we allow t and t′ to trade their initial assignments. This is a pairwise exchange between t and t′,
but three-way or even larger exchanges could also occur. Once such an exchange has been made,
we obtain a new matching and can again search for possible trades. More precisely, our class of
mechanisms is induced by the following algorithm, named the Block Exchange (BE):

- Step 0 : set µ(0) := µ0.

- Step k ≥ 1 : Given µ(k − 1), let the teachers and their assignments stand for the vertices of a
directed graph where, for each pair of nodes (t, s) and (t′, s′), there is an edge (t, s) −→ (t′, s′)
if and only if teacher t has a justified envy toward teacher t′ at s′, i.e., t prefers s′ to s and
s′ prefers t to t′. If there is no cycle, then set µ(k − 1) as the outcome of the algorithm.
Otherwise, select a cycle in this directed graph. For each edge (t, s) −→ (t′, s′) in the cycle,
assign teacher t to school s′. Let µ(k) be the matching so obtained. Go to step k + 1.

27Recall that the motivation for imposing 2-IR is to ensure that our assignments 2-Pareto-dominate the initial assign-
ment and that, compared to the initial assignment, the set of blocking pairs shrinks.
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It is easy to verify that this algorithm converges in (finite and) polynomial time.28 In the above
description, we do not specify how the algorithm should select the cycle of the directed graph.
Therefore, the above description can be thought to define a class of mechanisms, wherein a mech-
anism is determined only after we fully specify how to act when confronted with multiple cycles.
These selections may be random or dependent on earlier selections. In general, for each preference
profile for teachers and schools �, a possible outcome of BE is a matching that can be obtained by
an appropriate selection of cycles in the above procedure. Thus, we consider the following corre-
spondence BE :�⇒ µ where BE(�) stands for the set of all possible outcomes of BE. A selection
of the BE algorithm is a mapping ϕ : �7→ µ s.t. ϕ(�) ∈ BE(�). Obviously, each selection ϕ of
BE defines a mechanism.

As mentioned above, our class of mechanisms shares some similarities with Gale’s TTC, but
there are two important differences.29 The first and the most minor difference is that a teacher in a
node can point to several nodes and thus, implicitly, to several schools. This is why, contrary to TTC,
we have an issue regarding cycle selection and our algorithm does not define a unique mechanism.
However, as we will see in the next result, this is necessary for our characterization. Second, and
certainly more importantly, our algorithm takes into account welfare on both sides of the market.
Indeed, a teacher in a node (t, s) can point to a school in (t′, s′) only if s′ prefers t to its assignment
t′. This is what ensures, contrary to TTC, that each time we carry out a cycle, both teachers and
schools become better off. This has the desirable implication that each time a cycle is cleared, the
set of blocking pairs shrinks.

As we will see, the selections of the BE algorithm are two-sided maximal. In particular, those
selections will avoid the drawback of DA∗ illustrated in Example 1.

Example 2 (Example 1 continued.) Let us further specify Example 1 and assume that n (the num-
ber of teachers and schools) is equal to 3. Recall that teacher t∗ is initially assigned to school s∗

(i.e., µ0(t∗) = s∗) and is ranked first by all schools. In addition, school s∗ is ranked at the bottom
of each teacher’s preference relation, including t∗. We further assume that the two other teachers,
t1 and t2, are initially assigned school s1 and s2 respectively and t1 justifably envies t2 at s2 while
t2 justifably envies t1 at s1. Since both teachers t1 and t2 as well as schools s1 and s2 would prefer
the matching where t1 and t2 swap their assigned schools to the initial assignment, µ0 is not 2-PE.
Since, as we already claimed, no teacher moves from his initial assignment when using DA∗, DA∗ is
not two-sided maximal. The directed graph constructed in Step 1 of the BE algorithm is as follows.

28To see that this algorithm converges in a finite number of steps, observe that, whenever we carry out a cycle, at least
one teacher is strictly better off. Hence, in the worst case, one needs (n − 1)n steps for this algorithm to end. Because
finding a cycle in a directed graph can be solved in polynomial time, the algorithm converges in polynomial time.

29The TTC mechanism is defined in the one-to-one environment and corresponds to TO-BE where the opportunity
set of all teachers corresponds to the whole set of regions.
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• •

•

(t1, s1) (t2, s2)

(t∗, s∗)

Since, there is a unique cyle, at the end of Step 1, µ(1) assigns teacher t1 to school s2 and teacher t2
to school s1. It is easy to check that the allocation achieved is 2-PE. Hence, there is no longer any
cycle in the directed graph constructed at Step 2 of the BE algorithm. The outcome of BE is thus
two-sided maximal and, as we will see, this is a general feature.

This leaves us with a fairly large set of two-sided maximal matching mechanisms. However, one
issue with many selections of the BE algorithm is that they are not strategy-proof. This is illustrated
in the following example.

Example 3 Consider an environment with three teachers {t1, t2, t3} and three schools {s1, s2, s3}.
For each i = 1, 2, 3, we assume that teacher ti is initially assigned to school si. Teacher t1’s most
preferred school is s2, and he ranks his initial school s1 second. Teacher t2 ranks s1 first, followed
by s3. Teacher t3 ranks s2 first and his initial assignment s3 second. Finally, we assume that each
teacher is ranked in last position by the school to which he is initially assigned. We obtain the
following graph for the BE algorithm.

•

•

•(t1, s1)

(t2, s2)

(t3, s3)

There are two possible cycles that intersect at (t2, s2). Consider a selection of the BE algorithm
that picks cycle (t2, s2)� (t3, s3). In that case, the algorithm ends at the end of Step 1, and teacher
t2 is eventually matched to school s3, his second most preferred school. However, if teacher t2 lies
and claims that he ranks s3 below his initial assignment, the directed graph associated with the
BE algorithm has a single cycle (t1, s1) � (t2, s2). In that case, the unique selection of the BE
algorithm assigns t2 to his most preferred school s1. Hence, t2 has a profitable deviation under the
selection of the BE algorithm considered here.
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4.2.2 Strategy-proof selection of the block exchange algorithm

We define a class of mechanisms that are selections of the BE algorithm and are strategy-proof.
Before defining the mechanism, we need an additional piece of notation. Given a matching µ,
a set of teachers T ′, a set of school S ′ ⊆ S and a teacher t, we let Opp(t, µ, T ′, S ′) := {s ∈
S ′ |t �s t′ for some t′ ∈ µ(s) ∩ T ′} be the opportunity set of teacher t within schools in S ′ when
the set of teachers considered is T ′. Note that for each teacher t, if µ0(t) ∈ S ′ and t ∈ T ′, then
Opp(t, µ0, T

′, S ′) 6= ∅ since µ0(t) ∈ Opp(t, µ0, T
′, S ′).

For each school s ∈ S, fix an ordering over teachers fs : {1, . . . , |T |} → T . We denote
f = (fs)s∈S the collection of the orderings, sometimes referred to simply as a collection, one for
each school. f is the index for our class of mechanisms.30

We define the Teacher Optimal Block Exchange (TO-BE) algorithm as follows:

- Step 0 : Set µ(0) = µ0, T (0) := T and S(0) := S.

- Step k ≥ 1 : Given T (k− 1) and S(k− 1), let the teachers in T (k− 1) and their assignments
stand for the vertices of a directed graph where, for each pair of nodes (t, s) and (t′, s′), there
is an edge (t, s) −→ (t′, s′) if and only if:

1. teacher t ranks school s′ first in his opportunity set Opp(t, µ(k− 1), T (k− 1), S(k− 1))

2. teacher t′ has a lower priority than teacher t at school s′

3. teacher t′ has the lowest ordering according to fs′ among all teachers in school s′ who
have a lower priority than t at s′ (i.e., fs′(t′) ≤ fs′(t

′′) for all t′′ such that µ(k−1)(t′′) = s′

and t �s′ t′′)

The obtained directed graph has out-degree one and, as such, at least one cycle; cycles are
pairwise disjoint. For each edge (t, s) −→ (t′, s′) in a cycle, assign teacher t to school s′. Let
µ(k) be the assignment obtained and T (k) be the set of teachers who are not part of any cycle
at the current step. The number of seats of each school is reduced consistently, and we let
S(k) be the set of schools with positive remaining capacities. If T (k) is empty, then set µ(k)
as the outcome of the algorithm. Otherwise, go to step k + 1.

The following example illustrates how the TO-BE algorithm works and how its outcome may
depend on the collection f .

30Our results would also go through with a collection (f(t,s))(t,s)∈T×S of orderings over the teachers which are
teacher-school specific. The class of strategy-proof selections of BE would be larger. However, as Theorem 2 will show
below, only one collection, that is school-specific, is teacher-optimal as detailed in Section 4.3.1.
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Example 4 There are 4 teachers and 2 schools: t1, t′1 are initially assigned to s1 while t2, t′2 are
initially assigned to s2. Preferences are as follows:

�t1 : s2 s1 �s1 : t2 t1 t′2 t′1
�t′1 : s2 s1 �s2 : t1 t′1 t2 t′2
�t2 : s1 s2

�t′2 : s1 s2

With this example, the graph of BE starting at the initial matching is:

• •

• •

(t1, s1) (t2, s2)

(t′1, s1) (t′2, s2)

Consider the two following cases for a collection of orderings f :

1. fs1(t1) < fs1(t
′
1) and fs2(t2) < fs2(t

′
2): then, at the first step of TO-BEf , the implemented

cycle is (t1, s1) � (t2, s2) and, at the second step, it is (t′1, s1) � (t′2, s2). In the final
matching, every teacher is assigned his top-ranked school.

2. fs1(t
′
1) < fs1(t1) and fs2(t2) < fs2(t

′
2): then, at the first step of TO-BEf , the implemented

cycle is (t′1, s1) � (t2, s2). In the second step, since t1 �s1 t′2, t′2 is assigned to s2. The
algorithm stops afterwards with t1 and t′2 assigned at their initial school.

The TO-BE algorithm has some similarities with the TTC mechanism as defined in Shapley and
Scarf, 1974. As TTC, it sequentially clears cycles. In the case of TTC, the assignment obtained after
cycles are cleared Pareto-improves the teacher side. However, schools can be worse-off. In case
of TO-BE, both sides of the market (teachers and schools) get better-off when we clear cycles.31

The fact that TTC can hurt schools can have far reaching consequences in practice. Indeed, in our
empirical analysis (Section 5), we show this is the case empirically and explain how it relates to

31However, TO-BE takes into account the school side in a weak sense: it only ensures that schools get assigned a
teacher that is weakly preferred to the teacher they were initially assigned to. As Theorems 3 and 4 below show, in many
contexts, this property is an implication of strategy-proofness and two-sided maximality.

16



the failure of TTC to achieve important social objectives (such as having teachers getting closer to
their families or having more experienced teachers in deprived areas). We also explore the formal
connection between TO-BE and TTC in Appendix B.

Each mechanism in the above-defined class is indexed by its collection of orderings, f , and is
denoted TO-BEf . We sometimes omit the collection and simply note TO-BE when there is no risk
of confusion. We further describe the role played by orderings f for the final outcome in Section
4.3.1.

4.2.3 Main theoretical result

We are now in a position to state our main theoretical result giving a sense in which the TO-BE
mechanism avoids the drawback of DA∗ (described in Section 4.1) while keeping its incentive prop-
erties.

Theorem 1 The following holds true.

i. DA∗ is strategy-proof but not two-sided maximal;

ii. The set of two-sided maximal mechanisms coincides with the set of selections of BE;

iii. For any collection f , TO-BEf is strategy-proof and is a selection of the BE algorithm.

In the next few lines we explain the arguments behind each point of the above theorem. First,
point i. simply comes from the observation made in Example 1 where under DA∗ no teacher is
able to move from his initial assignment and the initial assignment is not 2-PE.32 Point ii. uses the
following natural result stating that the BE algorithm does characterize the set of 2-sided maximal
matchings.

Proposition 2 Fix a preference profile. The set of possible outcomes of the BE algorithm coincides
with the set of two-sided maximal matchings.

The proof uses the following technical lemma:

Lemma 1 Assume that µ′ 2-Pareto dominates µ. Starting from µ(0) = µ, there is a collection of
disjoint cycles in the directed graph associated with the BE algorithm that, once carried out, yields
matching µ′.

PROOF. The proof can be found in Appendix A.
We can complete the proof of Proposition 2 which yields point ii. of Theorem 1.

32As we already mentioned, the matching µ′ which Pareto-dominates µ must also have a set of blocking pairs
included in that of µ.
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PROOF OF PROPOSITION 2. If µ is an outcome of BE, then it must be two-sided maximal.
Indeed, if this were not the case, then by the above lemma, there would exist a cycle, in the directed
graph associated with the BE algorithm starting from µ, which contradicts our assumption that µ is
an outcome of the BE algorithm. Now, if µ is two-sided maximal, it 2-Pareto dominates the initial
assignment µ0. Hence, appealing again to the above lemma, there is a collection of disjoint cycles
in the directed graph associated with the BE algorithm starting from µ0 that, once carried out, yields
the assignment µ. Clearly, once µ is achieved by the BE algorithm, there are no more cycles in the
associated graph.

Finally, point iii. of Theorem 1 is intuitive given the proximity between TO-BE and TTC, the
latter being strategy-proof. Indeed, all teachers matched in the first step of TO-BE get their most
preferred teacher-school pair (clearly, they are indifferent between two pairs involving the same
school) within all pairs (t, µ0(t)) for which these teachers have a higher priority than t at µ0(t).
Hence, the only way for teachers matched in the first step to get better-off through a deviation is to
get matched to a pair (t, µ0(t)) for which these teachers would have a lower priority than t at µ0(t).
However, this is clearly impossible by definition of TO-BE. Hence, these agents matched in the first
step have no incentives to misreport their preferences. Under our assumption that the ordering f
does not depend on teachers preferences, by deviating, agents matched in the second step of TO-BE
cannot get a seat of a teacher matched in the first step. Then, the argument is similar for these agents
matched in the second step and we can proceed inductively. While the argument is fairly standard,
the proof can be found in Appendix C.

4.3 Further results

We now present additional theoretical results. First, we explain how the choice of the collection of
orderings f for TO-BE can make the mechanism teacher-optimal in a well-defined sense. Second,
we provide economically relevant environments under which TO-BE characterizes the whole class
of strategy-proof and two-sided maximal mechanisms. We also introduce a notion of maximality
which relaxes the constraint that schools must also get better-off compared to the intial assignment.
We characterize this weakening via a class of mechanisms which we show does not contain any
strategy-proof selection. Finally, we analyze our algorithms in a large market environment and
provide further comparisons between DA∗, BE and TO-BE in this setting.

4.3.1 Teacher-optimality

In this section, we show that if the collection of orderings f is chosen appropriately, TO-BE is
optimal for teachers in a well-defined sense. This justifies our terminology: Teacher-Optimal Block
Exchange. We say that a selection ϕ of the BE algorithm is teacher-optimal if there is no 2-IR
matching mechanism that 1-Pareto dominates ϕ. Let f ∗ := (f ∗s )s∈S be the collection of orderings
under which for each school s ∈ S and each pair of teachers t, t′ ∈ T , f ∗s (t′) < f ∗s (t)⇔ t′ �s t, i.e.,
the orderings of the schools follow their priorities. The ordering f can match schools priorities, but it
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does not have to. f is used to break ties between teachers of a given school and therefore determines
which teacher might be pointed at first in an exchange cycle. As such, f might be used as an
instrument to achieve certain policy goals, for example, retaining some teachers in specific schools.
For instance, in the first case of Example 4, the schools orderings match the schools preferences, and
TO-BE produces the teacher-optimal matching. In the second case, however, the schools’ orderings
differ from the schools’ preferences, and TO-BE does not produce the teacher-optimal matching.
In that case, however, both schools prefer the resulting assignment compared to the teacher-optimal
matching.

Consistently, we show that, when schools’ orderings follow schools’ priorities, i.e., the collection
is f ∗, TO-BEf∗ is a teacher-optimal mechanism. We further show that TO-BE is not teacher-optimal
if a different collection of orderings is used.

Theorem 2 Let ϕ be a 2-IR mechanism. TO-BEf∗ is not 1-Pareto dominated by ϕ. Moreover, for
any other collection f 6= f ∗, TO-BEf is 1-Pareto dominated by some alternative 2-IR mechanism.

PROOF. The proof can be found in Appendix D.

Corollary 1 TO-BEf∗ is a teacher-optimal selection of BE. TO-BEf with f 6= f ∗ is not a teacher-
optimal selection of BE. In a one-to-one environment, TO-BEf is a teacher-optimal selection of BE
for any f .33

4.3.2 Characterizations

We show that the class of TO-BE mechanisms we introduce fully characterizes the strategy-proof
and two-sided maximal mechanisms in two cases. First, in a many-to-one environment, we obtain
a characterization when each teacher finds a single school acceptable beyond his initial assignment.
While this is a very special preference structure, it can be satisfied in several natural environments. In
particular, as we will further explain, our application is close to satisfying this assumption.34 Second,
in a one-to-one setting, we prove that the class of TO-BE mechanisms reduces to a singleton and
coincides with BE’s unique strategy-proof selection.35

Let us denote by P the restricted domain of preferences under which each teacher finds accept-
able at most one school beyond his initial assignment. A mechanism in this context is a mapping
from P to matchings. In the sequel, we consider an algorithm that gives the outcome set that our
collections of TO-BE can achieve. The algorithm follows the same steps as TO-BE but does not
refer to any collection f . Formally, along the steps, (t, s) is allowed to point to (t′, s′) if and only if t
ranks s′ first in his opportunity set and t′ has a lower priority than t at school s′. At any step, cycles
may intersect, so that the outcome of this algorithm is not uniquely defined. Here again, we do not
specify how the algorithm selects cycles in the graph. Hence, we consider a correspondence TO-BE

33In the one-to-one environment, since there is only one teacher per school, the ordering f is irrelevant.
34In practice, 78% of teachers rank only one additional region above their initial one.
35In a general many-to-one setting, one can exhibit a selection of BE that is strategy-proof but that is not in the class

of TO-BE mechanisms.
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:�⇒ µ where TO-BE(�) stands for the set of all possible outcomes of this algorithm. A selection
of the TO-BE algorithm is then a mapping ϕ : �7→ µ s.t. ϕ(�) ∈ TO-BE(�).

Theorem 3 In the restricted domainP , the set of two-sided maximal and strategy-proof mechanisms
coincides with all selections of TO-BE.36

PROOF. The proof can be found in Appendix E.
The intuition behind this result is simple. In essence, BE lets teachers point to schools with which

they can form a blocking pair. TO-BE, however, lets teachers point to their favorite school among
those with which they can block. Hence, when each teacher ranks a single school as acceptable, the
two mechanisms are very similar. The domain restriction in the above statement is obviously strong,
but in the teacher labor market presented in Section 5, teachers are assigned to regions, and most
teachers rank only one region acceptable beyond the one to which they are currently assigned. This
result is therefore particularly relevant to the type of environment we consider.

We now present a characterization result in a one-to-one environment wherein each school is
initially assigned one teacher. Note that, in the previous many-to-one setting, the orderings were
used to choose which pair to point to among pairs of the form (t′, s′) and (t′′, s′), i.e., pairs with
different teachers assigned to the same school. In a one-to-one framework, such cases do not arise
since there is only one seat per school and so the collection f is not needed. Thus, the set of TO-BE
algorithms is a singleton. We refer to this unique algorithm as simply TO-BE. Theorem 4 below
shows that in this setting, TO-BE is the unique selection of BE that is strategy-proof.

Theorem 4 In a one-to-one environment, TO-BE is the unique selection of the BE algorithm that is
strategy-proof.

PROOF. The proof can be found in Appendix F.
This result shows that the teacher assignment problem is structurally similar to the college admis-

sion problem. Indeed, in the college admission problem, imposing two-sided efficiency and stability
yields a large set of stable mechanisms. Some of these mechanisms favor students whilst others fa-
vor colleges. Our characterization of two-sided maximal matchings is similar (i.e., Theorem 1). We
end up with a plethora of possible mechanisms, some favoring teachers and others favoring schools.
In the college admission problem, imposing (one-sided) strategy-proofness produces a unique mech-
anism: the stable mechanism that favors students (i.e. DA). Similarly, Theorem 4 shows that, in the
one-to-one teacher assignment problem, imposing the same incentive constraints generates a unique
mechanism: TO-BE, which favors teachers. While the structure is very similar, the two mechanisms
(DA and TO-BE) are very different, as are the underlying arguments.

4.3.3 One-sided maximality

Accounting for both teachers and schools welfare is quite conservative. In particular, some teachers
may be unable to leave their positions because no other teacher with a higher priority will be willing

36Note that two-sided maximality implies 1-IR which, under domain restriction P , implies strategy-proofness.
Hence, all selections of BE are strategy-proof under domain restriction P .
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to replace them. Accordingly, we will examine the cost that our two-sided efficiency requirement
may impose on teachers welfare. When we ignore the school side, we obtain the following natural
counterpart of our two-sided maximality notion.

Definition 2 A matching is one-sided maximal if µ is 1-IR, the set of blocking pairs under µ is a
subset of that under µ0 and there is no other matching µ′ such that (1) all teachers are weakly better
off and some strictly better off, and (2) the set of blocking pairs under µ′ is a subset of that under µ.

We now turn to the characterization of one-sided maximality. As we did for two-sided maximal-
ity, we introduce a class of mechanisms with possible outcomes spanning the whole set of one-sided
maximal matchings. With two-sided maximality, the underlying criteria targeted by the designer are
teacher welfare, school welfare, and the set of blocking pairs. In contrast, with one-sided maximal-
ity, the designer only targets teacher welfare and the set of blocking pairs. The basic idea behind
the mechanism described in this section is as follows: under the BE algorithm, two teachers can ex-
change their assignments if and only if they justifiably envy each other. However, one can imagine
a pair of teachers t and t′ who each desire the other’s school – say s and s′, respectively – and, while
school s does not necessarily rank t′ above t, it does rank first t′ among the individuals who desire
s.37 Similarly, if s′ ranks t first among the individuals who desire s′, then an exchange between t
and t′ increases the teachers welfare and shrinks the set of blocking pairs. Hence, based on a similar
idea, we will weaken the definition of the pointing behavior in the directed graph defined in BE in
such a way that – although schools may become worse off – both teachers welfare increases and
the set of blocking pairs shrinks each time we carry out a cycle. The following algorithm, named
one-sided BE (1S-BE for short), accomplishes this weakening, and Proposition 3 below shows how
this is the best weakening one can hope to achieve.

- Step 0 : set µ(0) := µ0.

- Step k ≥ 1 : Given µ(k − 1), let the teachers and their assignments stand for the vertices of
a directed graph in which, for each pair of nodes (t, s) and (t′, s′), there is an edge (t, s) −→
(t′, s′) if and only if either (1) teacher t has justified envy toward t′ at s′ or (2) t desires s′ and
t is ranked higher by s′ than each teacher who also desires s′ and does not block with s′.38,

39 If there is no cycle, then set µ(k − 1) as the outcome of the algorithm. Otherwise, select a
cycle in this directed graph. For each edge (t, s) −→ (t′, s′) in the cycle, assign teacher t to
school s′. Let µ(k) be the matching so obtained. Go to step k + 1.

Here, again, it is easy to verify that this algorithm converges in (finite and) polynomial time.
Similar to our process for the BE algorithm, we do not specify how the algorithm should select the

37Henceforth, given a matching µ, we say that t desires s if s �t µ(t).
38Note that, here, teacher t may block with s′ under condition (2). Thus, it is easy to see that, if (1) is satisfied, then

(2) is also satisfied. Hence, one could simplify the definition and suppress condition (1). We keep this definition just to
have a parallel with the definition of BE.

39This algorithm shares some similarities with the Stable Improvement Cycle algorithm of Erdil and Ergin (2008).
We discuss how they relate in Section 6.
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cycle of the directed graph, and thus this algorithm defines a class of mechanisms. Each mechanism
in this class is a selection from the correspondence between preference profiles and matchings that
corresponds to the whole set of possible outcomes that can be achieved by the 1S-BE algorithm.

By construction, starting from µ(k − 1), the directed graph defined above is a supergraph of the
directed graph that would have been built under the BE algorithm. Hence, there will be more cycles
in our graph and more possibilities for improving teachers welfare and shrinking the set of blocking
pairs. This reflects the fact that we dropped the constraint that schools welfare must increase along
the algorithm, so that more can be achieved in terms of teachers welfare and reduction of justified
envy. This is illustrated in the following example.

Example 5 There are 4 teachers t1, . . . , t4 and 4 schools s1, . . . , s4 with one seat each. The initial
matching µ0 is such that, for k = 1, . . . , 4, µ0(tk) = sk. Preferences are the following:

�t1 : s2 s3 s1 s4 �s1 : t4 t2 t1 t3
�t2 : s3 s1 s2 s4 �s2 : t4 t3 t1 t2
�t3 : s1 s2 s3 s4 �s3 : t4 t3 t2 t1
�t4 : s1 s2 s3 s4 �s4 : t4 t1 t2 t3

This example has a similar feature as Example 1: t4 is the best teacher and is matched to the
worst school. Thus, we know that, in that case, DA∗ coincides with the initial assignment. We have
six blocking pairs: (t1, s2), (t2, s1), (t3, s2), and (t4, sk) for k = 1, 2, 3 which determine the graph of
BE. There is one cycle in this graph (t1, s1)� (t2, s2). The graph of 1S-BE contains the edges of the
graph of BE but now has two new additional edges. Indeed, t1 and t2 both desire s3 but do not block
with it under µ0, and t2 is preferred to t1 at s3; thus, the node (t2, s2) can point to (t3, s3). Since t3
is the only one who desires s1 and does not block with it, (t3, s3) can point to (t1, s1). Therefore, the
graph of 1S-BE is as follows:

• •

• •

(t1, s1) (t2, s2)

(t3, s3) (t4, s4)
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Note that now there are two additional cycles: (t1, s1) → (t2, s2) → (t3, s3) → (t1, s1) and
(t2, s2)� (t3, s3). If we implement the first cycle, it can be verified that there are no cycles left, and
thus, the matching given by 1S-BE is40(

t1 t2 t3 t4
s2 s3 s1 s4

)
.

There are now only three blocking pairs: (t4, sk) for k = 1, 2, 3.

We now turn to our characterization result. We note that, while the argument in the proof of
Proposition 2 is simple, the proof of the characterization result below is non-trivial.

Proposition 3 Fix a preference profile. The set of possible outcomes of the 1S-BE algorithm coin-
cides with the set of one-sided maximal matchings.

PROOF. The proof is relegated to Appendix G.

This result also provides a computationally simple procedure to find one-sided maximal match-
ings. As for the BE algorithm, we can easily construct selections of the 1S-BE algorithm that are
not strategy-proof. However, while there are strategy-proof selections of BE, we show that there is
no strategy-proof selection of the 1S-BE algorithm.

Theorem 5 There is no strategy-proof selection of the 1S-BE algorithm.

PROOF. The proof can be found in Appendix H.

This result highlights an important difference between the classes of two-sided and one-sided
maximal mechanisms. In contrast to the graph of BE, the graph of 1S-BE can have an edge (t, s) −→
(t′, s′) if t desires s′ and t is ranked first by s′ among teachers who both desire s′ and do not block
with s′. Because of this condition, a teacher can modify the pointing behavior of others: indeed,
if t is ranked first by s′ among teachers who both desire s′ and do not block with s′, then teacher
t can change other teachers’ set of outgoing edges depending on whether he claims to desire s′.
The argument for Theorem 5 relies on this additional feature. Consider that, for each possible
cycle selection under the 1S-BE algorithm, one teacher can profitably misreport his preferences.
Two manipulations are used in that case: one is basic and consists of ranking as acceptable an
unacceptable school in order to be able, once matched with it, to exchange it for a better one.
However, for some cycle selection, another manipulation is needed whereby a teacher ranks as
unacceptable an acceptable school in order to expand other teachers’ sets of outgoing edges. Again,
this new type of manipulation is central to the argument in Theorem 5 and is not available under the
BE algorithm.

40Note that even if one wished to select one of the two other cycles, another cycle would lead to the same matching.
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4.3.4 Large Markets

Theorem 1 states that DA∗ is not two-sided maximal while BE and TO-BE are. As mentioned
above, these results essentially show that DA∗ is not on the Pareto frontier (when both teachers
and schools are welfare-relevant entities), while selections of BE and TO-BE are. This theoretical
finding raises a new set of questions concerning both the magnitude of DA∗’s underperformance and
the performance of the selections of the BE algorithm, in particular TO-BE. Our main goal is to
answer these questions by conducting an empirical analysis (Section 5); in the current section, we
also provide some theoretical answers by adopting a large-market approach.

For simplicity, we assume we are in a one-to-one setting. However, all our results hold in a
many-to-one setting as long as the number of school seats has an upper bound that does not grow
with the number n of students or at least does not grow too quickly.
Students preferences. We assume that there are K tiers for schools. More precisely, there is a
partition {Sk}Kk=1 of S such that the utility of teacher t for school s ∈ Sk (k = 1, ..., K) is given by

Ut(s) = U(uk, ξts)

where function U(·, ·) is strictly increasing and continuous in both components and where ξts is a
random variable on R with a continuous and strictly increasing cumulative distribution function with
bounded support. In our context, we can assume without loss of generality that ξts follows a uniform
distribution over [0, 1] which we assume from then on.41 We also assume that u1 > u2 > ... > uK .
For each k = 1, .., K, we denote by xk the fraction of schools having common value uk and further
assume that xk > 0. Distributing preferences in tiers facilitates positive correlation in teachers
preferences, which has been shown in prior literature. Indeed, by studying teachers preferences
for schools in the US, Boyd, Lankford, Loeb and Wyckoff (2013) find that teachers demonstrate
preferences for schools that are suburban and have a smaller proportion of students in poverty.42

Schools preferences. We assume that the utility of school s for teacher t (or the “score” of teacher
t at school s) is given by

Vs(t) = V (ηts)

41To see this, note that if F is the cumulative distribution of ξts, then by the probability integral transform Theorem,
F (ξts) is uniform over [0, 1]. In addition, since F is strictly increasing and continuous, F−1 is well-defined and
continuous. Hence,

Ut(s) = U(uk, ξts)

= U(uk, F
−1 ◦ F (ξts))

= Û(uk, ξ̂ts)

where Û := U(·, F−1(·)) and ξ̂ts := F (ξts). Now, Û is strictly increasing and continuous and ξ̂ts follows a uniform
distribution over [0, 1]. Our assumption that the distribution of ξts has bounded support is not used here. It ensures,
however, that Û(uk, 1) <∞ which will be useful for us to define asymptotic versions of efficiency or stability.

42In France, in our dataset, we also observe that some regions are systematically preferred to others, as measured by
the share of teachers ranking these regions first. This shows a pattern of tiers: whereas less than 0.5% of the teachers rank
the unattractive regions of Amiens and Créteil first, more than 9% of the teachers rank each of the attractive regions of
Paris, Bordeaux, or Rennes as their first choices. The differences observed are likely related to cross-regional differences
in the proportion of students from disadvantaged social backgrounds and/or minority students.
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where function V (·) is strictly increasing and continuous and where ηts is a random variable on
R with a continuous and strictly increasing cumulative distribution function with bounded support.
Here again, we can assume without loss of generality that ηts ∼ U[0,1].

Note that schools preferences are based only on idiosyncratic shocks and not on common values.
We discuss the possibility to relax this assumption in Remark 2 below. Finally, the initial assignment
µ0 is selected at random among all possible n! matchings, where n := |T | = |S|. A random
environment is thus characterized by the number of tiers, their size, common values and utility
functions for teachers and schools: [K, {xk}Kk=1 , {uk}

K
k=1 , U, V ]. The maximum normalized sum of

teachers payoffs that can be achieved in this society is ŪT :=
K∑
k=1

xkU (uk, 1), which is attained if

all teachers are matched to schools with which they enjoy the highest possible idiosyncratic payoff.
The maximum normalized sum of schools payoffs that can be achieved in this society is V̄S := V (1),
which is attained if all schools are matched to teachers with whom they enjoy the highest possible
idiosyncratic payoff. Clearly, in our environment, in which preferences are drawn randomly, a
mechanism can be seen as a random variable. In the sequel, we let ϕ(t) be the random assignment
that teacher t obtains under mechanism ϕ.

In general, our mechanisms will fail to achieve the maximum sum of utilities on either side.
However, a meaningful question is how often this phenomenon occurs when the market increases
in size. The following concepts will help to answer this question. We say that a mechanism ϕ
asymptotically maximizes movement if, for any random environment,

|{t ∈ T |ϕ(t) 6= µ0(t)}|
|T |

p−→ 1.

A mechanism ϕ is asymptotically teacher-efficient if, for any random environment,

1

|T |
∑
t∈T

Ut(ϕ(t))
p−→ ŪT .

Similarly, ϕ is asymptotically school-efficient if, for any random environment,

1

|S|
∑
s∈S

Vs(ϕ(s))
p−→ V̄S .

Finally, ϕ is asymptotically stable if, for any random environment and any ε > 0,

|{(t, s) ∈ T × S |Ut(s) > U(ϕ(t)) + ε and Vs(t) > V (ϕ(t)) + ε}|
|T × S|

p−→ 0.

The following results show that the comparison between DA∗ and TO-BE in Section 4.2 can be
strengthened in this large market environment. The proofs of these results are relegated to Appendix
I.

Theorem 6 The following holds true.

25



i. DA∗ does not maximize movement, and thus is not asymptotically teacher-efficient, asymptot-
ically school-efficient, or asymptotically stable;

ii. Each selection of BE asymptotically maximizes movement. There is a selection of BE that is
asymptotically teacher-efficient, asymptotically school-efficient, and asymptotically stable;

iii. TO-BE is asymptotically teacher-efficient. TO-BE is neither asymptotically school-efficient
nor asymptotically stable.

The proof of point i. exploits the idea of Example 1: with non-vanishing probability, if a teacher
t initially assigned a top tier school applies to a school in that tier other than his initial assignment,
some teacher in the lower tiers will be preferred by that school (like teacher t∗ in Example 1).
Hence, under DA∗, teacher t will not be able to access that school. This simple argument implies
that, among teachers initially assigned to schools in tier 1, the expected fraction of teachers staying
at their initial assignments is bounded away from 0. Point ii. confirms that this issue does not
occur with any selection of BE. The novelty of Theorem 6 though is that TO-BE can fail to be
asymptotically stable even though some selections of BE are. Since, as we have already proved,
in our one-to-one environment, TO-BE is the unique selection of BE which is strategy-proof, we
interpret this as a cost of strategy-proofness.43 Where does this cost come from? As we have already
noted, while the BE algorithm treats teachers and schools symmetrically, TO-BE favors teachers
at the expense of schools. Indeed, TO-BE only ensures that schools are assigned a teacher they
weakly prefer over their initial assignment. Hence, each school’s assignment under TO-BE is a
random draw within the set of teachers it finds acceptable. Given the school’s idiosyncratic payoff
for its initial assignment ηµ0(s)s, the expected idiosyncratic payoff for a school s under TO-BE (s)

is E
[
ηst
∣∣ηst ≥ ηµ0(s)s

]
= 1

2

(
1 + ηµ0(s)s

)
. Thus, the (unconditional) expected idiosyncratic payoff

of school s under TO-BE (s) is E
[

1
2

(
1 + ηµ0(s)s

)]
= 3

4
, therefore TO-BE cannot be asymptotically

school-efficient or asymptotically stable.

Remark 1 Let us recall that TTC, as defined in Shapley and Scarf, 1974, does not take into account
the school side at all, that is, the outcome achieved by TTC does not depend on the realization of the
collection {ηts}t,s. This simple observation implies that each school’s assignment under TTC is a
random draw within the whole set of teachers. Thus, the expected idiosyncratic payoff of a school s
under TTC is 1/2 which is 2/3 of what is achieved under TO-BE. Because of this, one can prove that
the expected fraction of blocking pairs under TTC is always larger than under TO-BE.44

Remark 2 Schools preferences could be drawn in a similar way as students preferences (allowing
tiers). The only issue when introducing richer schools preferences is that asymptotic stability and
individual rationality become incompatible. To understand this, consider two tiers S1 and S2 for

43While the implementation of the asymptotically stable selection of BE may not be practical, we consider this a
benchmark and want to compare it to what can be achieved by a mechanism such as TO-BE.

44Specifically, fix any ε > 0, the expectation (when n goes to infinity) of
|{(t, s) ∈ T × S | Ut(s) > U(ϕ(t)) + ε and Vs(t) > V (ϕ(t)) + ε}| divided by |{T × S}| is greater when ϕ =
TTC than when ϕ = TO-BE.
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schools, each of cardinality n/2, and two tiers for teachers T1 and T2, each of size n/2. Further
assume that common values are chosen in such a way that all schools (resp. teachers) in the first
tier are preferred by all teachers (resp. schools) to schools (resp. teachers) in the second tier
irrespective of the realizations of the idiosyncratic shocks. Given that the initial assignment is
drawn at random, with a probability which is bounded away from 0, the fraction of teachers in the
second tier initially matched to a school in the first tier is bounded away from 0. This implies that at
any individually rational matching, with probability bounded away from 0, there is a non-vanishing
fraction of teachers from the first tier matched to schools in the second tier and a non-vanishing
fraction of teachers in the second tier matched to schools in the first tier. Thus, with probability
bounded away from 0, we will have a non-vanishing fraction of blocking pairs. Therefore, the
second part of point ii. of Theorem 6 would not extend to this richer environment. We conjecture,
however, that there is a selection of BE which is asymptotically teacher-efficient and has an expected
fraction of blocking pairs strictly smaller than that under TO-BE.

5 Empirical Analysis

This empirical section aims at estimating how much the mechanisms we suggest would change
assignments in a real teacher assignment problem. We start by motivating our focus on region
assignment, and providing a brief presentation of the dataset. We then estimate teachers preferences
over regions, and run counterfactual scenarios for our mechanisms to measure the extent of the
improvements they may yield.

5.1 Focus on region assignment

Teachers are assigned to schools in two successive phases. In the first phase, they can apply to a
region if they want to transfer from their current region to another one. In case they participated in
the first phase, teachers have to apply in the second phase to a school within the region they obtained
in the first phase. If they did not participate in the first phase, teachers can also apply to a school
within the region they are currently assigned to. We estimate teachers preferences over regions to
predict the matching outcome of the first phase when we change the algorithm used in that phase.
Of course, one may wonder if preferences over regions are well-defined objects since what matters
for teachers is their assigned school within a region. Note that there is no limit on the size of the list
teachers can submit in the first phase. One simplistic assumption is that teachers have preferences
over schools that are lexicographic: what matters foremost for them is the region where the school
is located and then the school within that region. Some evidence supports this assumption. First,
regions are quite large (there are only 31 of them in France) and tenured teachers are very picky on
their region choice: 78% of them rank a single region, and many of them simply ask for a transfer to
the region where they grew up (46%) or to the region where their family is located (30%). This may
suggest that getting closer to a teacher’s hometown or family members is of first-order importance
in many teachers preferences over regions while the exact school obtained within the region may
only be of second order.
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Of course, we do not have definitive evidence that preferences are lexicographic. However, if
teachers’ preferences are not lexicographic, their preferences over regions may still be well-defined
by backward induction, meaning that teachers assess their school assignment probabilities in the
second phase and then use these probabilities to form their preferences over regions.45 In that case,
it is important that teachers’ assessments of their school assignment probabilities do not vary too
much when we run counterfactuals so that teachers’ preferences over regions remain the same. This
assumption is relatively plausible for several reasons. First, our counterfactual exercises only change
the assignment mechanism in the first phase (not in the second). In addition, changes of algorithms
in the first phase only marginally impact the pool of participants in the second phase. This is because
(1) there are significantly more participants in the second phase than in the first phase (about three
times more) and (2) in the first phase, the distribution of teachers’ priorities assigned to each region
only marginally changes when we change mechanism.46 This suggests that a change of mechanism
from DA* to TO-BE in the first phase would only marginally change competition across teachers in
the second phase.

5.2 Data

We use data on teacher assignment to regions in 2013 including (1) teachers reported preferences,
(2) regions priorities, (3) each teacher’s initial assignment (if any), and (4) regions’ vacant positions.
We also use data on teachers and regions characteristics to estimate teachers preferences (DEPP,
2013, 2014). We keep teachers in the 9 largest subjects, such as sports, literature or maths.47 Smaller
subjects often yield estimates that are too unprecisely estimated and we were often unable to estimate
region fixed effects because no teacher is initially assigned one of the 31 regions. In addition, we
suppress all teachers who do not have an initial assignment (newly tenured) and all empty seats
in regions.48 Hence, in our market, each teacher is initially assigned to a region, and each seat is

45For each region R, a teacher has beliefs over the schools he may obtain provided that he gets assigned region R
in phase 1. These assessments can be based on annual publications by the ministry and the teacher unions of the cutoff
score needed to enter each school (i.e., the lowest priority of the teachers who entered the region). Teachers know their
own score in each school, so they can easily compare it to the cutoffs, which are fairly stable over time, as shown in
Figures A.4 and A.5. The coefficient of correlation between the cutoffs in 2012 and 2013 is 0.93 in math and 0.98 in
French. Coefficients are similar for other fields and other years.

46Regarding (1), in 2013, about 25,000 teachers participated in the first phase and 65,000 in the second phase. 5,400
tenured teachers were assigned to a new region in the first phase, which represents only 8% of the teachers participating
in the second phase. We also provide suggestive evidence regarding (2). In math and English, we find that for 71% and
83% of the regions, the average change in teacher priority that would be experienced by moving from DA∗ to TO-BE is
smaller than the average cutoff difference between districts of a given region (each region is partitioned into districts).
This means that, for a teacher, his set of feasible districts is likely to remain similar when moving from DA∗ to TO-BE.

47Among all subjects, the number of teachers ranges from 2 to 1,753 teachers. The nine subjects we keep are sports,
literature, English, mathematics, Spanish, history and geography, biology, physics, and technology.

48This keeps the exercise in line with the model used in Section 3. Further, our main theoretical insights in Section
4.1 show that DA∗ (the algorithm currently used to assign teachers in France) fails to implement exchanges of posi-
tions across tenured teachers which can make both sides of the market better-off. These exchanges are made across
tenured teachers and the analysis is thus made clearer by first ignoring newcomers and vacant positions. We discuss the
robustness of our empirical results to the introduction of 4,627 newcomers in Section 5.5.
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initially assigned to a teacher. We also remove couples from our sample. Spouses in two different
subjects can submit joint mobility applications (by submitting two identical lists), which creates
dependencies between the markets. As is well-known the presence of couples can create additional
complications and we ignore this issue. After ignoring 1,042 spouses, our final sample contains
6,302 teachers.

Table 1 reports descriptive statistics on teachers, their initial assignment, and the region they
rank first. Appendix J.1 provides a description of each variable. The share of female teachers varies
substantially accross subjects (from 15.1% in technology to 84% in English). Compared to the
region they are initially assigned to, teachers’ first-choice regions tend to have students from more
privileged backgrounds and students of higher ability (as measured by the share of students who pass
the national exam at the end of middle school, called DNB). Teachers’ first-choice regions also tend
to be much more likely to be the region in which they were born, a region situated in the South of
France, a region where the share of private schools is higher, and where the share of inexperienced
teachers is lower. Conversely, compared to the region they are initially assigned, teachers’ first-
choice regions are significantly less likely to have a large share of students enrolled in a priority-
education school which is the label given to the most disadvantaged schools. Finally, while a large
share of the teachers who submit a mobility request come from the two most unattractive regions of
Créteil or Versailles (70.6% in Sports and 37.7% in French for instance), a very small share of the
teachers rank these two regions first (1% in Sports and 2.8% in French).

5.3 Estimation of teachers’ preferences

For each of the 9 subjects, we start by estimating teachers’ preferences over regions. More specifi-
cally, teacher t’s utility for region R is a parametrized function defined as follows:

ut,R = δR + Z ′t,Rβ + εt,R (5.1)

where δR is the region fixed effect, β is a vector of coefficients, Zt,R is the vector of teacher-region-
specific observables and εt,R is a random shock i.i.d. over t and R which follows a type-I extreme
value distribution, Gumbel(0, 1). The region fixed effect captures region characteristics such as
average socio-economic and academic level of students in the region, cultural activities, housing
prices, facilities, etc... The vector Zt,R includes dummies specifying if the region is the birth region
or the region in which a teacher is currently assigned, as well as the distance between the region
ranked and the current region of a teacher. Zt,R also includes interaction terms between teachers and
schools characteristics (that are presented in Panels A and B of Table 1). We apply standard scale
and position normalization, setting the fixed effect of the Paris region to 0.

Identifying assumptions. We considered two identifying approaches to estimate our parameters.
First, given that preferences over regions are well-defined and the mechanism used to assign teachers
to regions (DA∗) is strategy-proof, we assume that teachers report their preferences sincerely.49

49To be accurate, the mechanism used in France is equivalent to DA∗. The ministry uses the following steps: (1) It
considers teachers’ rankings and their modified priorities. (2) It runs the school-proposing deferred acceptance mech-
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Table 1: Descriptive Statistics for Teachers and Regions

SPO LIT ENG MAT SPA HG BIO PHY TEC
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A. Teachers’ characteristics

% Female 43.8 78.8 84.2 48.9 83.3 51.8 65.9 45.2 15.1
% Maried 57.3 47.6 44.6 44.1 48.6 43.5 55.0 42.3 56.9
% In disadvantaged school 12.3 14.1 8.1 12.6 4.1 9.2 6.7 5.3 16.4
Experience (in years) 6.79 7.56 6.53 6.18 6.38 6.81 6.14 5.94 8.61
% Advanced teaching qualif 6.3 15.9 7.3 20.7 8.2 10.1 19.3 14.6 1.3

Panel B. Characteristics of the region teachers are initially assigned to

Is birth region 8.8 8.7 9.3 8.6 6.8 10.0 7.4 7.3 7.4
Is Créteil or Versailles 70.6 37.7 35.6 52.3 60.7 45.0 64.4 57.0 66.2
Is in South of France 1.7 5.6 12.7 9.3 1.9 6.7 5.9 5.7 3.9
% students in urban area 78.0 61.7 64.0 67.4 71.3 63.8 71.9 69.0 74.8
% disadvantaged students 54.1 52.5 53.5 54.0 53.5 52.9 53.7 53.7 53.8
% students in priority educ 26.8 26.0 22.7 24.5 26.5 25.3 28.0 26.2 27.7
% students private school 17.9 15.2 17.4 16.3 16.9 15.9 16.7 15.5 17.5
% teacher younger than 30 14.7 11.9 11.3 13.3 13.8 12.7 14.9 13.3 14.3

Panel C. Characteristics of the region teachers rank first

Distance to init region (km) 904.8 2148.7 1521.9 1316.9 1073.4 1608.4 828.9 1593.7 1405.8
Is birth region 48.9 36.5 40.0 35.8 44.4 35.6 44.1 44.0 51.9
Is in South of France 39.3 25.2 25.4 25.2 53.7 24.4 27.0 32.3 30.3
Is Créteil or Versailles (CV) 1.0 2.8 3.4 3.3 1.2 1.7 0.7 0.9 0.9
% students in urban area 51.1 60.2 51.7 56.2 53.8 54.5 49.1 51.1 49.4
% disadvantaged students 53.6 52.8 53.5 53.1 53.1 53.1 53.6 53.1 52.7
% students in priority educ 17.2 20.3 17.9 19.9 15.9 18.1 17.1 17.5 17.8
% students private school 22.4 23.7 25.8 22.9 22.5 25.4 23.5 22.4 20.4
% teacher younger than 30 6.0 6.5 6.0 6.4 5.6 6.1 6.1 6.1 6.4

Observations 1498 859 628 605 683 573 460 527 469

Notes: This table reports descriptive statistics for teachers and regions in each of the nine subjects we use for the demand
estimations, i.e., from column (1) to column (9): sports (SPO), literature (LIT), English (ENG), mathematics (MAT),
Spanish (SPA), history and geography (HG), biology (BIO), physics (PHY), and technology (TEC). Statistics are reported
for the sample of teachers we use for the demand estimations. These are teachers with an initial assignment. We omit
teachers who submit a joint list with their partner, teachers who are from one of the five regions that are overseas, and
teachers for whom one of the individual characteristics is missing. The last row reports the number of teachers in each
subject. Panels A, B, and C respectively present descriptive statistics on teachers, on the region in which they are initially
assigned, and on the region they rank first.
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Because teachers’ choices are ranked ordered lists and thanks to the functional form assumptions,
one can get closed form solutions for teachers’ choice probabilities (e.g., Hausman and Ruud, 1987)
and estimate the parameters by maximum likelihood. This has been a standard approach in the
literature so far (e.g., Abdulkadiroğlu et al., 2017).

The second approach relaxes the truthtelling assumption. In our context where French teachers
have reasonably accurate information on their acceptance probabilities in each region, one may be
concerned that teachers simply do not rank regions where their chances to be accepted are too low.50

This behavior would bias the estimated parameters when assuming that teachers are truthful. To
address this potential bias, we use a second estimation method recently developed by Fack et al.
(2019).51 To describe the approach, let us define the feasible set of each teacher as the set of regions
that have a cutoff—that is, the lowest priority of the teachers assigned to a region—smaller than his
own score. These are regions a teacher could be assigned to if he was ranking the region first in his
rank order list. The new identifying assumption is that, for each teacher, the region obtained is his
most prefered region among all regions that are in his feasible set. This assumption is theoretically
founded: Artemov et al. (2019) show that, in a large market environment, any (regular) equilibrium
outcome of DA∗ must have this property. Hence, we have a discrete choice model with personalized
choice sets. Here again, choice probabilities have closed form solutions and we estimate parameters
using maximum likelihood.

We performed two tests and the results lead us to use the second approach for our analysis.
First, we run the statistical test based on Hausman (1978) and proposed by Fack et al. (2019) to test
truthtelling (i.e., the first identifying assumption). The test strongly rejects truthtelling in each of the
nine subjects we consider. This test is a joint test of the truthtelling assumption and the functional
form assumptions, so we provide additional evidence by testing the goodness of fit of the estimated
model. To do so, we look at the top two schools that a teacher has included in his submitted rank
order list (ROL), and we compute the probability of observing this particular preference ordering
in the ROL predicted with our estimations, under both the truthtelling and stability assumptions. In
the latter, in the nine subjects in which we run the estimations, the ordering of teachers’ top two
choices has a mean predicted probability of 66 percent (ranging from 63 percent in technology to 72
percent in Spanish). On average, that measure of goodness of fit is 25 percentage points higher when
using the stability-based estimates (second assumption) than when using the truthtelling assumption
(first assumption). Based on these results, we only use the second identifying assumption for the
estimations and counterfactuals. We also present in the online Appendix S.3 additional fit measures
for subgroups of teachers as well as out-of-sample fit measures that compare the characteristics of

anism using the modified priorities and the reported preferences. (3) From this outcome, it runs stable improvement
cycles (as defined in Erdil and Ergin, 2008) using the modified priorities. Using Theorem 1 in Erdil and Ergin (2008),
we know this process yields the outcome of the teacher-proposing deferred acceptance mechanism with the modified
priorities.

50Cutoffs values for entry in each region are published every year. Figures A.4 and A.5 show that these cutoffs are
relatively persistent over time, which provides reasonably accurate information to teachers on their chances to enter each
region. The coefficient of correlation between the cutoffs in 2012 and 2013 is 0.93 in math and 0.98 in French. They are
similar for other subjects and years.

51For more references on estimations that do not require truthtelling, see Akyol and Krishna (2017); Artemov, Che
and He (2019); Agarwal and Somaini (2018); Calsamiglia et al. (2020).
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the regions that teachers rank.
We report preference estimates for French, math, and English teachers in Table 2 and additional

sets of estimates for teachers in other subjects in Tables A.1 and A.2. The online Appendix S.2
provides a detailed description of the variables and final specification we use for preference estima-
tions. The first nine rows of Table 2 report coefficients for a selected set of region fixed effects. The
bottom part of the table reports estimates for region-teacher interaction terms (the first term of the
interaction always refers to regions characteristics and the second term to teachers characteristics).
Although our goal is mainly to use these estimates for counterfactuals rather than to interpret the
sign and magnitude of each variable, there are several interesting patterns in Table 2. First, we find
very negative fixed effects for the three regions of Créteil, Versailles, and Amiens (relative to Paris)
that are well known for being disadvantaged and unattractive. Second, teachers have a strong prefer-
ence for the region in which they were born, which is consistent with the fact that 46% of them rank
their birth region first. Third, teachers dislike regions that are further away from their initial region.
The results finally suggest that birth regions are significantly less attractive when they gather a large
fraction of young teachers.

5.4 Counterfactual results

5.4.1 Methodology and Preliminary Results

We use our estimates of teachers preferences to draw their rank ordered list 5,000 times using equa-
tion (5.1). After having drawn preferences, we keep the entire set of regions without imposing any
truncation.52 In each of the 9 subjects and for each preference draw, we use these simulated pref-
erences and the priorities from our data to run DA∗, BE, TO-BE, and 1S-BE.53,54 All the results
we report in this section correspond to averages over the 5,000 preference draws and 9 subjects.55

52This means that teachers can rank unacceptable regions. In practice, teachers would rank regions up to their initially
assigned region; this is the case, for instance, for the reported preferences in our data set. Obviously, for individually
rational mechanisms, the outcomes are the same.

53To determine a teacher’s priority in his initial region, we only use the seniority criteria (total seniority in teaching
and seniority in the current school). The other criteria currently used by the ministry (like spousal reunification or having
a position in a disadvantaged school) are supposed to help a teacher leave his current region. It would not make sense to
use these criteria for the region a teacher is initially assigned to.

54Recall that we view teachers’ priorities as capturing social objectives of the designer. If one wants to take regions
rankings as real regions preferences, our definition of priorities assumes that a region may not like incumbent teachers
more than external teachers. In other words, we assume that the modified priorities used to run DA∗ (in which incumbent
teachers get the highest priority) may not reflect regions’ true preferences. With this interpretation, we acknowledge that
there are arguments in favor and against this assumption: On one hand, an existing teacher might possess region-specific
knowledge that might be valuable for a region. On the other hand, retaining teachers who deeply wish to leave a region
can give rise to discontent and disengagement from teachers. So overall, we do take the interpretation that teachers’
priorities reflect the designer’s social objective. Our view is that the high priority that incumbent teachers are given
under DA∗ is not the actual priority, but just an artificial priority to guarantee the individual rationality of DA∗.

55Note that our preference estimates (presented in Section 5.3) assume that each teacher obtains his most preferred
region in his feasible set. Under this assumption, teachers may not sincerely report their preferences, which might
seem at odds with our counterfactual analysis that assumes that teachers sincerely report their preferences. Yet, it is
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This empirical section aims at testing our theoretical results. We therefore focus on three main out-
comes: teachers welfare, regions welfare, and number of blocking pairs. We start by reporting a few
preliminary results.

Fact 0
(i) Under the regular DA mechanism, individual rationality is violated for 1,413 teachers, that

is, they are assigned to a region that they consider worse than their initial region. 1,433 teachers
obtain a region that they prefer to their initial one.

(ii) The individually rational mechanism that maximizes movement allows on average 1,817
teachers to move from their initial assignment, that is, 29% of the teachers.56

This fact confirms that the regular DA mechanism is not individually rational, but most impor-
tantly it shows that the violation of individual rationality is quite strong. The second point shows that
there is congestion on the markets: if we focus only on individually rational matchings and attempt
to ensure as much movement as possible, only 29% of teachers will be able to move. We should
bear in mind this upper bound when considering the performance of our algorithms and the scope
of their improvement. The relatively small fraction of teachers able to move is explained primarily
by the high proportion of teachers reporting few acceptable regions (i.e., regions ranked ahead of
the region they are currently assigned to) combined with correlation in their preferences. Under the
estimated preferences, half of the teachers rank only 6 regions (out of 31) above their initial region.57

5.4.2 The inefficiency of DA∗ and its cause

Our theoretical results show that DA∗ is not two-sided maximal. To assess how far DA∗ is from the
two-sided efficiency frontier, we run the TO-BE algorithm starting from the matching obtained by
DA∗. We call the resulting mechanism TO-BE◦DA∗. Running TO-BE on top of DA∗ guarantees
that we obtain a matching that dominates that of DA∗ in terms of both teacher and region welfare.
Every time the assignment under TO-BE◦DA∗ differs from that under DA∗, DA∗ is not two-sided
maximal. A first striking result is that DA∗ is noticeably inefficient.

Fact 1 DA∗ is never two-sided maximal.58 TO-BE◦DA∗ matches four times more teachers (953.3)
than DA∗ (237.9).

important to keep in mind that, under our identifying assumption, agents misreport only in an outcome irrelevant way
(i.e., the matching obtained when misreporting is the same as the matching obtained when reporting sincerely). In our
counterfactual analysis, we implicitly assume that this is the way in which teachers behave which is consistent with the
assumption we make for preference estimations (Artemov et al., 2019).

56To find such an assignment, we simply solve a linear assignment problem, see for instance Martello and Toth
(1987).

57The first column of Table 3 shows that, in our simulated preferences, on average, 263.7 teachers rank their initial
region first. This is because our estimation approach does not account for the fact that, in the reported preferences, all
teachers rank at least one region above their initial one. In practice, because 78% of teachers rank only one additional
region above their initial one, our estimation leads to a very high utility for the initial region. Combined with the
unbounded gumbel shocks, this can lead some teachers to rank their initial region first.

58This result holds for each subject and preference draw. Put in another way, with empirical frequency equal to 1,
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This large difference is statistically significant at the 1% level. Next, we investigate the origin of
DA∗ inefficiency. Our Example 1 suggests a possible explanation: Some teachers initially assigned
to unpopular regions do not get into some of the regions they ranked (for instance region A and
B), and therefore stay in their initial region. Because some of these teachers have a relatively high
priority, they block the exchanges of seats for other teachers (between region A and B), and therefore
limit the overall mobility. We check the role played by this mechanism in our data by keeping track
of the cycles implemented when running the TO-BE mechanism on top of the assignment we get
under DA∗. We identify all cycles implemented at some step of the TO-BE◦DA∗ mechanism and
check how many times each cycle is blocked by a teacher who is prevented from moving away from
Créteil or Versailles under DA∗ (the two most unattractive regions in France).59

This exercise confirms that DA∗’s inefficiency is largely driven by our stylized example. Non-
movers from unattractive regions can have a harmful effect on mobility by blocking a large number
of cycles exactly like in Example 1. On average, 99.5 % of the cycles of TO-BE ◦ DA∗ are blocked
by teachers initially assigned in Créteil or Versailles. Put differently, from the assignment given by
DA∗, almost all exchanges which would make both sides of the markets better-off are not realized
because some high priority teachers stuck in a disadvantaged region block the exchange.60 These
figures explain the under performance of DA∗, but also the magnitudes of improvement we report
for our alternative mechanisms in the next sections.

5.4.3 Performance of the TO-BE mechanism

We now turn to discussing the performance of the TO-BE mechanism. Before commenting on the
results, it is worth briefly discussing why comparing TO-BE to DA∗ is relevant. We should bear
in mind that, for an arbitrary outcome of the BE mechanism (in particular the outcome of TO-BE),
its set of blocking pairs may differ from that of DA∗, and similarly, the outcome may not 2-Pareto
dominate DA∗. Nevertheless, the comparison remains interesting for two reasons. First, we know
from the above results that DA∗ is far from being two-sided maximal, so that BE and TO-BE, which
are two-sided maximal, can be expected to perform much better in terms of welfare and fairness.
Second, our large market theoretical results (Theorem 6) suggest that BE and TO-BE perform better
than DA∗ in these two dimensions. In particular, it suggests that the welfare of teachers should be
much higher under TO-BE than under DA∗ in terms of the average ranks of the region teachers
obtain. This is indeed consistent with the following empirical finding.

DA∗ is not two-sided maximal. This, of course, implies that the result also holds when we average results across all
subjects and preference draws.

59More formally, let µ := DA∗ and µ′ := TO-BE◦DA∗. Fix a cycleC implemented at some step of the TO-BE◦DA∗

mechanism. We say that a teacher t blocks cycle C if i) µ(t) = µ0(t) and there exists a teacher t′ who is part of cycle
C such that ii) µ′(t′) �t µ(t) and t �µ′(t′) t′. In other words, a cycle is blocked by a teacher if this teacher stays at
his initial assignment under DA∗, envies region µ′(t′) and would justifiably envy teachers t′ if the latter was matched to
this region.

60The teachers who are part of these blocked cycles represent 99.7% of the additional movement generated by
TO-BE ◦ DA∗.
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Table 2: Teachers Preference Estimates

French Math English

coef s.e. coef s.e. coef s.e.

(1) (2) (3) (4) (5) (6)

Region BESANCON -3.88*** (0.99) 0.37 (0.8) -2.40*** (0.64)
Region BORDEAUX -1.36 (0.95) 1.12 (0.66) 1.84** (0.62)
Region DIJON -5.08*** (0.97) -2.88*** (0.73) -3.51*** (0.61)
Region LILLE -5.09*** (0.95) -1.55 (0.81) -3.62*** (0.64)
Region REIMS -6.22*** (1.00) -3.60*** (0.74) -1.13 (0.66)
Region AMIENS -6.44*** (1.06) -3.31*** (0.75) -4.37*** (0.67)
Region ROUEN -5.96*** (0.97) -2.17** (0.69) -2.06*** (0.59)
Region CRETEIL -6.66*** (1.00) -3.65*** (0.71) -3.62*** (0.69)
Region VERSAILLES -5.12*** (0.89) -2.13*** (0.60) -2.74*** (0.50)
Current region 4.97 (6.72) -15.72 (8.27) -16.76* (7.65)
Birth region 10.21** (3.41) 14.89*** (3.53) 4.92 (4.16)
Distance current region -23.33*** (4.61) -23.52*** (5.47) -23.66*** (5.34)
% disadv stud x Teach exp 3.51** (1.27) 0.09 (1.76) -1.44 (1.52)
% disadv stud x Teach exp sq -0.13* (0.05) -0.01 (0.08) 0.05 (0.07)
% disadv stud x Birth region -12.28 (6.41) -21.01** (6.61) -3.49 (7.74)
% stud urban x Current region -5.82*** (0.85) -5.40*** (1.15) -4.37*** (0.93)
% stud urban x Teach from CV 2.81*** (0.71) 0.12 (0.68) 1.58* (0.73)
% stud in priority educ x Married -7.61*** (1.60) -3.89* (1.65) -6.09** (1.94)
% stud in priority educ x Current region 11.26*** (2.99) 0.67 (3.80) 15.87*** (3.21)
% stud in private school x Teach in disadv sch 5.48** (2.01) 6.58*** (1.83) 8.48** (2.80)
% teachers younger than 30 x Advanced qualif 10.59** (3.65) 0.24 (3.06) -1.03 (4.90)
% teachers younger than 30 x Current region 52.42*** (5.19) 54.15*** (6.47) 36.91*** (5.26)
% teachers younger than 30 x Birth region -22.08*** (3.73) -19.10*** (4.79) -22.78*** (5.01)
Region in South of France x Teach from CV -1.27*** (0.37) 0.35 (0.36) 0.50 (0.43)
Number of teachers 859 605 628
Fit measure 0.669 0.674 0.642
Fit measure (teachers from Créteil or Versailles) 0.682 0.659 0.593
† Notes: This table reports selected coefficients from estimations of teachers preferences for regions characteristics based on Equa-

tion 5.1. We use the estimation method recently developed by Fack et al. (2019). We use a discrete choice model with personalized
feasible choice sets. For each teacher, his feasible choice set is the set of regions that have a cutoff smaller than his own score. We
estimate parameters in columns 1, 3, and 5 using maximum likelihood. We set the fixed effect of the Paris region to 0. The last row
reports our goodness of fit measure, that we compute by looking at the top two regions that a teacher has included in his submitted
rank order list (ROL). We measure, for each teacher, the probability of observing this particular preference ordering in the ROL
predicted with our estimations. We then average these probabilities across teachers. Stars correspond to the following p-values: *
p< .05; ** p< .01; *** p< .001.
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Teachers welfare. We use two measures of teacher welfare: the number of teachers who move
under each mechanism and the rank of the region a teacher obtains. TO-BE performs significantly
better than DA∗ in both dimensions, as reported in Table 3. While this is not implied by our theoret-
ical results, we observe the following fact:61

Fact 2 The distribution of ranks that teachers obtain under TO-BE first-order stochastically domi-
nates the distribution under DA∗, up to rank 23 (out of 25).62 652.5 additional teachers move under
TO-BE compared to DA∗, which corresponds to an increase of 274.92%. The number of teachers
who obtain their most preferred region is also 53.51% larger under TO-BE than under DA∗.

We perform a test to check the statistical significance of the stochastic dominance up to a given
rank K. Note that the number of teachers who obtain rank k is not independent of the number of
teachers who obtain rank k + 1, so we cannot directly use the standard errors reported in Table 3 to
perform a test. Hence, we proceed as follows. For each of the 5,000 preference draws, we compute
the rank distribution for each mechanism. Then, for each pair of mechanisms, we compare the two
cumulative rank distributions by computing, for each rank k, the difference in the number of teachers
assigned rank k or lower. We keep the minimal distance over ranks k = 1, ..., K. Repeating this
5,000 times gives us 5,000 draws of an i.i.d. variable. Using its standard error, we perform a t-test of
whether the variable is positive, that is, whether one distribution stochastically dominates the other
up to rank K.

Up to rank 23, the rank distribution under TO-BE significantly dominates that under DA∗ at the
1% significance level. Finally, note that there is no 2-Pareto domination between TO-BE and DA∗.
In particular, some teachers may prefer the latter assignment.63

We investigate what drives the magnitudes of reassignments under TO-BE. First, quite intu-
itively, the larger the number of applicants to a region, the larger the number of teachers who can
leave that region as the latter can be replaced. Figure A.6 shows a strong correlation between the
ratio of entering over exiting requests in a region and the share of teachers initially assigned that
region who obtain a new assignment. The priority of the teachers requesting to move is also likely
to determine the performance of the TO-BE mechanism. Figure A.6 confirms that several regions
with similar entering over exiting ratios have large differences in mobility. Grenoble and Lyon, for

61The TO-BE mechanisms are parameterized by a collection of orderings over teachers, one for each region. We use
that in which teachers are ordered according to their priority points within each region so that, following Theorem 2, the
outcome is teacher optimal.

62Note that the numbers we report are averaged across all subjects and preference draws. The rank distribution under
TO-BE dominates that under DA∗ in all preference draws and subjects up to rank 22.

63Only 116.3 teachers (1.8% of the market) prefer their assignment under DA∗. 834.5 teachers prefer their TO-BE
assignment to their DA∗ assignment. We also checked which groups of teachers lose or gain. We find that all groups of
teachers have a higher number of teachers who prefer their TO-BE assignment, except for teachers initially assigned to
the disadvantaged regions of Créteil and Versailles. Out of the 3561 teachers initially assigned these regions, 33.3 are
better-off under TO-BE and 65.8 are worse-off. This is because TO-BE is 2-IR whereas DA∗ is not, which can restrict
the mobility of teachers from disadvantaged regions. This effect is extensively discussed in Section 5.5 in which we
incorporate vacant positions and teachers without an initial assignment. It can easily be solved by introducing a version
of TO-BE that partly relaxes the 2-IR constraint as discussed in this section.
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instance, have respective mobility rates of 47% and 53% despite having the same requests ratio. That
difference in performance seems partly driven by a large difference in the age profile, and therefore
in the priority, of the teachers initially assigned to these two regions. Teachers from Grenoble have
an average priority of 97 versus 131 in Lyon, a difference equivalent to 1.3 years of experience.
The good performance of TO-BE (keeping entering over exiting requests constant) usually corre-
lates with high priority of exiting teachers. This is true when comparing Lyon and Grenoble, Dijon
and Rouen, or the trio Montpellier-Toulouse-Limoges, hence suggesting that higher priorities help
teachers leave their region.64

Fairness. Recall that Theorem 6 suggests that TO-BE performs better than DA∗ in terms of fair-
ness. In particular, it suggests that the number of teachers with justified envy should be smaller
under TO-BE than under DA∗. This is indeed consistent with the following empirical finding. Table
4 reports the cumulative distribution of the number of regions with which teachers block.

Fact 3 The distributions of the number of regions teachers can block with under TO-BE stochas-
tically dominates that under DA∗ up to rank 23 (out of 25). The number of teachers who are not
part of a blocking pair increases from 1,075 under DA∗ to 1,442 under TO-BE which represents an
increase of 34.1%.

Here again, the dominance is statistically significant at the 1% level up to rank 23. As for
teachers welfare, some teachers may block with a region under BE or TO-BE but not under DA∗

(and, of course, the other way around).

Regions welfare Comparing regions welfare across mechanisms is of particular interest, as we
know that DA∗ can harm some regions compared to their initial allocation, in contrast to the BE and
TO-BE mechanisms. We start by building a measure of regions welfare by looking at the number
of positions that receive a higher ranked teacher. More specifically, trying to match the theoretical
definition of 2-Pareto domination, for each region, we first take the initial assignment and sort it by
decreasing order of priority. We obtain a vector in which the first element/position is the teacher
with the highest priority in that region at the initial assignment, the second element/position is the
teacher with the second highest, and so forth. Call this vector x. We perform the same operation for
this region’s assignment with the mechanism under study. Let us call this vector y. Finally, we say
that a position k is assigned a teacher with higher (resp., lower) priority if the kth element of vector
y has a higher (resp., lower) priority than the kth element of vector y. Based on this, we compute the
percentage of net improvement in positions, that is, the percentage of positions receiving a teacher

64Priority differences between two regions can affect the mobility through two channels under TO-BE. First, high-
priority teachers are able to point towards a larger number of the regions they list—remember that a teacher can only
point if he has a higher priority than a teacher currently assigned that region. On the other hand, for a teacher to be able
to exit his region, it must be that another teacher with a higher priority replaces him. Hence, having a high priority can
sometimes lower the chances that a teacher will be able to move. This is the case when comparing the two regions of
Nantes and Caen for instance. The same number of teachers move away from Caen (46.9%) and from Nantes (46.1.6%)
despite the higher priority of teachers in Caen (125.3) than in Nantes (114.4).
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with higher priority minus the percentage of positions being assigned a teacher with lower priority.
Table 5 reports the cumulative distribution of regions with a net percentage of positions of less than
x% (where x can be negative if a region has more positions receiving lower ranked teachers). By
construction, TO-BE never hurts any region. In line with our Theorem 6, we also find that TO-BE
performs better than DA∗ in terms of regions welfare and find, here again, a stochastic dominance
relation.

Fact 4 The distribution of regions’ welfare under TO-BE stochastically dominates the distribution
under DA∗.65 Under DA∗, on average 1.7 regions have more than 10% of their seats assigned to
teachers with a net lower priority, while no region has seats assigned lower-priority teachers under
TO-BE.

The stochastic dominance of the distribution of TO-BE over the one of DA∗ is significant at
the 1% level. We highlighted in the theoretical section that TO-BE bears some similarities to the
TTC mechanism.66 One main difference, however, is that TO-BE does not allow exchanges that
harm regions, whereas TTC does. We verify this empirically by running TTC and find that the
distribution of regions welfare under TTC is indeed stochastically dominated by the distribution of
TO-BE. For instance, on average, 9.3 regions under TTC have more positions assigned to teachers
with lower priority than positions assigned to higher priority teachers. This never happens under
TO-BE.

Administration objectives We motivated the two-sided efficiency notion by its better ability to
fulfill the administration’s objectives, as reflected by the three main criteria defining the priority sys-
tem: i) experience in teaching, ii) spousal reunification, and iii) years of teaching in a disadvantaged
school. For instance, under the two-sided efficiency notion, a reassignment of teachers that, ceteris
paribus, decreases the number of experienced teachers in disadvantaged regions would not meet the
administration’s objective to better distribute experienced teachers across regions. We look more
closely at these three criteria in Table 6.

The first criterion gives more points to more experienced teachers. Obviously, it is not possible
to increase teachers experience in all regions. However, as some regions are more disadvantaged
than others, one objective is to control the share of inexperienced teachers in these regions. As
discussed earlier, Créteil and Versailles are the two most unattractive regions.67 The upper part of
Table 6 reports, for both disadvantaged and non-disadvantaged regions, the percentage of teachers

65Again, this is an average over our 5,000 draws. The region welfare distribution under TO-BE statistically dominates
that under DA∗ in 95% of the preference draws.

66We think of TTC here as corresponding to TO-BE where the opportunity set of all teachers corresponds to the
whole set of regions.

67Their unattractiveness partly stems from the highly disadvantaged student populations they serve. Créteil and
Versailles have the largest shares of students enrolled in “priority education” (25% and 35%), a label given to the most
disadvantaged schools.
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Table 3: Teacher Welfare

Region rank Init DA∗ TO-BE BE 1S-BE

1 263.74 (14.05) 276.3 (14.5) 424.2 (16.2) 396.5 (16.3) 429.2 (16.7)
2 951.8 (22.2) 976.6 (23.0) 1215.9 (23.7) 1169.5 (23.6) 1242.0 (23.9)
3 1410.1 (25.3) 1442.1 (26.3) 1741.0 (26.4) 1683.0 (26.5) 1781.5 (26.6)
4 1827.8 (27.6) 1866.1 (28.6) 2203.1 (28.3) 2142.1 (28.6) 2251.7 (28.4)
5 2239.4 (29.7) 2282.6 (30.6) 2639.8 (29.8) 2580.6 (30.0) 2690.9 (29.6)
6 2655.0 (31.5) 2701.9 (32.3) 3065.6 (31.0) 3011.3 (31.2) 3117.0 (30.7)
≥ 7 6302.0 (0.0) 6302.0 (0.0) 6302.0 (0.0) 6302.0 (0.0) 6302.0 (0.0)

Nb moving 0 237.9 890.4 982.8 1248.2
SD 0 30.2 23.6 25.2 23.9
† Notes: This table presents the cumulative distribution of teachers who obtain region rank k under their initial

assignment in column 1, under DA∗ in column 2, TO-BE in column 3, BE in column 4, and 1S-BE in column 5.
The data come from our simulations of the French teacher assignments to regions in 2013. The standard errors
reported in parentheses account for simulation errors but not for estimation errors in the coefficients.

Table 4: Fairness

Nb regions Init DA∗ TO-BE BE 1S-BE

0 1053.4 (19.8) 1074.5 (21.0) 1442.4 (43.5) 1453.3 (14.5) 1513.2 (15.1)
1 2098.0 (25.3) 2135.7 (27.4) 2624.2 (45.2) 2605.5 (25.9) 2748.8 (27.4)
2 2719.6 (26.5) 2765.1 (28.9) 3303.4 (40.9) 3267.5 (32.5) 3446.7 (34.3)
3 3219.7 (27.3) 3270.7 (29.6) 3820.5 (39.5) 3781.7 (37.6) 3972.3 (39.5)
4 3650.5 (27.8) 3706.1 (29.8) 4244.6 (38.5) 4209.2 (41.9) 4399.6 (43.8)
5 4029.4 (27.9) 4088.6 (29.8) 4602.9 (36.7) 4573.7 (45.5) 4755.4 (47.3)
6 4366.1 (27.7) 4428.3 (29.4) 4910.2 (34.4) 4886.4 (48.6) 5054.6 (50.3)
≥ 7 6302.0 (0.0) 6302.0 (0.0) 6302.0 (0.0) 6302.0 (0.0) 6302.0 (0.0)

Nb of teachers blocking with at least one region
Mean 5248.6 5227.5 4859.6 4848.7 4788.8
SD 19.9 21.0 43.5 48.2 47.7
† Notes: The upper part of this table presents the cumulative distribution of the number of regions with which teachers

block w.r.t. true preferences. The data are from our simulations of the French teacher assignments to regions in 2013.
Column 1 reports the cumulative distribution of the number of regions with which teachers block under their initial
assignment. The following columns report the cumulative distribution of the number of regions with which teachers
block under DA∗, TO-BE, BE, and 1S-BE. The standard errors reported in parentheses account for simulation errors
but not for estimation errors in the coefficients.

with only one or two years of experience under the current algorithm and the alternative mecha-
nisms we suggest.68 Under DA∗, 27.6% of the teachers have only one or two years of experience in

68We distinguish between teachers having only one or two years of experience and more experienced teachers based
on evidence that teachers in their first year tend not to perform as well as more experienced teachers (Chetty, Friedman
and Rockoff, 2014; Rockoff, 2004). To report the results, we merge the two disadvantaged regions together on one side
and the other regions on the other side and report the overall percentage of inexperienced teachers matched to each of

39



Table 5: Regions’ Welfare

Net percentage of positions DA∗ TO-BE BE 1S-BE

< −90% 0 (0) 0 (0) 0 (0) 0.1 (0.3)
< −70% 1.0 (0.2) 0 (0) 0 (0) 0.7 (0.7)
< −50% 1.1 (0.4) 0 (0) 0 (0) 1.7 (0.9)
< −30% 1.4 (0.5) 0 (0) 0 (0) 3.0 (1.1)
< −10% 1.7 (0.7) 0 (0) 0 (0) 4.5 (1.2)
< 0% 1.9(0.7) 0 (0) 0 (0) 5.3 (1.2)
< 10% 3.2 (1.2) 0.1 (0.3) 0 (0) 6.2 (1.3)
< 30% 5.1 (1.5) 0.9 (0.5) 0 (0.2) 8.2 (1.4)
< 50% 7.4 (1.8) 1.8 (0.7) 0.6 (0.5) 10.5 (1.5)
< 70% 13.7 (2.1) 3.2 (0.5) 2.0 (0.7) 13.4 (1.6)
< 90% 22.3 (1.5) 8.6 (1.3) 4.3 (0.9) 17.4 (1.6)
< 100% 25 (0) 25 (0) 25 (0) 25 (0)

% of regions with no priority change
Mean 1.0 0.0 0.0 0.0
SD 0.9 0 0 0
† Notes: This table presents the cumulative number of regions with a net welfare improvement (relative to their initial

assignment). For each region, we compute the number of positions assigned to teachers with higher priority, from
which we subtract the number of positions assigned to teachers with lower priority. Then, the net total is divided by
the total number of positions to obtain the percentage of positions with net improvement. We average results over
iterations. For instance, on average, under DA∗, 1.7 regions have more than 10% of their seats assigned teachers
with lower priority (in net terms). The standard errors reported in parentheses account for simulation errors but not
for estimation errors in the coefficients.

non-disadvantaged regions. This rate goes up to 50.7% in disadvantaged regions. A first interesting
result is that, under the TO-BE mechanism, the share of inexperienced teachers slightly goes down
in disadvantaged regions but goes up in non-disadvantaged regions. This fulfills the policy-maker
objective not to increase the share of inexperienced teachers in deprived regions.69 Interestingly,
45% of the teachers who leave Créteil or Versailles under TO-BE have less than two years of expe-
rience, against 14.4% under DA∗. This is explained by the requirement that an exiting teacher must
be replaced by a higher-priority incoming teacher under TO-BE but not under DA∗.

Finally, we look at performance for two additional criteria: spousal reunification and having
spent more than 5 or 7 years in a disadvantaged school. The objective behind these criteria is
to help teachers get closer to their spouse or reward them for having dedicated several years to
disadvantaged students. The bottom part of Table 6 shows that TO-BE significantly increases the
percentage of teachers who move closer to their spouses compared to DA∗ (from 2% to 5.9%). On

these groups. Movements within a group of regions therefore do not count.
69Note that the share of inexperienced teachers in disadvantaged regions is larger under TTC (50.5%) than under

TO-BE (50.2%). More importantly, in non-disadvantaged regions, that share is significantly lower under TTC (26.8%)
than under TO-BE (29.5%). This is consistent with the fact that TTC allows exchanges that harm regions, while TO-BE
does not.
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the other hand, the percentage of experienced teachers who move away from disadvantaged schools
goes down under TO-BE. However, it is important to keep in mind that less than 10% of the teachers
stayed long enough in a disadvantaged school to benefit from this criterion.

Table 6: Fulfillment of the administration’s objectives

DA∗ TO-BE BE 1S-BE
(1) (2) (3) (4)

Panel A. Share of inexperienced teachers (among all teachers)
Non-disadvantaged regions 27.6 (0.2) 29.5 (0.5) 32.1 (0.5) 28.2 (0.6)
Disadvantaged regions 50.7 (0.1) 50.2 (0.1) 49.9 (0.1) 50.2 (0.1)

Panel B. Share of inexperienced teachers (among incoming teachers)
Non-disadvantaged regions 8.9 (3.1) 26.8 (1.3) 32.7 (1.2) 26.7 (1.0)
Disadvantaged regions 24.3 (4.4) 36.2 (9.2) 35.5 (6.4) 43.5 (6.5)

Panel C. Share of inexperienced teachers (among exiting teachers)
Non-disadvantaged regions 15.4 (3.5) 25.8 (1.2) 29.5 (1.0) 26.8 (0.8)
Disadvantaged regions 14.4 (3.8) 45.1 (9.5) 53.7 (6.7) 45.1 (6.5)

% spousal reunification 2.0 (0.4) 5.9 (0.4) 9.6 (0.5) 3.6 (0.4)
% teacher leaving disadvantaged school 12.3 (1.3) 8.8 (0.8) 11.0 (0.9) 9.7 (0.8)
† Note: The upper part of this table presents the share of teachers who have only one or two years of

experience under DA∗, TO-BE, BE, and 1S-BE. We successively report statistics for all teachers
post re-assignment (i.e., those who arrive and those who stay in a region), for incoming teachers
only, and for exiting teachers. The lowest two rows of the table present statistics on the percentage
of teachers who move closer to their spouses and who leave a disadvantaged school. The standard
errors reported in parentheses account for simulation errors but not for estimation errors in the
coefficients.

5.4.4 Performance of BE and 1S-BE

We briefly comment on the results for the BE and 1S-BE algorithms. As a note of caution, selections
of these algorithms are not strategy-proof while our results assume that agents truthfully report their
preferences. Hence, the results reported below are useful to test some of the insights of the theory
but should be taken with care given that agents may not be truthful in reality. Also, because each BE
and 1S-BE defines a class of mechanisms, we need to randomly pick selections in these classes. In
order to do so, for each of these algorithms BE and 1S-BE, we randomly select a sequence of cycles
that leads to a matching on the two-sided and one-sided maximality frontier. Therefore, for each of
these algorithms, for each preference draw, we randomly draw 100 selections. All results reported
in this section correspond to averages over the 5,000 preference draws, 100 selections draws, and 9
subjects.

First, we observe that, compared with the BE algorithm, TO-BE assigns more teachers to their
most-preferred region, and has a teachers’ rank distribution that stochastically dominates the distri-
bution under BE. This is natural given that TO-BE is teacher-optimal while our selections of BE may
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not be. Theorem 6 suggests a cost of using a strategy-proof selection of the BE algorithm such as
TO-BE. In particular, based on this result, one may expect the BE algorithm to outperform TO-BE
in terms of regions welfare. Our results confirm this. Table 5 shows that regions’ welfare is higher
under BE than under TO-BE.70

We now discuss the performance of 1S-BE, keeping in mind that 1S-BE ignores regions welfare
constraints. Consistent with expectations, the results show an improved performance in terms of
teachers’s welfare, but at the cost of a significantly worse performance in terms of regions’ welfare
and administration objectives. The number of teachers who move is 40.2% larger under 1S-BE
than under TO-BE, and 5 times larger than under DA∗.71 The rank distribution under 1S-BE also
stochastically dominates that under both TO-BE and DA∗. The number of teachers who are part of
a blocking pair drops from 4,859.6 under TO-BE to 4,788.8 under 1S-BE. However, 1S-BE hurts
regions. As shown in Table 5, 5.3 regions (out of 25) have more seats receiving a lower ranked
teacher than seats receiving a higher ranked one. 1S-BE also makes fewer teachers move closer to
their spouses than TO-BE.

5.5 Incorporating vacant positions and newly recruited teachers

Our empirical results so far focus on markets in which all teachers have an initial position and there
are no vacant seats. There are two reasons for this. First, our main theoretical results show that
DA∗ fails to implement exchanges of positions among initially assigned teachers that would benefit
both sides of the market, whereas TO-BE does not have this drawback. Since this point specifically
focuses on exchanges among tenured teachers, it makes more sense for the empirical application to
match this environment by focusing on a market with no newcomers and no vacant seats. Second,
in many markets, newly recruited teachers have a lower priority than tenured teachers.72 In such a
case, two-sided maximality implies that the assignment of newcomers and that of tenured teachers
are essentially made on separate markets: we first assign tenured teachers without vacant positions
and then newcomers are assigned to vacant seats. In this context, it is straightforward to define our
algorithms.73 In this section, we test the robustness of our empirical results to the introduction of
vacant seats and newcomers. We explain in Appendix K how we extend TO-BE to the environment
with newcomers and vacant positions, and we present the results below. Adopting the methodology

70In terms of blocking pairs, BE leads to slightly fewer teachers blocking with at least one region compared with
TO-BE which, here again, is consistent with Theorem 6.

71DA∗ is never two-sided maximal in our simulations, which implies that it is also never one-sided maximal.
72Indeed, it is a standard assumption made in the theoretical literature (see for instance Pereyra, 2013). In our data,

when considering the 8 subjects (we drop the subject Technology in our empirical analysis when dealing with newly
recruited teachers and vacant positions because the number of newcomers is too small for estimation purposes; see
the online Appendix S.7.4) and 25 regions, on average, newcomers have a lower priority than tenured teachers. When
considering teacher rank in region priorities (on a scale of 0 to 1), we also find that in more than 75% of the regions, the
rank difference between tenured and newcomers is larger than 0.3, which confirms that newly recruited teachers tend to
have a much lower priority than tenured teachers.

73Recall that DA∗ is not two-sided maximal. However, under the same assumption that newcomers have a lower
priority than tenured teachers, it is easy to show that DA∗ will also assign tenured teachers first and newcomers to the
remaining vacant seats.
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of Section 5, we estimate teachers preferences and run counterfactuals. We explain our methodology
in detail in Section S.7.4 of the online Appendix.74 The gains that TO-BE brings upon DA∗ are
mostly preserved when we keep newcomers and vacant positions. First, in every subject, DA∗ is not
two-sided maximal. Second, TO-BE continues to generate more movement than DA∗ as shown in
Table 7.

Table 7: Results with Vacant Positions and Newly Recruited Teachers

DA∗ TO-BE Relaxed TO-BE
(1) (2) (3)

Mobility of tenured teachers 1979.8 2589.05 2988.18
... in disadvantaged region 861.9 837.0 1582.4
... in non-disadvantaged region 1117.8 1752.1 1405.8
Fraction of inexp. teachers in disadv. regions 0.73 0.63 0.74

Because DA∗ is not two-sided maximal (and so not 2-IR), many tenured teachers leave their
initial position to fill a vacant position in another region. These teachers are often replaced by new-
comers with lower priority. While this type of reassignment clearly hurts regions (since newcomers
have lower priorities than tenured teachers), this is also an important source of movement of teach-
ers under DA∗, in particular, for teachers initially assigned disadvantaged regions for which demand
from tenured teachers is low.75 Because TO-BE is two-sided maximal, replacement of tenured teach-
ers by newcomers (with lower priority) is not possible and this, to the contrary, limits movement for
teachers initially assigned disadvantaged regions. Hence, to get a deeper understanding of the mo-
bility gains, we disaggregate the results by regions types. On average, across all subjects, mobility
decreases in disadvantaged regions when moving from DA∗ to TO-BE (it is reduced by 36% in
Créteil but increases by 33% in Versailles). For regions that are not disadvantaged, the increase in
movement from DA∗ to TO-BE is significant (+56%). In other words, except for the disadvantaged
region of Créteil, the mobility gains of switching from DA∗ to TO-BE are still very significant.

While our two-sided maximality requirement clearly limits mobility in some disadvantaged re-
gions, it achieves its goal: the fraction of inexperienced teachers in disadvantaged regions is 10
percentage points higher under DA∗ than under TO-BE. This may be seen as an important advan-
tage of TO-BE over DA∗. However, as we already pointed out, there is a trade-off between teachers
mobility in disadvantaged regions and the requirement to Pareto-improve the region side upon the
initial assignment. If, for a policy maker, the trade-off goes in favor of teachers mobility, that is, one
is willing to allow tenured teachers to leave disadvantaged regions and be replaced by teachers with
lower priority, TO-BE can easily be modified to accommodate this more permissive requirement.76

74The fit quality we obtain for the preference estimations remains very close to those we have when running the
estimations on the market of tenured teachers. On average, for the eight subjects, our fit measure only goes down by
0.04 (which represents a reduction of 5.8%).

75By design, newcomers rank all regions (in particular disadvantaged regions) as acceptable. The ministry does so
to ensure that a newcomer will be matched at the end of the procedure.

76We can modify the algorithm described in Appendix K by simply allowing chains to start from tenured teachers
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The results of this relaxed TO-BE are reported in Table 7. We get a significant increase in movement
in non-disadvantaged but also in disadvantaged regions while the fraction of inexperienced teachers
in disadvantaged regions remains essentially the same as under DA∗.77

To conclude, our empirical results continue to hold and the above exercise reveals that the gains
of TO-BE over DA∗ are mainly driven by non-disadvantaged regions. If improving the region wel-
fare is a hard constraint, DA∗ violates this constraint while TO-BE does not which may lead to lower
mobility in disadvantaged regions. If the constraint is soft, a simple modification of TO-BE allows
movement to increase upon DA∗ in both disadvantaged and non-disadvantaged regions.

6 Relationship to the literature

Before concluding, we discuss the relationships with the existing literature.

Stability and individual rationality. Our definition of stability follows the standard definition in
the college admission literature. In that case, we know that no matching is both stable and individ-
ually rational. Given this conflict, one approach is to weaken stability to make it compatible with
individual rationality. This is the path followed by Guillen and Kesten (2012), Pereyra (2013), and
Compte and Jehiel (2008). To understand the approach, note that two types of blocking pairs (t, s)
may exist. (i) One where teacher t desires school s and has a higher priority in that school than a
teacher who was initially assigned to school s and stays in that school. (ii) One where t also desires
s but now has a higher priority than a teacher assigned to s but who was not initially assigned to
that school. Pereyra (2013) refers to the second type of blocking pairs as inappropriate blocking
pairs. In that case, DA∗ is a mechanism with no inappropriate blocking pairs. Put differently, DA∗

satisfies a weakening of stability. The basic idea behind this notion is that teacher t will feel no or
less justified envy when the envied teacher is initially matched to school s. If one believes this is
the case in reality, one may naturally be interested in such a weakening of stability. Guillen and
Kesten (2012) showed that DA∗ Pareto-dominates any other mechanism that has no inappropriate
blocking pairs. So, if one only wants to forbid inappropriate blocking pairs, DA∗ achieves the high-
est mobility and cannot be improved upon. However, our results highlight two important points.
First, sometimes the movement of DA∗ is only obtained by hurting the school side, that is, DA∗ does
not Pareto-dominate the initial assignment for schools, which, as we already argued, in our teacher
assignment framework, is an important policy objective. Second, there is a high welfare cost to
require no inappropriate blocking pairs since, under the assignment given by DA∗, both teachers and
schools can be made better-off. This is confirmed by our theoretical and empirical findings. Hence,
our work also quantifies the trade-off between efficiency and the elimination of inappropriate block-
ing pairs. In our counterfactual results, while the number of teachers who are part of a blocking pair

who are initially matched to disadvantaged regions. When starting with a tenured teacher, this teacher is allowed to
point directly to a school with a vacant seat.

77All facts in Section 5 remain true except for Fact 3. The distribution of the number of regions with which teachers
block under TO-BE does not stochastically dominate the one under DA.
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in the standard sense goes from 5,295.8 under DA∗ to 4,958.4 under TO-BE, 3,995.26 teachers are
part of an inappropriate blocking pair under TO-BE and this number is, by construction, zero under
DA∗. However, TO-BE generates 4 times more mobility than DA∗ and dominates the latter in terms
of teachers welfare, regions welfare, fairness and administrative objectives.

Two-sided improvement cycles. Proposition 2 provides a simple and computationally easy pro-
cedure to find two-sided maximal matchings. The idea of implementing cycles to achieve two-sided
maximality is natural. Erdil and Ergin (2017) already identified a similar algorithm to characterize
2-Pareto-efficient stable matchings in two-sided matching environments where agents may not have
strict preferences.78 Our motivations, however, are very different. They aim at Pareto-improving sta-
ble assignments while we Pareto-improve on an initial assignment. As we saw in Section 4.2.2, this
difference has far reaching consequences once we deal with incentive issues. In particular, in their
environment, no 2-Pareto-efficient stable matching mechanism is strategy-proof even if incentives
are restricted to one side of the market as we assume (see, Erdil, 2014). Yet, in our environment, it
is possible to find two-sided maximal matchings that are strategy-proof for teachers.

Characterization of TO-BE. Theorem 4 is closely related to Ma (1994) and Dur and Ünver
(2019). Ma shows that in the Shapley-Scarf economy, TTC is the unique mechanism that is 1-IR, 1-
PE and strategy-proof. Intuitively, in a one-to-one setting, Theorem 4 applies to richer environments
in which schools have non-trivial preferences that are taken into account when determining welfare.
This suggests that Theorem 4 is a generalization of Ma’s. Indeed, to see this, note that in the spe-
cific situation in which each school ranks its initial assignment at the bottom of its ranking, TO-BE
and TTC coincide. In this context, 1-IR and 2-IR are obviously equivalent. In addition, since 1-PE
implies 2-PE, the class of mechanisms considered by Ma is a subset of BE algorithm’s selections.
Applying Theorem 4 to these selections yields Ma’s result. While our argument builds upon that
of Ma’s, there are a number of crucial differences. As mentioned above, even in the very specific
environment in which each school ranks its initial assignment at the bottom of its preferences, the
BE algorithm contains many other mechanisms that include, in particular, all those that are 2-PE
but not 1-PE and all 1-PE mechanisms that are sensitive to schools preferences.79 In addition, our
result applies to settings in which schools preferences are arbitrary and, thus, to many other types of
mechanisms that are not well defined in Ma’s environment.

Balanced exchanges. Our paper is also closely related to Dur and Ünver (2019), who study two-
sided matchings via balanced exchanges, and use tuition and worker exchanges as applications.
They propose an algorithm, called the Two-Sided Top Trading Cycle (2S-TTC), that ensures that
imports and exports are balanced. Further, they prove that 2S-TTC is the only mechanism that is
balanced-efficient, worker strategy-proof, acceptable, individually rational, and that respects internal

78Technically, Erdil and Ergin (2017) start from a stable matching and, then, run the BE algorithm on top of this
matching. As long as agents preferences are not strict, the BE algorithm may exhibit cycles.

79That is, 1-PE mechanisms that select two different matchings for two different preference profiles in which teachers
preferences remain unchanged.
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priorities. Although our paper pertains to the same two-sided environment with initial assignment,
two key features differentiate our analysis. First, the main focus of our paper is the conflict between
efficiency and fairness. We show that DA∗ can be improved upon in these two dimensions, while
our alternative mechanism cannot. This focus of our paper is thus independent from Dur and Ünver
(2019)’s main purposes. Second, we differentiate ourselves from Dur and Ünver (2019)’s setting by
taking into account a richer set of schools priorities. To capture the specificities of worker-exchange
programs, Dur and Ünver (2019) make assumptions about the preferences of workers and firms.
They notably assume that firms do not have strong preferences over acceptable workers, who are
all equally desirable for firms. This assumption of coarse preferences over incoming agents is cer-
tainly plausible in the environment of temporary worker exchange, as the cost of not being matched
with the best candidate is relatively limited. However, when assignments are permanent, firms (or
schools) are likely to have finer preferences over applicants. Schools know that teachers’ character-
istics can vary widely, notably in terms of years of experience, experience teaching in disadvantaged
schools, family situation, and so on. These characteristics are all used to define a teacher’s priority
in a school. Unlike Dur and Ünver (2019), we account for schools’ finer preferences over incoming
teachers. In our context, this is particularly important when the distribution of experienced teachers
differs across schools. Schools may want to maintain a balance in their teachers characteristics and
experience. If an experienced teacher wishes to leave, the school may want to replace him with an
equally experienced teacher.

We refer to Dur and Ünver (2019)’s coarse preferences over acceptable and non-acceptable
workers as group preferences.80 In practice, non-grouped preferences arise quite frequently. In
our dataset, for the ten largest disciplines, 53.2% of the applicants have an “intermediate priority”,
meaning their priority is strictly higher than internal teachers’ lowest priority and strictly lower than
internal teachers’ highest priority. On average, 91.3% of the regions receive at least one application
with intermediate priority.81

Incorporating schools fine preferences has two important consequences. First, with finer prefer-
ences, 2S-TTC is not two-sided maximal, and this mechanism could create new blocking pairs due
to the possibility to recruit teachers who have lower priority than those leaving. Second, the char-
acterization result in Dur and Ünver (2019) relies on the axiom of respect of internal priorities (see
Dur and Ünver (2019) for a formal definition). In our environment, as we show in Appendix S.5, no
mechanism is two-sided maximal, strategy-proof, and respects internal priorities; accordingly, our
two approaches radically differ in a many-to-one setting.

One-sided maximality. The 1S-BE algorithm shares some similarities with – and can indeed be
seen as a generalization of – the stable improvement cycle (SIC) algorithm defined by Erdil and
Ergin (2008). The SIC algorithm is designed to improve stable outcomes whenever an outcome

80Formally, for a school s, its preference�s is a group preference if for any teacher t′ /∈ µ0(s), either: i) ∀t ∈ µ0(s),
t′ �s t or ii) ∀t ∈ µ0(s), t �s t′.

81To compute this statistic, for every discipline-by-region combination, we have defined the minimum and the max-
imum of the internal teachers priorities. Then, for every applicant teacher, we define his priority as “intermediate” if it
is strictly higher than the minimum and strictly lower than the maximum.
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is not teacher-optimal, as is the case, for instance, with the outcome of the teacher-proposing DA
when schools have weak preferences. Starting from a stable outcome, SIC and 1S-BE are the same.
However, our mechanism extends the SIC algorithm’s properties to cases in which the starting as-
signment is arbitrary. To illustrate why this is true and why the SIC algorithm does not suit our pur-
poses, consider one of our initial motivations, which is to improve the outcome of DA∗. Although
both BE◦DA∗ and 1S-BE◦DA∗ successfully improve that outcome, the SIC algorithm (starting from
the outcome of DA∗) does not. Given the individual rationality of DA∗, no teacher desires his initial
assignment under the matching achieved by DA∗. Therefore, the pointing behavior associated with
SIC (starting from DA∗) remains unchanged if we use the modified schools preferences used to run
DA∗ as opposed to the true schools preferences. Under the modified preferences, by definition, DA∗

yields the teacher-optimal stable matching. Hence, there cannot be any cycle in the graph associated
with SIC (again, starting from DA∗).

Last, Dur et al. (2019) also proposed a similar extension of the SIC algorithm. For each school s
they fix a set of teachers C(s) under which, if t ∈ C(s) then one can violate the priority of teacher t
at school s. They define an algorithm which, for teachers, Pareto-improves on DA while respecting
priorities of teachers outside C(s) for each school s. Their algorithm is close to the 1S-BE algorithm
we propose but there is one crucial difference: in our algorithm, at each step, we want to ensure that
the set of blocking pairs shrinks. In their constrained efficiency notion, they only require that the set
of blocking pairs is a subset of those defined by the above sets (C(s))s. More importantly, our class
of mechanisms starts from an arbitrary initial assignment, while given their motivation, they are
interested only in the class improving upon DA, and thus, they begin from the DA allocation. Our
main message concerns the non-existence of a strategy-proof selection in our class of mechanisms.
When starting from an arbitrary exogenous initial assignment (which excludes starting from the DA
allocation), this result is non-trivial.

7 Concluding Remarks

In many countries, a central administration is in charge of assigning teachers to schools. In an at-
tempt to ensure that every teacher is assigned to a school that he weakly prefers to his current one,
several countries have adopted a modified version of the well-known deferred acceptance mecha-
nism (DA) for teacher assignment. In this paper, we show that this mechanism fails to be fair and
efficient for both teachers and schools. Ensuring that schools are not “harmed” by teacher reas-
signments is important as schools’ priorities partly reflect a social objective, notably in terms of
the experience of teachers assigned to deprived schools. To address the weakness of the modified
version of DA, we characterize the class of mechanisms that cannot be improved upon in terms of
both efficiency and fairness, and we identify the subclass of strategy-proof mechanisms. We further
test and confirm the performance of these alternative mechanisms by showing that, when the market
size grows, they perform much better in terms of utilitarian efficiency and fairness. Finally, we use
a rich dataset on teachers applications for transfers in France to measure the relevant gains. As our
counterfactual analysis shows, the alternative mechanisms, compared to the modified version of DA,
generate significant gains in efficiency and fairness. In particular, the number of teachers moving

47



from their initial assignments more than triples under our mechanism.

Dynamic environment. One may argue that the teacher assignment problem is a fundamentally
dynamic situation, and this is important for two reasons. First, as teachers change positions several
times throughout their careers this is important if one believes that incentives to truthfully report
preferences can be affected by this dynamic aspect.82 Pereyra (2013) defined a dynamic overlapping
generation model wherein newly recruited teachers arrive, are assigned to schools, and can later
ask for reassignments during a certain number of periods before exiting the market.83 In this envi-
ronment, assuming that all newly tenured teachers entering at a given date are less preferred by all
schools than the tenured teachers who already have an assignment, he showed that DA∗ is dynami-
cally strategy-proof; that is, no teacher can ever misreport his preferences and obtain a better-school
at the current or some later date. If the TO-BE algorithm is properly extended to account for newly
recruited teachers and vacant positions (as done in Section 5.5), then, in the same setting as in
Pereyra (2013), one can show that TO-BE is also dynamically strategy-proof.

The second reason why dynamics is important is because, each year, the initial assignment is
defined by the previous year assignment. In our context, this means that the initial assignment in our
data is very inefficient because under DA∗ many teachers are unable to move and, as we showed,
important two-sided Pareto improvements are possible. However, once TO-BE is used, this source
of inefficiency will be removed in the subsequent years. While there will certainly be gains from
using TO-BE rather than DA∗, the gains will naturally be smaller than what we obtained in Section
5 since the initial assignment will be less inefficient.

Teacher participation decisions. In reality, tenured teachers have the choice of participating in the
assignment scheme. While one may think that participating is a dominant strategy for teachers, in
practice, this is probably more complicated. For instance, if a teacher believes her odds of moving
are too low, it is likely that the teacher will decide to settle in the region where she is currently
assigned to and pay some fixed cost associated with settling down (e.g., buy a house, have his family
move close to him, have his partner search for a permanent job, etc...). Put differently, teachers with
low chances of seeing their transfer requests satisfied will simply not participate and, probably, for
several consecutive years.84 In this context, a change of mechanism which increases mobility rates
will certainly impact participation of teachers: those with a higher chance of moving may participate
more while those with lower chances may participate less. Hence, a change from DA∗ to TO-BE is
likely to change the participation of teachers. While precisely estimating the changes in participation
decisions is beyond the scope of the paper and would further require additional data, our analysis
and simulations can provide some hints on the resulting effects.

The first important element we want to point out is that (1) the number of teachers who lose from

82However, in our application, teachers are unlikely to apply many times during their careers. Indeed, most teachers
target either the region where their family lives or the region of their home town. Hence, once a desired region is
obtained, they are unlikely to reapply in the short or medium term.

83In his setting, teachers preferences are fixed over time while schools preferences/priorites can evolve.
84In the French system, if a teacher gets assigned the school/region she asked for, she must transfer to that

school/region.
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a switch of algorithm (from DA∗ to TO-BE) is very small. We only have 116.4 teachers who lose on
average, which represents 1.8% of the teachers. The second point we want to stress is that (2) among
these teachers who lose from a switch, 88% simply remain in their initial region under TO-BE. This
being said, considering a pessimistic scenario where we assume that all teachers losing from the
switch leave the market, by point (1) above, on average, only 1.8% of teachers leave. One may be
concerned by “propagation effects”, that is, once teachers losing leave the market some remaining
teachers may now wish to leave the market. Put differently, the behavior of those leaving the market
may propagate and the market may eventually become much thinner which may eventually lead to
less efficient outcomes. However, the impact of teachers leaving the market on the outcome is likely
to be small since, by point (2) above, 88% of those leaving would have no impact on the outcome
of TO-BE. This indeed holds true because removing teachers who stay at their initial assignment
(together with their initial position) has no impact on the outcome of TO-BE. Hence, the likelihood
that their behavior propagates to other teachers may be small as well. On this last point, using our
estimations, we randomly drew preference profiles and removed iteratively all teachers who were
worse-off after the switch of algorithm.85 This led to an average of 867.3 teachers moving under
TO-BE (v.s. 890.4 in Table 3), still three times more than under DA∗.86

While we see these results as encouraging and suggesting that our results may be strengthened
once endogenous participation is accounted for, we acknowledge that these are still speculative and
a full analysis (and additional data) is required to fully understand how participation impacts our
results.87

Centralized and decentralized systems. In many countries across the world, the assignment of
teachers to public schools is regulated by a central administration (e.g., France, Germany, Czech
Republic, Italy, Turkey, Mexico, Peru, Uruguay, and Portugal. See references given in Footnote
3.). The main concerns of the administrations in charge of designing the assignment schemes are
similar across the world: typically, satisfying teachers mobility requests while taking into account
the distribution of (effective) teachers (Jackson, 2009; Hanushek, Kain and Rivkin, 2004). Even
though France may have additional specific policy objectives, our setup and algorithms are clearly
flexible enough to allow for many alternative objectives.88 Of course, more empirical work based

85More specifically, we start removing all teachers who get worst-off under TO-BE. Once removed we run TO-BE
and again remove all teachers who get worse-off compared to what they were initially getting under DA*. We continue
this procedure until no teacher is removed. We then averaged the number of teachers leaving over our draws. We provide
further details on these simulations in Section S.8 of the online appendix.

86Our discussion suggests that there will be few teachers dropping out once we switch algorithms and these teachers
may have only a negligible effect on the outcome of TO-BE. This is under a worst-case scenario where all teachers
who are worse-off leave the market and no other teacher enters. We ran additional simulations where we increase
participation by bootstrapping a fixed additional number of teachers in those teachers getting strictly better-off after the
switch. As expected, the gap in terms of teachers’ mobility between TO-BE and DA* widens.

87In order to argue that teachers’ preferences over regions are well-defined (assuming that these are not lexico-
graphic), in Section 5.1, we provided evidence showing how a change of mechanism in the first phase only marginally
impacts the pool of participants in the second phase. We acknowledge that an implicit assumption here is that teachers
participation is invariant to the counterfactual policy. This is one more reason why a full empirical analysis of teachers’
participation is important to understand the robustness of our empirical results.

88Rich policy objectives trading-off mobility and equal geographic distributions in various two sided matching mar-
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on data from other countries may be needed, but we believe that our study has important policy
implications for all these countries using a centralized assignment system by making clear what a
teacher-optimal mechanism may be in this context. Finally, our work also helps envision the poten-
tial impact of transitioning from a decentralized to a centralized assignment system in other coun-
tries. More specifically, we show that adopting the modified version of DA, rather than one of the
alternative mechanisms we suggest, would largely underestimate the performance of a centralized
system (for instance, in terms of teacher mobility).

The replication package for this research is available on Zenodo at https://dx.doi.org/10.5281/zenodo.5658604
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THE DESIGN OF TEACHER ASSIGNMENT: THEORY AND EVIDENCE

Julien Combe, Olivier Tercieux and Camille Terrier

APPENDIX

A Proof of Lemma 1

Consider the directed graph G := (N,E) of BE starting at the matching µ(0) = µ. For each school
s s.t. µ′(s) 6= µ(s), consider the sets of teachers Ts := {t ∈ T : t ∈ µ(s)\µ′(s)} and T ′s := {t ∈ T :
t ∈ µ′(s)\µ(s)}. Since we are in a reassignment setting, we have that |Ts| = |T ′s| := ms for some
ms ≤ qs. Let x := (t1, . . . , tm) and x′ := (t′1, . . . , t

′
m) be the two ordered vectors corresponding

to Ts and T ′s where each vector orders the teachers in each set in a decreasing order according to
�s. Since µ′ 2-Pareto dominates µ, we have that ∀k = 1, . . . ,m, t′k �s tk.89 So under G, the
graph of BE, we have that (t′k, µ(t′k)) points to (tk, s), i.e., [(t′k, µ(t′k)), (tk, s)] ∈ E. Let esk :=
[(t′k, µ(t′k)), (tk, s)]. Consider the subgraph G′ := (N ′, E ′) where N ′ := {(t, µ(t)) : µ(t) 6= µ′(t)}
and E ′ := {esk : s ∈ S, k = 1, . . . ,ms}. Note that, by construction of G′, each node (t, s) ∈ N ′ has
a unique incoming edge from another node (t′, s′) ∈ E ′ and that s = µ′(t′). If all graph nodes have
an in-degree of exactly one, then there exists a collection of disjoint cycles that includes all graph
nodes. Indeed, start from any node in N ′: call it n1. Then, since n1 has in-degree one, there is a
unique node n2 s.t. (n2, n1) ∈ E ′. Applying the same argument for n2, there is a unique node n3 s.t.
(n3, n2) ∈ E ′. Iterating the argument, we can identify a cycle in G′ involving L ≥ 2 nodes of N ′.
Let A := {n1, . . . , nL} ⊂ N ′ be such nodes. Note that since the nodes of G′ have an in-degree of
exactly one, there is no node n ∈ N ′\A that points to a node in A since otherwise, it would imply
that a node in A has an in-degree of at least two. So if one deletes nodes in A together with their
edges, the resulting subgraph of G′ will still have edges with an in-degree of exactly one, and we
can iterate the argument to find a new cycle in this subgraph, and so on. This process will lead to a
collection of disjoint cycles in G′ that involve all the nodes in N ′. To conclude the proof, note that
all these disjoint cycles are actual cycles of G, the original graph of the BE algorithm starting at µ,
and that each teacher matched using these cycles is assigned his school under µ′. By implementing
these cycles under the BE algorithm, then, one indeed goes from µ to µ′.

B Relationship between TO-BE and TTC

The TO-BE algorithm shares some similarities with the (Shapley-Scarf) TTC mechanism. TTC is
well-defined only in a one-to-one environment (i.e., when qs = 1 for each school s). But even in this
environment TTC and TO-BE are different. Indeed, TTC operates in the same manner as the TO-BE
algorithm but does not refer to schools preferences/priorities: an edge (t, s) −→ (t′, s′) is added if
and only if teacher t ranks school s′ first within the set of all remaining schools (i.e., at step k, those

89 While the statement is fairly intuitive, we provide the formal argument in Appendix S.4.
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are the schools in S(k− 1)). The other additional feature is that TO-BE is defined in a many-to-one
setting while TTC is defined in a one-to-one environment.

Yet, TTC and TO-BE can be formally related. Starting from our many-to-one environment, one
can construct a one-to-one environment in which the outcome of TTC will give us the outcome
of TO-BE. To see this, fix a preference profile and a collection f and let us build this one-to-one
environment. We assume that each teacher t is “endowed” with (t, µ0(t)), which we refer to as an
object. Each teacher t has preferences over possible objects in {(t′, µ0(t′))}t′∈T that are given as
follows. Teacher t finds unacceptable any object (t′, s′) for which t′ �s′ t while any other object is
acceptable. For any pair of objects (t′, s′) and (t′′, s′′) that are acceptable to t, we consider two cases.
First, if s′ 6= s′′ then (t′, s′) is preferred to (t′′, s′′) if and only if s′ �t s′′. Second, if s′ = s′′ then
(t′, s′) is preferred to (t′′, s′′) if and only if fs′(t′) < fs′(t

′′). In the sequel, if �t denotes the original
preferences of teacher t, we let �′t be his preferences in this modified environment. In this one-to-
one environment with strict preferences, standard TTC is well-defined, and it is easily checked that
teacher t is matched to an object (t′, s′) under TTC for some teacher t′ ∈ µ0(s′) if and only if teacher
t is matched to s′ under TO-BEf in our original environment.

We summarize this discussion in the following Lemma:

Lemma 2 Fix a preference profile � and a collection f . TO-BEf (�)(t) = s′ if and only if TTC(�′
)(t) = (t′, s′) for some t′ ∈ µ0(s′) where the preference relation �′ is constructed according to the
procedure described above.

C Proof of point iii. of Theorem 1

Given the connection with TTC, a mechanism known to be strategy-proof, pointed out in Lemma
2, it follows that TO-BEf is likewise strategy-proof. Indeed, TO-BEf (�)[t], the school obtained
by teacher t under TO-BEf , corresponds to the element in the second dimension of TTC(�′)[t] =
(t′, s). Similarly, when teacher tmisreports his preferences to �̃t, he obtains school TO-BEf (�̃t,�−t
)[t] under TO-BEf corresponding to the element in the second dimension of TTC(�̃′t,�−t)[t] =
(t′′, s′). By strategy-proofness of TTC we obtain that TTC(�′)[t] = (t′, s) �′t TTC(�̃′t,�−t)[t] =
(t′′, s′). By definition of �′ this implies that TO-BEf (�)[t] = s �t s′ = TO-BEf (�̃t,�−t)[t].

Now, we show that TO-BEf is a selection of BE. Assume by contradiction that TO-BEf is not a
selection of BE. Appealing to Proposition 2, this implies that TO-BEf is not two-sided maximal. By
construction, TO-BEf is 2-IR so we obtain that TO-BEf is 2-Pareto dominated at some preference
profile � by an alternative assignment, say µ. Now, let us consider the one-to-one environment
described in Section B under which the outcome of TTC corresponds to the outcome of TO-BEf
in our original many-to-one environment. Recall that we denote the modified preference profile in
the one-to-one environment by �′. We claim that, in this modified environment, TTC is 1-Pareto-
dominated by some matching µ′ which contradicts the well-known 1-Pareto efficiency of TTC. In
the sequel, we build µ′.

For each school s, we define T out(s) as the set of teachers who exit school s when we move
from TO-BEf (�) to the assignment given by µ, i.e., T out(s) :=TO-BEf (�)[s]\µ(s). We similarly
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denote T in(s) for the set of teachers entering into school s, i.e., T in(s) := µ(s)\TO-BEf (�)[s].
Clearly, for each school s, we must have that |T out(s)| = |T in(s)|. Without loss of generality, we
denote T out(s) = {t1, ..., tk} where teacher t` has the `-th highest preference ranking / priority in
T out(s). We similarly denote T in(s) = {t′1, ..., t′k} where teacher t′` has the `-th highest preference
ranking / priority in T in(s). We then build assignment µ′ as follows. Pick any teacher t. If µ(t) =
TO-BEf (�)[t], then let µ′(t) = TTC(�′)[t]. Trivially, µ′(t) �′t TTC(�′)[t]. Now, if µ(t) 6= TO-
BEf (�)[t], then t must belong to T in(s) where s := µ(t). Assume that t has the `-th highest priority
in T in(s). We set µ′(t) to TTC(�′)[t′] where t′ has the `-th highest priority in T out(s).90 Now, let
us show that µ′(t) �′t TTC(�′)[t]. Because we let TTC(�′)[t′] =: (t′′, s), in the sequel, we would
like to show that (t′′, s) �′t TTC(�′)[t]. Since s �t TO-BEf (�)[t], we only have to show that
(t′′, s) is acceptable to t under �′t. Since µ 2-Pareto dominates TO-BEf (�), t �s t′. In addition,
by definition, TTC(�′)[t′] is acceptable to t′ under �′t′ and so, by construction of �′t′ , we must have
that t′ �s t′′. We conclude that t �s t′′ and so (t′′, s) is acceptable to t under preference profile �′.
This proves that µ′ 1-Pareto dominates TTC(�′), thereby yielding our contradiction.

D Proof of Theorem 2

For the first part of the proof of Theorem 2, we proceed by contradiction and fix a preference profile
� under which TO-BEf∗(�) is 1-Pareto dominated by another 2-IR matching, say µ. Consider the
one-to-one environment described in Section B, under which the outcome of TTC corresponds to
that of TO-BEf∗ in the original many-to-one environment (see Lemma 2). The modified teacher
preference profile in this environment is �′. We will show that, in this modified environment, TTC
is 1-Pareto dominated by some matching µ′, which contradicts the well-known 1-Pareto efficiency
of TTC. Let us build µ′.

For each school s, we let T out0 (s) := µ0(s)\µ(s) and T in0 (s) := µ(s)\µ0(s).91 Remember
that for each school s we must have |T in0 (s)| = |T out0 (s)| := m. Without loss of generality, let
T out(s) = {t1, . . . , tm} where teacher t` has the `-th highest priority in T out0 (s). Similarly, let
T in0 (s) = {t′1, . . . , t′m}. Note that, since µ is 2-IR and so 2-Pareto dominates µ0, we have that
t′` �s t` for all ` = 1, . . . ,m. Finally, let T0(s) := µ0(s) ∩ µ(s). We define a first matching µ′1 as
follows.

Fix a teacher t. If t := t′` ∈ T in0 (s) for some school s, then let µ′1(t) := (t`, s). If t does not
appear in any set T in0 (s) for all schools s ∈ S, then it implies that the teacher belongs to T0(s)
for some school s. In that case, let µ′1(t) = (t, s). Note that, under the latter case, we have that
µ0(t) = µ(t) �t TO-BEf∗(�)[t] �t µ0(t) so that µ0(t) = TO-BEf∗(�)[t] = µ(t) and, by definition
of TTC(�′), we have that TTC(�′)[t] = (t, s).

For a teacher t, if s := µ(t) �t TO-BEf∗(�)[t] := s̃, then t′` ∈ T in0 (s) and µ′1(t) = (t`, s). Let
(t̃, s̃) := TTC(�′)[t]. Since s �t s̃ and t = t′` �s t`, we indeed have that (t`, s) is acceptable for t

90One can easily check that µ′ is a well-defined matching.
91Note that the construction is different from the proof of point iii. of Theorem 1 since here, we consider the move

from µ0 to µ and not the one from TO-BEf∗(�) to µ.
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under �′t and (t`, s) �t (t̃, s̃).

If t ∈ T0(s) for some s, then, as described above, we trivially have µ′1(t) = TTC(�′)[t] = (t, s).

Now, assume that teacher t is s.t. µ(t) = TO-BEf∗(�)[t] =: s �t µ0(t) so that t := t′` ∈ T in0 (s). So
µ′1(t′`) = (t`, s) and TTC(�′)[t] := (tk, s) for some k. By construction of TTC(�′), we have that
t �s tk. We also know that t = t′` �s t` so that (t`, s) and (tk, s) are both acceptable under �′t. If
(t`, s) �′t (tk, s) then µ′1(t) �′t TTC(�′)[t].92

Assume that (tk, s) �′t (t`, s). We will build a matching µ′2 s.t. all teachers who preferred their
assignments under µ′1 to those under TTC(�′) continue to do so and teacher t will weakly prefer
his assignment under µ′2 to the one under TTC(�′). Let k1 := k, by construction of the profile �′,
since (tk, s) �′t (t`, s) then f ∗s (tk1) < f ∗s (t`). By definition of f ∗s , it means that tk1 �s t`, so that
k1 < `. Let O<` := {(t1, s), . . . , (t`−1, s)}, O≥` := {(t`, s), . . . , (tm, s)}, and Õ := O≥` ∪ O<`. We
build a bipartite digraph (N,E) where N := T in0 (s) ∪ Õ. Let t′` := n1 ∈ T in0 (s) and let him point
to n′1 := (tk1 , s) ∈ Õ. Now, let n′1 point to n2 := t′k1 where t′k1 the teacher assigned to (tk1 , s) under
µ′1. Now, there are three cases:

1. If s = µ(t′k1) 6= TO-BEf∗(�)[t′k1 ], then let n2 = t′k1 point to n′2 := (t`, s). Since k1 < `, we
have that t′k1 �s t

′
` �s t`, so that (t`, s) is acceptable under �′t′k1

and so (t`, s) �′t′k1
TTC(�′

)[t′k1 ].

2. If s = µ(t′k1) = TO-BEf∗(�)[t′k1 ] and (t`, s) �′t′k1
TTC(�′)[t′k1 ] =: (tk2 , s), then let n2 = t′k1

point to n′2 := (t`, s).

3. If s = µ(t′k1) = TO-BEf∗(�)[t′k1 ] and TTC(�′)[t′k1 ] =: (tk2 , s) �′t′k1
(t`, s), then let n2 = t′k1

point to (tk2 , s). Since (t`, s) is acceptable at �′t′k1
, we must have that k2 < ` so that (tk2 , s) ∈

O<`. Let n′2 := (tk2 , s) and n3 := t′k2 , where t′k2 is the teacher assigned to (tk2 , s) under µ′1,
and let the former point to the latter.

If Case 3 holds, if one starts with t′k2 rather than t′k1 and since k2 < `, then it is possible to use
the same argument as above. If Case 3 still happens, then one can iterate until the pointing reaches
(t`, s). Note that it does reach (t`, s) only once it reaches Case 1 or 2 and that, by finiteness of the
set O<`, Case 3 cannot holds indefinitely.93 Let p − 1 be the number of iterations needed before
reaching Case 1 or 2. Once it does, we have p nodes n1, n

′
1, . . . , np, n

′
p where, for i = 1, . . . , p,

ni = t′ki−1
points to n′i = (tki , s) (where t′k0 stands for t = t′`) and the latter points to ni+1 = t′ki .

92Remember that we are trying to build a matching µ′ of objects that Pareto dominates at �′ the matching given by
TTC(�′).

93Note that it is not possible for the pointing defined in Case 3 to cycle. Indeed, take the first iteration with µ′1, in
which each object points to the assigned teacher assigned under µ′1, and each teacher in the Case 3 points to his assigned
object under µ′1. If the pointing does cycle, it means that a teacher, say for instance tk4 , points to an object that a previous
iteration of the Case 3 used, say for instance (tk2 , s). In that case, it would mean that the object (tk2 , s) was assigned to
both teacher t′k2 and teacher t′k4 under µ′1, a contradiction.
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Note that n′p = (t`, s). Let µ′2 be the same matching as µ′1 except that, for i = 1, . . . , p, the teacher
t′ki in node ni is assigned the object (tki , s).94 Note that, by construction, for each teacher t′ki−1

with i = 1, . . . , p − 1, we have that µ′2(t′ki−1
) = TTC(�′)[t′ki−1

] and that, for teacher t′kp−1
, we have

µ′2(t′kp−1
) = (t`, s) �′t′kp−1

TTC(�′)[t′kp−1
].

Now, we can iterate the entire above argument with µ′2 if there is still a teacher t and a school s
s.t. t := t′` ∈ T0(s), µ(t) = s = TO-BEf∗(�)[t] but TTC(�′)[t] �′t µ′2(t). Note that such teacher t
cannot be one of those treated above. So at some point, this process will stop and identify a matching
µ′K where for all t ∈ T , µ′K(t) �′t TTC(�′)[t]. Since by assumption there is at least one teacher t
s.t. µ(t) �t TO-BEf∗(�)[t], then our above construction implies that µ′K(t) �t TTC(�′)[t]. Setting
µ′ = µ′K , we obtain the desired contradiction.

For the second part of the theorem, assume that f 6= f ∗, then one can construct an instance
of preferences wherein the outcome TO-BEf is 1-Pareto dominated by a 2-IR matching µ. This is
enough for our purpose since we can build a 2-IR mechanism that selects µ at this specific instance
and coincides with TO-BEf at any other instance. Since f 6= f ∗, then ∃s∗ ∈ S and two teachers
t∗1, t

∗
2 s.t.

• µ0(t∗1) = µ0(t∗2) = s∗

• t∗1 �s∗ t∗2

• fs∗(t∗1) > fs∗(t
∗
2)

Then, let t, t′ be two additional teachers initially assigned to respectively s and s′ so that these
two schools have one seat and s∗ has two seats.95 Let the preferences be:

�s∗ : t t∗1 t′ t∗2
�s: t∗2 t
�s′ : t∗1 t′

�t∗1 : s′ s∗

�t∗2 : s s∗

�t: s∗ s
�t′ : s∗ s′

At the first step of TO-BEf∗(�), the only cycle is (t, s) → (t∗2, s
∗) → (t, s). Once implemented,

(t′, s′) cannot point to (t∗1, s
∗) since t∗1 �s∗ t′ so the final matching matches t and t∗1 to s∗, t∗2 to s

and t′ to s′. But in matching t′ to s∗ and t∗1 to s′, we would obtain a 2-IR matching µ that 1-Pareto
dominates TO-BEf∗(�). Note, however, that, in doing so, school s∗ would be worse off compared
to under TO-BEf∗ . Indeed, its assignment under TO-BEf∗(�) is {t, t∗1}, while the one under µ is
{t, t′} and t∗1 �s∗ t′.

94This indeed defines a matching since µ′2 just reassign the objects corresponding to seats inside the same school s.
95One needs at least two additional teachers into two different schools. If there are more teachers and more schools,

one can trivially set their preferences s.t. they rank their initial school first so that the exchanges below are the only
possible ones.
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E Proof of Theorem 3

The proof of Theorem 3 directly follows from the proposition below.

Proposition 4 Consider any two-sided maximal (and strategy-proof) mechanism ϕ. Fix any profile
� which lies in P . We must have ϕ(�) ∈ TO-BE(�).

PROOF. Consider the graph in the first step of TO-BE(�). We claim that there is a cycle of
TO-BE(�) such that, under ϕ(�), any teacher who is part of the cycle gets assigned the object he
points to. First, note that if there is a self-cycle in this step, i.e., a node (t, s) pointing to itself, then,
by 2-IR of ϕ, ϕ(�) must assign t to s. So let us assume that there is no self-cycle in the graph. Pick
an arbitrary cycle denoted (t1, s1), (t2, s2), ..., (tK , sK).

We claim that in this cycle, there must be a node (tk, sk) such that ϕ(�)[tk] 6= sk. Indeed, if
this was not the case, we would have that for all k = 1, ..., K, ϕ(�)[tk] = sk. But then ϕ(�) is not
two-sided maximal since we can assign each tk to sk+1. Noticing that this gives a 2-IR assignment,
the assignment we obtain 2-Pareto dominates ϕ(�), a contradiction with the assumption that ϕ is a
selection of BE and, hence, two-sided maximal.

So there must be a node (tk, sk) such that ϕ(�)[tk] 6= sk, wlog, let us assume that k = 1. The
following simple lemma shows that there must be a cycle of TO-BE(�) such that, under ϕ(�), any
teacher who is part of the cycle gets assigned the object he points to.

Lemma 3 If there exists t1 such that ϕ(�)[t1] 6= µ0(t1) then there exists a cycle
(t1, s1), (t2, s2), ..., (tK , sK) in the graph such that ϕ(�)[tk] = sk+1 for any k = 1, ..., K.

PROOF. Assume that there exists t1 such that ϕ(�)[t1] 6= µ0(t1). Because � lies in P , ϕ(�
)[t1] =: s2 where s2 is t1’s top choice. In addition, since, under ϕ(�), one seat of school s2 is taken
by t1, there must be a teacher t2 such that µ0(t2) = s2 and ϕ(�)[t2] 6= s2. In addition, because ϕ(�)
is two-sided maximal, this teacher can be chosen so that t1 �s2 t2. More specifically, we pick t2 the
teacher with the highest priority at s among all those who have a lower priority than t1 at school s.
By definition of the graph, (t1, s1) points to (t2, s2). Now, since ϕ(�)[t2] 6= s2 = µ0(t2), we can
iterate the reasoning to induce a path (t1, s1), (t2, s2), ... in the graph such that ϕ(�)[tk] = sk+1 for
any k ≥ 1. Since the graph is finite, this path will cycle at some point.

Now, consider the new graph obtained after we removed the teachers who are part of this cycle
and the seats they point to in the cycle. The exact same reasoning holds here. Hence, we can iterate
the reasoning until we exhaust the market. We obtain a sequence of cycles selected in the graphs
associated with TO-BE which, once implemented, yields the assignment given by ϕ(�). This shows
that ϕ(�) ∈ TO-BE(�).

F Proof of Theorem 4

We want to prove the following proposition. Remember that, for this result, we assume that we are
in a one-to-one setting so that the set of TO-BE mechanisms is a singleton. We refer to the unique
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mechanism of this class as simply TO-BE.
Before moving to the proof, we further connect TTC and TO-BE in the one-to-one environment.

As is well-known, in a Shapley-Scarf economy (in which schools are replaced by objects with no
preferences but are initially owned by the other side of the market), TTC is the unique element of
the core (Shapley and Scarf (1974) and Roth and Postlewaite (1977)). Because TO-BE is related
to TTC, it can be related to some notion of the core. This notion will be used in the course of the
argument for the proof of Proposition 5 below. Define the two-sided notion of the core as the set
of matchings µ s.t. there is no (two-sided blocking) coalition B ⊆ T for which there is a matching
ν s.t. for each t ∈ B, ν(t) is a school to which a teacher in B is initially matched and for all
t ∈ B : ν(t) �t µ(t) and, for s := ν(t), t �s µ0(s) with a strict equality for some teacher (or
school). Given a profile of preferences, it is easily verified that a matching is in the two-sided core if
and only if it is in the (standard) core when preferences are modified in such a way that each teacher
t ranks schools outside his opportunity set Opp(t, µ0, T, S) below his initial assignment. Thus,
appealing to the results mentioned above (i.e., Shapley and Scarf (1974) and Roth and Postlewaite
(1977)), we conclude that the two-sided core is a singleton and coincides with TO-BE.

Proposition 5 Let ϕ be any selection of BE. If ϕ 6= TO-BE then ϕ is not strategy-proof.

Lemma 4 Let ϕ be any selection of BE. Fix any profile of preferences � and assume that ϕ(�) 6=
TO-BE(�). Let x be the outcome of TO-BE(�) and let y be that of ϕ(�). There exists t s.t. x(t) �t
y(t) �t µ0(t).

PROOF. Let T (x, y) be the set of teachers for which x(t) �t y(t) �t µ0(t). We know that x
is not 1-Pareto dominated by y (by Proposition 2), and since y is individually rational and x 6= y,
we must have T (x, y) 6= ∅. Proceed by contradiction and assume that, for all t ∈ T (x, y), we have
y(t) = µ0(t). Let B := T\T (x, y). Note that for any t ∈ B, y(t) is a school initially assigned to
some teacher in B. In addition, by definition, for all t ∈ B, y(t) �t x(t). If there was no teacher
t ∈ B for which y(t) �t x(t), then we would have the following situation: y would select the
initial allocation for all t ∈ T (x, y) and would be identical to x for all t /∈ T (x, y). Given that
x 6= y, we must have x(t) 6= y(t) = µ0(t) for some t ∈ T (x, y). Since x is individually rational,
we have x(t) �t y(t) = µ0(t) for those t ∈ T (x, y). Hence, x 1-Pareto-dominates y. However,
all schools are also better off under x than under y. Indeed, for each school s s.t. y(s) /∈ T (x, y),
y(s) = x(s) and for each school s s.t. y(s) ∈ T (x, y), because x is individually rational on both
sides, x(s) �s y(s) = µ0(s) with a strict inequality for s satisfying x(s) 6= y(s) (and this s must
exist since x 6= y). Thus, x is individually rational on both sides and 2-Pareto-dominates y, which
is not possible, given that y is an outcome of BE.

To recap, we have that, for any t ∈ B, y(t) is a school initially assigned to some teacher in B
and for all t ∈ B, y(t) �t x(t) with a strict inequality for some t ∈ B. In addition, since y is
the outcome of ϕ(�) and ϕ 2-Pareto-dominates the initial allocation µ0, we must have that, for all
schools s, y(s) �s µ0(s). Hence, B is a two-sided blocking coalition for x, which is a contradiction
since x must be a point in the two–sided Core.
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Proof of Proposition 5. We start from a profile of preferences� under which ϕ(�) 6= TO-BE(�
) which must exist because of our assumption that ϕ 6= TO-BE. Given our profile of preferences
�, we let the profile of preferences �′ be defined as follows. For any t, any school s other than
TO-BE(�)[t] are ranked as unacceptable for t under �′. We must have TO-BE(�) = TO-BE(�′).
Now, we are in a position to prove the following lemma.

Lemma 5 TO-BE(�′) = ϕ(�′).

PROOF. Suppose x := TO-BE(�′) 6= ϕ(�′) =: y. By the above lemma, there exists t s.t.
x(t) �′t y(t) �′t µ0(t), which yields a contradiction, by construction of �′t.

Note that TO-BE also satisfies the following property: for any profile of preferences �, for any
teacher t, TO-BE(�)(t) = TO-BE(�−t,�′t)(t). This will be used in the following lemma.

Lemma 6 If ϕ is strategy-proof, then TO-BE(�Z ,�′−Z) = ϕ(�Z ,�′−Z) for any Z ⊆ T .

PROOF. Assume ϕ is strategy-proof. The proof is, by induction, on the size of Z. For |Z| = 0,
the result is given by the previous lemma. Now, the induction hypothesis is that TO-BE(�Z ,�′−Z) =
ϕ(�Z ,�′−Z) for any subset Z with |Z| = k. Proceed by contradiction and suppose that there is Z s.t.
|Z| = k+1 for which x := TO-BE(�Z ,�′−Z) 6= ϕ(�Z ,�′−Z) =: y. By the first lemma above, there
exists t s.t. TO-BE(�Z ,�′−Z)(t) Bt ϕ(�Z ,�′−Z)(t) Bt µ0(t) where Bt=�′t if t /∈ Z while Bt=�t
otherwise. If t /∈ Z, then there is a straightforward contradiction since, under �′t, there is a single
school ranked above µ0(t) for teacher t. Now, assume that t ∈ Z. By the property noted just before
the lemma statement, we must have TO-BE(�Z\{t},�′−Z ,�′t)(t) = TO-BE(�Z ,�′−Z)(t) and, by
our induction hypothesis, ϕ(�Z\{t},�′−Z ,�′t)(t) = TO-BE(�Z\{t},�′−Z ,�′t)(t). Thus, we obtain
ϕ(�Z\{t},�′−Z ,�′t)(t) = TO-BE(�Z\{t},�′−Z ,�′t)(t) = TO-BE(�Z ,�′−Z)(t) �t ϕ(�Z ,�′−Z)(t),
which is a contradiction with the assumption that ϕ is strategy-proof (indeed, at (�Z ,�′−Z), teacher
t ∈ Z has an incentive to report �′t instead of �t).

Taking Z = T in the above lemma, given that ϕ(�) 6= TO-BE(�), we obtain the following
corollary, which completes the proof of our proposition.

Corollary 2 ϕ is not strategy-proof.

�

G Proof of Proposition 3

In the sequel, we prove our characterization result of one-sided maximal matchings given in Propo-
sition 3. Our proof is divided into two parts. We start by showing that any outcome of the 1S-BE
algorithm is a one-sided maximal matching (Section G.1):

Proposition 6 If µ is an outcome of the 1S-BE algorithm then µ is one-sided maximal.
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Then, we move to the proof that any one-sided maximal matching corresponds to a possible
outcome of the 1S-BE algorithm (Section G.2):

Proposition 7 If µ is one-sided maximal then µ is an outcome of the 1S-BE algorithm.

G.1 Proof of Proposition 6

Before moving to the proof we introduce a new notation. Given matching µ, we denote Bµ for the
set of blocking pairs of µ.

In the sequel, we fix two matchings µ and µ′ such that µ′ Pareto-dominates µ for teachers and
Bµ′ ⊆ Bµ. We show below that starting from µ, the graph associated with the 1S-BE algorithm must
have a cycle. Hence, any outcome of 1S-BE must be one-sided maximal, as claimed in Proposition
6.

To give the intuition of each step of the proof, which uses a lot of graphical arguments, we will
use an example to illustrate each part. This example involves 6 teachers, t1, t′1, t2, t

′
2, t3, t4 and 4

schools s1, s2, s3, s4. In the example, matchings µ and µ′ are as follows:

µ =

(
t1 t′1 t2 t′2 t3 t4
s1 s1 s2 s2 s3 s4

)
µ′ =

(
t1 t′1 t2 t′2 t3 t4
s2 s4 s3 s1 s1 s2

)

As in Lemma 1, we can exhibit “cycles of exchanges”that can be used to go from µ to µ′ in the
proposition. It is worth noting that in the many-to-one environment, these cycles of exchanges are
not uniquely defined. Indeed, if for a given selection of cycles of exchanges, there are two nodes that
involve the same school, then this cycle can be decomposed into two cycles of exchanges. Figure
A.1 illustrates this simple fact: in the left part of the figure, starting from µ, there is a a cycle of
exchanges that, once implemented leads to µ′. It is easy to see that we can decompose this cycle
into two smaller cycles of exchanges, shown in the right part of the figure, that also lead to µ′ once
implemented.

So for the rest of the proof, we fix (a collection of) exchange cycles that takes us from µ to
µ′ once implemented. To fix ideas, in the example, we consider the one on the left part of Figure
A.1. In Lemma 1, these cycles of exchanges were actual cycles in the graph associated with BE.
However, when considering the graph associated with 1S-BE, this is no longer the case: the cycles of
exchanges are not necessarily cycles of the graph associated with 1S-BE. Before moving to the first
lemma, we note that all nodes that are not part of cycles of exchanges are those where the teacher
of that node has the same allocation between µ and µ′. In the following, the “nodes of the cycles of
exchanges”will be all the nodes (t, s) s.t µ(t) 6= µ′(t). We will say that a node (t, s) 1S-BE-points to
another node (t′, s′) if (t, s) points toward (t′, s′) in the graph associated with the 1S-BE algorithm
(starting from µ).

61



Figure A.1: Two equivalent cycles of exchanges in many-to-one.
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b) Cycles of exhanges 2
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(t4, s4)

(t′2, s2)

Lemma 7 Fix a node (t, s) of the cycles of exchanges. Then:

1. either its predecessor according to the the cycles of exchanges 1S-BE-points toward (t, s);

2. or there is a node (t′, s′) in the cycles of exchanges that such that t′ does not block with s
under µ, s �t′ s′ and t′ has the highest priority among those who desire s but do not block
with it under µ. And so (t′, s′) 1S-BE-points toward (t, s).

Before moving to the proof, let us illustrate this lemma in the example. Assume that all nodes
except (t3, s3) are 1S-BE-pointed by their predecessors in the cycle of exchanges. According to
Lemma 7, there must be a node (t′, s′) in the cycle of exchanges that 1S-BE-points toward (t3, s3).
In the graph of Figure A.2, this node is assumed to be (t4, s4). The dashed edge from (t2, s2) to
(t3, s3) is here to show that this is not an edge of the 1S-BE graph but rather is an edge corresponding
to the exchange cycle.

PROOF. Call (t′′, s′′) the predecessor of node (t, s) in the cycles of exchanges so that s′′ := µ(t′′)
and s := µ′(t′′). Because µ′ Pareto-dominates for teachers µ, we know that s �t′′ s′′ so that t′′

desires s under µ. Assume that (t′′, s′′) does not 1S-BE-point to (t, s). This means that t′′ does
not block with s under µ and that there is another teacher t′ who does not block with s and has the
highest priority among those who desire s and do not block with it. Thus, (t′, s′) (where s′ := µ(t′))
1S-BE points toward (t, s). It remains to show that (t′, s′) is part of the cycles of exchanges. If this
was not the case, it would mean that µ(t′) = µ′(t′) = s′. Let us recap. We have that t′ does not
block with s under µ. In addition, by definition of t′, we must have that t′ �s t′′ (since t′′ does not
block with s under µ and desires s). In addition, t′ desires s under µ, and so µ(t′) = µ′(t′) implies
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that t′ also desires s under µ′. Hence, because t′′ ∈ µ′(s), we obtain that t′ blocks with s under µ′.
This contradicts our assumption that Bµ′ ⊆ Bµ.

Lemma 7 allows us to identify a subgraph (N ′, E1) of the 1S-BE graph starting from µ such that
N ′ are the nodes of the cycles of exchanges and the set of edges E1 is built as follows. We start from
E1 = ∅ and add the following edges: for each node (t, s) in the cycles of exchange, if its predecessor
(t̃, s̃) under the cycles of exchanges 1S-BE-points to (t, s) then ((t̃, s̃), (t, s)) is added to E1. If, on
the contrary, (t̃, s̃) does no not 1S-BE-point to (t, s), then we pick the node (t′, s′) in the cycles of
exchanges, identified in the second condition of Lemma 7, that 1S-BE-points toward (t, s) and we
add ((t̃, s̃), (t, s)) to E1. Note that, by construction, each node in N ′ has a unique in-going edge in
(N ′, E1). In the example, this subgraph (N ′, E1) is given by the right graph of Figure A.2 (the solid
arrows). Note that this graph admits a cycle: (t3, s3) → (t′1, s1) → (t4, s4) → (t3, s3). This is a
simple property of digraphs with in-degree one:

Lemma 8 Fix a finite digraph (N,E) such that each node has in-degree one. There is a cycle in
this graph.

PROOF. Fix a node n1 in the graph (N,E). Because it has in-degree one, we can let n2 be
the unique node pointing to n1. Again, from n2 we can let n3 be the unique node pointing to n2.
Because there are a finite number of nodes in the graph, this process must cycle at some point.

As the example illustrates, applying this lemma to (N ′, E1) leads to the following corollary:

Corollary 3 There is a cycle in the graph associated with 1S-BE starting from µ.

We are now in a position to prove Proposition 6.
COMPLETION OF THE PROOF OF PROPOSITION 6. Let µ be an outcome of the 1S-BE algo-

rithm. Proceed by contradiction and assume that µ is not one-sided maximal. Thus, there must be
a matching µ′ such that µ′ Pareto-dominates µ for teachers and Bµ′ ⊆ Bµ. Corollary 3 implies that
there must be a cycle in the graph associated with 1S-BE starting from µ, contradicting the fact that
µ is an outcome of 1S-BE.

G.2 Proof of Proposition 7

In the sequel, we fix a one-sided maximal matching µ′. We let µ be a matching such that µ′ Pareto-
dominates for teachers µ and satisfies Bµ′ ⊆ Bµ. We claim there is a cycle in the graph associated
with 1S-BE starting from µ which, once implemented, leads to a matching µ̃ such that µ′ Pareto-
dominates µ̃ for teachers and satisfies Bµ′ ⊆ Bµ̃. Note that this implies Proposition 7. Indeed,
because, by definition, µ′ Pareto-dominates µ0 and Bµ′ ⊆ Bµ0 , we must have a cycle in the graph
associated with 1S-BE starting from µ0, which, once implemented, yields to a matching say µ̃1 such
that µ′ Pareto-dominates µ̃1 for teachers and satisfies Bµ′ ⊆ Bµ̃1 . Now, we can iterate the reasoning,
and we again see that there is a cycle in the graph associated with 1S-BE starting from µ̃1, which,
once implemented, yields to a matching say µ̃2 such that µ′ Pareto-dominates µ̃2 for teachers and
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Figure A.2: Cycles of exchanges and (N ′, E1).
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satisfies Bµ′ ⊆ Bµ̃2 . We can pursue this reasoning: at some point, because the environment is finite,
we must reach matching µ′, as we intended to show.

We start by proving a lemma that will be useful in the subsequent arguments. Starting from
any matching µ, in the graph associated to the 1S-BE algorithm, if a node points to another node
involving school s then it also points to all other nodes involving school s.

Lemma 9 Let (t, s) be a node in the graph associated with the 1S-BE algorithm, starting from a
matching µ. If (t, s) points to (t′, s′) then (t, s) points to (t′′, s′) for all t′′ ∈ µ(s′).

PROOF. Let us assume that (t, s) points to (t′, s′) and consider any node (t′′, s′). Let us first
consider the case where t �s′ t′′. Given that (t, s) points to (t′, s′), we must have that t desires s′.
Hence, t has justified envy toward t′′ and so, by definition of 1S-BE, (t, s) must point to (t′′, s′).
Now, consider the other case in which t′′ �s′ t. We have to check that t is preferred by s′ to each
teacher who desires s′ and does not block with it. If t �s′ t′, then for any teacher t̃ who desires s′

and does not block with s′, we have that t′ �s′ t̃ which implies t �s′ t̃ so that t is preferred by s′ to
those who desire s′ and do not block with it. Hence, (t, s) must point to (t′′, s′). Now, if t′ �s′ t,
because we know that (t, s) points to (t′, s′), t must be preferred by s′ to those who desire s′ and do
not block with it so that (t, s) must also point to (t′′, s′).

In the sequel, as in the proof of Proposition 6, we fix (a collection of) cycles of exchanges which
takes us from µ to µ′ once implemented. We consider the digraph (N ′, E1) as built in Section G.1
after Lemma 7. Consider a cycleC1 in this graph (which exists by Lemma 8). Let µ1 be the matching
obtained once the cycle C1 is implemented. In the example introduced in Section G.1, this matching
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would be:

µ1 =

(
t1 t′1 t2 t′2 t3 t4
s1 s4 s2 s2 s1 s3

)
We first show the following lemma.

Lemma 10 µ′ Pareto-dominates µ1 for teachers.

PROOF. Fix a teacher t. If the node (t, s) to which t belongs is not part of the cycles of exchanges,
we know t does not move from µ to µ′ and so (t, s) is not in the cycle C1. Hence, µ(t) = µ1(t) =
µ′(t). So assume that (t, s) is part of the cycles of exchanges and let s := µ(t) and s′ := µ′(t) with
s 6= s′. There are three possible cases:

• Case 1: s = µ1(t) 6= s′. Because µ′ Pareto-dominates µ for teachers, we have that µ′(t) =
s′ �t µ1(t) = µ(t) = s.

• Case 2: s 6= µ1(t) = s′. In such a case, we trivially have µ′(t) �t µ1(t).

• Case 3: s 6= µ1(t) := s1 6= s′. By construction of the graph (N ′, E1) when we implement
cycle C1, we know that there is a unique edge

(
(t, s), (t1, s1)

)
in C1 and that (t, s) is not the

predecessor of (t1, s1) under the cycles of exchanges, since otherwise, t would be matched
to s′ under µ1, which is not the case by assumption. Hence, by construction of (N ′, E1), the
predecessor of (t1, s1) under the cycles of exchanges, say (t′′, s′′), does not 1S-BE point to
(t1, s1) and, in addition, t does not block with s1 under µ, s1 �t s, and t has the highest
priority among those who desire s1 but do not block with it under µ and 1S-BE-points to
(t1, s1). Because (t′′, s′′) does not 1S-BE point to (t1, s1), we know that t′′ does not block with
s1. While because (t′′, s′′) points to (t1, s1) under the cycles of exchange, we must have that
t′′ desires s1. Thus, we conclude that t �s1 t′′.
Now, proceed by contradiction and assume that (µ1(t) =)s1 �t s′(= µ′(t)). Because t′′ ∈
µ′(s1) (recall that (t′′, s′′) is the predecessor of (t1, s1) under the cycles of exchange) and
t �s1 t′′, we have that t blocks with s1 under µ′ i.e. (t, s1) ∈ Bµ′ . But, as already claimed,
(t, s1) /∈ Bµ. This contradicts that Bµ′ ⊆ Bµ. Thus, we must have µ′(t) �t µ1(t).96

So we have shown that ∀t, µ′(t) �t µ1(t).

If we were sure that it is always the case that Bµ′ ⊆ Bµ1 , the proof would be completed. Unfor-
tunately, even if this is true in the one-to-one environment, it may not be true in the many-to-one
case. To give an intuition, assume that in the example we have t1 �s1 t3 �s1 t2 �s1 t′2 �s1 t′1 and

96Case 3 in Lemma 10 can be illustrated in the example. The node (t, s) would be (t4, s4) in the right graph of Figure
A.2. t4 is matched to s3 under µ1 but is matched to s2 under µ′. Under C1 (i.e., (t3, s3) → (t′1, s1) → (t4, s4) →
(t3, s3)), node (t4, s4) points to (t3, s3) while (t2, s2) does not 1S-BE-point to (t3, s3). Because (t2, s2) points to
(t3, s3) in the cycle of exchanges, it means that t2 ∈ µ′(s3) so that if t4 preferred s3 to his match under µ′, s2, it would
imply that t4 blocks with s3 under µ′ while he does not under µ, and so this would yield the contradiction.
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s1 �t2 s3 �t2 s2. So t2 blocks with s1 under both µ and µ′. But after implementing cycle C1, we
see that t2 does not block with s1 anymore. Indeed, the only teacher for whom t2 feels justified envy
under µ is t′1. But t′1 is replaced by t3 once C1 is implemented, and t1 has a higher priority than t2 at
s1 (while t1 stays matched to s1). We will show that if this arises, we can find another subgraph of
the 1S-BE graph starting from µ, call it (N ′, E2), still with in-degree one for each node so that there
is a cycle C2 in this subgraph and the matching µ2 obtained with this cycle keeps the blocking pair
(t2, s1).

Lemma 11 Assume there is (t1, s1) ∈ Bµ′ but not in Bµ1 . Then there is a teacher t∗1 with s∗1 := µ(t∗1)
s.t t1 �s1 t∗1, and (t∗1, s

∗
1) is part of the cycles of exchanges and points to all nodes of the form (t, s1)

in the graph associated with 1S-BE starting from µ.

Before moving to the proof, let us illustrate the lemma in the example. As explained above, the
“problem” in the graph (N ′, E1) (which yields to (t2, s1) /∈ Bµ1) is that the node pointing to (t′1, s1)
is (t3, s3) and that t3 �s1 t2. But we have teacher t′2 who is less preferred by s1 than t2, is not
matched to s1 under µ, but is under µ′. In addition, since we assumed that node (t′2, s2) is 1S-BE-
pointing to (t1, s1) under µ, we can use Lemma 9 to be sure it is also pointing to (t′1, s1) so that t∗1
in the above lemma would be t′2 in the example. The argument in the proof below shows that this
construction can be made in general.

PROOF. Note first that because t1 desires s1 under µ and µ′, t1 must also desire s1 under µ1

because, by Lemma 10, µ′(t1) �t1 µ1(t1). Now, because t1 blocks with s1 under µ, it means that
there is t ∈ µ(s1) s.t t1 �s1 t. Fix one such teacher t. Since, by assumption, (t1, s1) /∈ Bµ1 , it
means that t is not matched to s1 under µ1 and so, when implementing C1, t has been replaced by a
teacher t′ such that t′ �s1 t1 since t1 does not block with s1 under µ1 but desires s1 under µ1. Since
t1 blocks with s1 under µ′ it means that there is a teacher t′1 ∈ µ′(s1) s.t t1 �s1 t′1, let s′1 := µ(t′1).
Note first that (t′1, s

′
1) is part of the cycles of exchanges. To see this, observe that if it was not

the case then we would have that t′1 ∈ µ(s1), but because (t1, s1) does not block µ1, t′1 /∈ µ1(s1).
Because µ1(t1) �t1 µ(t1) = s1 and, by Lemma 10, µ′(t1) �t1 µ1(t1), we conclude that t1 cannot
be matched to s1 under µ′, a contradiction. Hence, if the node (t′1, s

′
1) 1S-BE-points to (t, s1) then

we can set t∗1 := t′1 and s∗1 := s′1, and the argument is complete using Lemma 9. Now consider the
case in which node (t′1, s

′
1) does not 1S-BE-point to (t, s1). We already know that (t′1, s

′
1) is part of

the cycles of exchanges, so let (t̃, s1) be its successor under these cycles of exchanges (s1 has to be
part of this node since t′1 ∈ µ′(s1)). If (t′1, s

′
1) was 1S-BE-pointing to (t̃, s1), then by Lemma 9 it

would also point to (t, s1), a contradiction. So node (t′1, s
′
1) does not 1S-BE-point to its successor

under the cycles of exchanges, i.e., (t̃, s1). Thus, we have that t′1 does not block with s1 under µ (if
he were to block with s1, (t′1, s

′
1) would be 1S-BE-pointing to some node which includes school s1

and so toward (t̃, s1), a contradiction) and, by condition 2 of Lemma 7, there is a teacher t′′1, whose
node is part of the cycles of exchanges, who does not block with s1 under µ, desires s1, and has the
highest priority among those who do not block with s1 under µ and desire it. In particular, the node
(t′′1, µ(t′′1)) 1S-BE-points to (t̃, s1), and so by Lemma 9 points also to (t, s1). Since t′′1 does not block
with s1 under µ but t1 does, it means that t1 �s1 t′′1, so we can set t∗1 := t′′1 and s∗1 := µ(t′′1). Here
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again, we can use Lemma 9 to make sure that (t∗1, s
∗
1) indeed points to all the nodes (t, s1) under the

graph of 1S-BE.

Coming back to our example, we can modify the graph (N ′, E1) by deleting the edge
(
(t3, s3), (t′1, s1)

)
and replacing it with

(
(t′2, s2), (t′1, s1)

)
. In doing so, we obtain a new subgraph of 1S-BE wherein

each node still has in-degree one and so still has a cycle. But, by constructing this new graph, the
matching once the new cycle is implemented keeps (t2, s1) as a blocking pair. This is illustrated in
the left graph in Figure A.3, and the new cycle is now (t′2, s2)→ (t′1, s1)→ (t4, s4)→ (t′2, s2). The
general procedure is given below.

Let us assume there is a node (t1, s1) such that it is in Bµ′ but not in Bµ1 . Fix a teacher t ∈ µ(s1)
such that t1 �s1 t. We know that t must leave s1 under µ1 (because (t1, s1) does not block µ1)
and is replaced by a teacher t′ such that t′ �s1 t1. Since the teacher t∗1 identified in Lemma 11
satisfies t1 �s1 t∗1, we have that t′ 6= t∗1. So under the graph (N ′, E1), because t′ replaces t when
at s1 when we implement C1, we must have that

(
(t′, µ(t′)), (t, s1)

)
∈ E1, and because each node

has in-degree one,
(
(t∗1, s

∗
1), (t, s1)

)
/∈ E1. But that node is an edge in the graph of 1S-BE by

construction. We therefore define a new graph (N ′, E2) where E2 corresponds to E1, all edges of
the form

(
(t′, µ(t′)), (t, s1)

)
with t1 �s1 t have been replaced by

(
(t∗1, s

∗
1), (t, s1)

)
, and (t∗1, s

∗
1) is as

in Lemma 11. So (N ′, E2) is still a subgraph of the 1S-BE graph starting from µ, and all the nodes
inN ′ still have in-degree one so that, using Lemma 8, we have a cycle C2. We let µ2 be the matching
obtained once C2 is implemented.

Figure A.3: Graphs of (N ′, E2) and (N ′, E3).

•

•

•

•

•

•

a) (N ′, E2).

(t1, s1)

(t2, s2)

(t3, s3)

(t′1, s1)

(t4, s4)

(t′2, s2)

•

•

•

•

•

•

b) (N ′, E3).

(t1, s1)

(t2, s2)

(t3, s3)

(t′1, s1)

(t4, s4)

(t′2, s2)

We obtain:

Lemma 12 We have that:
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1. µ′ Pareto-dominates µ2 for teachers.

2. (t1, s1) ∈ Bµ2 .

PROOF. For part 1, fix a teacher t and let s := µ(t). Without loss, assume that (t, s) is part of
the cycles of exchanges. First note that the only new edges (i.e. those in E2\E1) are those of the
form

(
(t∗1, s

∗
1), (t̃, s1)

)
for t̃ ∈ µ(s1) such that t1 �s1 t̃. So if the edge that matched t under C2 is an

old one (i.e. belongs to E1), the same argument as in Lemma 10 can be used. Assume the edge that
matched t is of the form

(
(t∗1, s

∗
1), (t̃, s1)

)
, so that t = t∗1 and µ2(t) = s1. Using the same notations

as in Lemma 11, there are two cases to consider:

• Case 1: t∗1 = t′1. In that case, we know that t′1 ∈ µ′(s1) and so, trivially, that s1 = µ′(t∗1) �t∗1
µ2(t∗1) = s1.

• Case 2: t∗1 = t′′1. If µ′(t′′1) = s1 then trivially, µ′(t′′1) �t′′1 µ2(t′′1) = s1. Assume that µ′(t′′1) 6=
µ2(t′′1) and toward a contradiction that, µ2(t′′1) = s1 �t′′1 µ

′(t′′1). By the proof of Lemma 11,
we know that t′′1 does not block with s1 under µ, and since Bµ′ ⊆ Bµ, he does not block
with s1 under µ′ either. Again, using the proof of Lemma 11, we know that because, by
assumption, (t′1, s

′
1) does not 1S-BE-point to (t, s1), t′1 therefore does not block with s1 under

µ. In addition, since t′1 ∈ µ′(s1), we must have t′1 desires s1 Thus, because, by construction
of t′′1, teacher t′′1 has the highest priority among those who do not block with s1 under µ and
desire s1, we must have t′′1 �s1 t′1. Because t′1 ∈ µ′(s1) and by assumption t′′1 desires s1 under
µ′, we obtain that (t′′1, s1) ∈ Bµ′ , which yields a contradiction since, again by construction of
t′′1, we must have (t′′1, s1) /∈ Bµ.

For part 2 assume that (t1, s1) /∈ Bµ2 . Since (t1, s1) ∈ Bµ′ , we have that s1 �t1 µ′(t1). In addition,
by Lemma 10, µ′(t1) �t1 µ2(t1) �t1 µ(t1) and so s1 �t1 µ2(t1). Then because (t1, s1) /∈ Bµ2 , we
must have that all teachers t s.t t ∈ µ(s1) and t1 �s1 t are not matched to s1 anymore under µ2, i.e.,
once cycle C2 is implemented. But under (N ′, E2) the only incoming edge for a node (t, s1) with
t1 �s1 t is

(
(t∗1, s

∗
1), (t, s1)

)
, and, since t1 �s1 t∗1, it contradicts that (t1, s1) /∈ Bµ2 since t1 feels

justified envy toward t∗1 under µ2.

As for µ1, if we were sure that Bµ′ ⊆ Bµ2 , the proof would be completed. However, as for µ1, this
may not be the case. For instance, in the example, if we assume that t2 �s2 t4 �s2 t3 �s2 t1 �s2 t′2
and s2 �t3 s1 �t3 s3, we have that (t3, s2) ∈ Bµ′ ⊂ Bµ. Then, when we implement the cycle C2

given in the left graph of Figure A.3, we can see that we delete the blocking pair (t3, s2) and so
(t3, s2) /∈ Bµ2 . With this observation in mind, the idea now is to define a new graph, as we did when
we constructed (N ′, E2) from (N ′, E1), in order to be sure that this is a subgraph of 1S-BE and that
it contains a cycle C3, which, once implemented, yields a matching that keeps the desired blocking
pairs.

For the general case, assume there is a pair (t2, s2) s.t (t2, s2) ∈ Bµ′ ⊆ Bµ but (t2, s2) /∈ Bµ2 . In
that case, we can apply exactly the same argument as in Lemma 11 and exhibit a teacher t∗2 such
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that t2 �s2 t∗2 and (t∗2, s
∗
2) 1S-BE-points to all the nodes of the form (t, s2) under the graph of 1S-BE

starting at µ. However, when s2 = s1 if t∗2 �s1 t∗1 then we reset t∗2 to be t∗1. Then, we define a new
graph (N ′, E3) with E3 where E3 corresponds to E2 where all edges of the form

(
(t′, µ(t′)), (t, s′)

)
with t2 �s2 t are replaced by

(
(t∗2, s

∗
2), (t, s1)

)
where (t∗2, s

∗
2) as in the above paragraph. Here again,

(N ′, E3) is indeed a subgraph of the graph associated with 1S-BE starting from µ, and each node still
has in-degree one. Applying Lemma 8, we get the existence of a cycle C3 which, once implemented,
yields to a matching µ3. In the example, t∗2 would be t1 and (N ′, E3) is shown in the right graph of
Figure A.3.

It is easy to see that we can mimic the proof of Lemma 12 in order to obtain the following lemma.

Lemma 13 We have that:

1. µ′ Pareto-dominates µ3 for teachers.

2. {(t1, s1), (t2, s2)} ⊂ Bµ3 .

In the example, the unique t∗2 is t1 and the graph of (N ′, E3) is given in the right graph of Figure
A.3. In that case, the cycle C3 is (t1, s1) � (t′2, s2). Note that, once C3 is implemented, we indeed
have {(t2, s1), (t3, s2)} ⊂ Bµ3 and Bµ′ ⊆ Bµ3 so that we have found the desired matching.

Of course, in full generality, it is possible to have a pair (t3, s3) satisfying (t3, s3) ∈ Bµ′ ⊆ Bµ
while (t3, s3) /∈ Bµ3 . In order to prove the desired result – namely that there is a cycle in the graph
associated with 1S-BE starting from µ which, once implemented, leads to a matching µ̃ such that
µ′ Pareto-dominates µ̃ for teachers and satisfies Bµ′ ⊆ Bµ̃ – we would continue to apply the same
logic. Because we have a finite environment, at some point we must find a matching µ̃ with the
desired property.

H Proof of Theorem 5

In order to prove this result, we exhibit an instance where, irrespective of which (sequence of)
cycle(s) one selects in the graphs associated with 1S-BE , one teacher will gain by misreporting his
preferences. Assume that there are five teachers t1, . . . , t5 and five schools s1, . . . , s5. Teachers and
schools preferences are given as follows:

�t1 : s5 s1 �s1 : t5 t2 t1
�t2 : s1 s3 s2 �s2 : t5 t2
�t3 : s4 s5 s3 �s3 : t3 t2 t4
�t4 : s5 s3 s4 �s4 : t3 t4
�t5 : s2 s1 s5 �s5 : t4 t2 t5 t3 t1

We let �:= (�t1 , . . . ,�t5). The initial assignment is given by:

µ0 =

(
t1 t2 t3 t4 t5
s1 s2 s3 s4 s5

)
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Starting from the initial assignment, the solid arrows in the graph below correspond to the graph
associated with 1S-BE.

•

• •

•

•

(t1, s1)

(t2, s2) (t3, s3)

(t4, s4)

(t5, s5)

We add dashed arrows from one node to another if the teacher in the origin of the arrow prefers
the school in the pointed node. These arrows are not actual arrows of the graph associated with
1S-BE and therefore cannot be used to select a cycle. These arrows only facilitate understanding of
the argument.

When � is submitted, there are two possible choices of cycles in the graph:

• A large cycle given by (t2, s2) → (t3, s3) → (t4, s4) → (t5, s5) → (t2, s2). Denote this cycle
by C̄.

• A small cycle given by (t2, s2)→ (t3, s3)→ (t5, s5)→ (t2, s2). Denote this cycle by C.

We decompose the analysis for these two cases.

Case A: Under �, C̄ is selected:

Once this cycle is cleared, there are no cycles left in the graph associated with 1S-BE, and the final
matching of 1S-BE is given by

µ̄ =

(
t1 t2 t3 t4 t5
s1 s3 s4 s5 s2

)
Now, assume that teacher t2 reports the following preference relation �′t2 : s1, s5, s2, while others
report according to �. Under this profile, starting from the initial assignment, the graph associated
with 1S-BE is
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•

• •

•

•

(t1, s1)

(t2, s2) (t3, s3)

(t4, s4)

(t5, s5)

Now, there are two possible cycle choices.

Case A.1: The cycle chosen is (t2, s2)� (t5, s5). Once carried out, the graph associated with 1S-BE
starting from the new matching is

•

• •

•

•

(t1, s1)

(t5, s2) (t3, s3)

(t4, s4)

(t2, s5)

Clearly, there is a unique cycle (t4, s4) � (t3, s3). Consider the new matching once this cycle
is implemented. Teacher t3 obtains his most favorite school. Hence, in the graph associated with
1S-BE starting from the new matching, node (t1, s1) will now point to node (t2, s5). In this graph,
the only cycle is (t2, s5) � (t1, s1); therefore, t2 is eventually matched to school s1. Hence, t2
obtains his most preferred school under �t2 , and we exhibit a profitable misreport.

Case A.2: The cycle chosen is (t4, s4)� (t3, s3). Once carried out, the graph associated with 1S-BE
starting from the new matching is
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•

• •

•

•

(t1, s1)

(t2, s2) (t4, s3)

(t3, s4)

(t5, s5)

In this graph, there are three possible cycle choices:

1. (t2, s2) → (t1, s1) → (t5, s5) → (t2, s2): in that case, t2 is matched to s1 and so, again, we
identified a profitable misreport.

2. (t2, s2)� (t5, s5): Once cleared, the only cycle that is left is (t1, s1)� (t2, s5); therefore, t2
will be matched to s1, leading to a successful manipulation.

3. (t1, s1) � (t5, s5): Once cleared, since t5 prefers s2 to s1, there is a unique cycle left:
(t5, s1)� (t2, s2). Once again, the manipulation of t2 is successful.

Thus, we have shown that, when cycle C is selected under the profile �, teacher t2 has a profitable
misreport irrespective of the possible selections of cycles performed after t2’s deviation. Let us now
move to the other case.

Case B: Under �, C is selected:

Once this cycle is carried out, the graph associated with 1S-BE starting from the new matching is

•

• •

•

•

(t1, s1)

(t5, s2) (t2, s3)

(t4, s4)

(t3, s5)

There are two possible cycle choices.
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Case B.1: Choose (t3, s5) � (t4, s4). Then, the matching obtained is the same as the one obtained
when we selected cycle C̄. Therefore, we can come back to Case A, and we know that t2 has a
successful misreport.

Case B.2: Choose (t1, s1) → (t3, s5) → (t4, s4) → (t2, s3) → (t1, s1). In this case, each teacher
but teacher t4 gets his most preferred school. Hence, there are no more cycles in the new graph
associated with 1S-BE. In particular, teacher t4 is matched to school s3. Now, assume that t4 submits
the following preferences: �′t4 : s5, s4. The graph associated with 1S-BE starting from the initial
assignment is the same as the one under truthful reports (note that, although these are not the arrows
of the graph of 1S-BE, the dashed arrow from (t4, s4) disappears). Therefore, again, we are left with
a choice between cycle C̄ and C.

1. If we carry out C, the graph starting from the new matching will be given by the graph
just above, except that (t4, s4) no longer points to (t2, s3). Hence, we can pick only cycle
(t3, s5)� (t4, s4); therefore, t4 obtains his best school, and we identify a profitable misreport
for teacher t4.

2. If we select C̄, we already know that we end up with matching µ̄, as defined above. Therefore,
here again, t4 obtains his best school s5 and the manipulation is also a success.

To sum up, we have shown that, for each possible cycle selection under 1S-BE, there is a teacher
who has a profitable misreport. Thus, no selection of the 1S-BE algorithm is strategy-proof, as we
intended to show.

I Proof of Theorem 6

I.1 Preliminaries in random graph

In the sequel, we will exploit two standard results in random graph theory that are stated in this
section. It is thus worth introducing the relevant model of random graph. A graph G(n) consists of
n vertices, V , and edges E ⊆ V × V across V . A bipartite graph Gb(n) consists of 2n vertices
V1 ∪V2 (each of equal size) and edges E ⊂ V1×V2 across V1 and V2 (with no possible edges within
vertices in each side). Random (bipartite) graphs can be seen as random variables over the space of
(bipartite) graphs. We will see two asymptotic properties of random graphs: one based on the notion
of perfect matchings, the other on that of independent sets.

A perfect matching of Gb(n) is a subset E ′ of E such that each node in V1 ∪ V2 is contained in
a single edge of E ′.

Lemma 14 (Erdös-Rényi) Fix p ∈ (0, 1). Consider a random graph that selects a graph Gb(n)
with the following procedure. Each pair (v1, v2) ∈ V1 × V2 is linked by an edge with probability p
independently (of edges created for all other pairs). The probability that there is a perfect matching
in a realization of this random graph tends to 1 as n→∞.
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The second important technical result is about so-called independent sets. An independent set
of G(n) is V̄ ⊆ V such that for any (v1, v2) ∈ V̄ × V̄ , (v1, v2) is not in E.

Lemma 15 (Grimmett and McDiarmid, 1975) Fix p ∈ (0, 1). Consider a random graph that
selects a graph G(n) with the following procedure. Each pair (v1, v2) ∈ V × V is linked by an edge
with probability p independently (of edges created for all other pairs). Then,

Pr

{
∃ an independent set V̄ such that |V̄ | ≥ 2 log n

log 1
1−p

}
→ 0 as n→∞.

I.2 Proof of i. of Theorem 6

Consider a random environment with two tiers of schools (i.e., K = 2) where the second tier
corresponds to “bad” schools, while the first corresponds to “good” schools. Formally, we assume
that U(u1, 0) > U(u2, 1), so that, irrespective of the idiosyncratic shocks, a school in tier 1 is always
preferred to a school in tier 2. For each k = 1, 2, let Tk denote the set of teachers who are initially
assigned to a school in Sk. Consider any teacher t ∈ T1. Let Et be the event that for each school
s ∈ S1, there is a teacher r ∈ T2 s.t. r is ranked above t (according to s’s preferences). Note that,
for a school s, the probability that t is ranked above each individual in T2 is the probability that
{t} = arg max{ηts, {ηrs}r∈T2}. Since {ηts, {ηrs}r∈T2} is a collection of iid random variables, for
each r ∈ T2, by symmetry, the probability that the maximum is achieved by t must be the same as
the probability that it is achieved by any r ∈ T2. The probability of {t} = arg max{ηts, {ηrs}r∈T2}
must therefore be 1

1+|T2| . We can now easily compute the probability of Et:

Pr(Et) =

(
1− 1

|T2|+ 1

)|S1|

=

((
1− 1

|T2|+ 1

)|T2|)|S1|/|T2|

→
(

1

e

)x1/x2
as n→∞.

Note that, using the same logic as in Example 1, whenever Et occurs, t cannot move from his/her
initial assignment. Indeed, if t applies to some school s, this must be to a school in S1. By construc-
tion, however, each teacher t ∈ T2 applies to each school in S1. In particular, the teacher in T2 being
ranked above t by school s applies to s, showing that, eventually, t cannot be matched to s under
DA∗. Thus, the expected fraction of individuals in T1 who do not move must be

1

|T1|
E

[∑
t∈T1

1{t does not move}

]
=

1

|T1|
|T1|E

[
1{t does not move}

]
= Pr{t does not move}
≥ Pr(Et).

Thus, the lim inf of the expected fraction of teachers not moving is bounded away from 0.
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Remark 3 Note that the lower bound computed here can be improved. Indeed, for t not to move,
one only needs that, for each school s ∈ S1 that t finds acceptable, there is a teacher r ∈ T2 s.t. r
is ranked above t (according to s’s true preferences). In general, simulations suggest that a much
larger fraction of teachers are not moving. These simulations also show that the assumption we
made above that u1 > u2 + 1 is not necessary and that the result seems to hold in much broader
contexts.97

I.3 Proof of ii. of Theorem 6

In the sequel, we fix µ0 and let Tk be µ0(Sk), where µ0 is the initial allocation. We will prove the
following result, which implies the first part of point ii. of Theorem 6.

Proposition 8 Consider any selectionϕ of the BE-algorithm. Fix any k. Let T̄k := {t ∈ Tk |ϕ(t) 6= µ0(t)}.
We have

|T̄k|
|Tk|

p−→ 1.

Proof of Proposition 8. Fix an arbitrary k and fix ε > 0. We define a random graph with
{(t, µ0(t))}t∈Tk as the set of vertices. An edge between (t, µ0(t)) and (t′, µ0(t′)) is added if and
only if ξtµ0(t′) > 1 − ε and ξt′µ0(t) > 1 − ε and ηt′µ0(t) > 1 − ε and ηtµ0(t′) > 1 − ε. Then, in the
random graph, each edge between (t, µ0(t)) and (t′, µ0(t′)) is added independently with probability
ε4 ∈ (0, 1). Then, let

T̂k := {t ∈ Tk
∣∣ϕ(t) = µ0(t) and Ut(µ0(t)) ≤ U(uk, 1− ε) and Vµ0(t)(t) ≤ V (1− ε)}

It must be that {(t, µ0(t))}t∈T̂k is an independent set, or else if there is an edge (t, µ0(t)), (t′, µ0(t′))

where t, t′ ∈ T̂k for some realization of the random graph, then (recall that U and V are both
increasing functions)

Ut(µ0(t′)) > U(uk, 1−ε) ≥ Ut(µ0(t)) = Ut(ϕ(t)) and Vµ0(t′)(t) > V (1−ε) ≥ Vµ0(t′)(t
′) = Vµ0(t′)(ϕ(µ0(t′)))

and similarly,

Ut′(µ0(t)) > U(uk, 1−ε) ≥ Ut′(µ0(t′)) = Ut′(ϕ(t′)) and Vµ0(t)(t
′) > V (1−ε) ≥ Vµ0(t)(t) = Vµ0(t)(ϕ(µ0(t))).

Put another way, both (t, µ0(t′)) and (t′, µ0(t)) block ϕ. Since, by definition, under ϕ, t is assigned
µ0(t) and t′ is assigned µ0(t′), there are still cycles in the graph associated with BE when starting
from the assignment given by ϕ, which contradicts the fact that ϕ is a selection of BE.

97Available upon request.
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Now, we can use Lemma 15 to obtain that Pr

{
|T̂k| ≥ 2 log(|Tk|)

log 1
1−p

}
→ 0 as n → ∞ and thus,

|T̂k|
|Tk|

p−→ 0 as n→∞. Setting T̃k := {t ∈ Tk
∣∣Ut(µ0(t)) ≤ U(uk, 1− ε) and Vµ0(t)(t) ≤ V (1− ε)},

we have
|T̂k|
|Tk|

=
|T̄ ck ∩ T̃k|
|Tk|

=
|T̄ ck\T̃ ck |
|Tk|

≥ |T̄
c
k |
|Tk|
− |T̃

c
k |
|Tk|

.

We know that, for the left hand-side above, |T̂k||Tk|
p−→ 0 as n → ∞. By the law of large numbers,

|T̃ ck |
|Tk|

p−→ 1− (1− ε)2, which can be made arbitrarily close to 0, given that ε > 0 is arbitrary. Hence,

we obtain that |T̄
c
k |
|Tk|

p−→ 0 as n→∞, as we intended to prove.

Let us now move to the other part of point ii. of Theorem 6. We aim to show that there is a
selection of BE that is asymptotically teacher-efficient, asymptotically school-efficient, and asymp-
totically stable. Note that, in our environment, asymptotic school-efficiency implies asymptotic
stability. Hence, the following proposition is sufficient for this purpose.

Proposition 9 There is a mechanism ϕ that is a selection of the BE algorithm such that, for any k
and any ζ > 0, we have

|T̄k|
|Tk|

p−→ 1 and
|S̄k|
|Sk|

p−→ 1

where T̄k := {t ∈ Tk |Ut(ϕ(t)) ≥ U(uk, 1)− ζ } and S̄k := {s ∈ Sk |Vs(ϕ(s)) ≥ V (1)− ζ }.

Proof of Proposition 9. Fix ζ > 0. In the sequel, we let ε > 0 be small enough so that
U(uk, 1− ε) > U(uk, 1)− ζ for each k = 1, ..., K and V (1− ε) > V (1)− ζ which is well-defined
since functions U and V are continuous. We show that there exists a 2-IR mechanism ψ s.t. for each
k = 1, ..., K, it matches each teacher t ∈ Tk to a school in Sk and for each δ > 0 :

Pr

{∣∣{t ∈ Tk ∣∣ξtψ(t) ≥ 1− ε
}∣∣

|Tk|
> 1− δ

}
→ 1

and

Pr

{∣∣{s ∈ Sk ∣∣ηψ(s)s ≥ 1− ε
}∣∣

|Sk|
> 1− δ

}
→ 1

as n → ∞ where we recall that Tk := µ0(Sk). This turns out to be enough for our purposes (recall
that U and V are both increasing functions). Indeed, consider the matching mechanism given by
ϕ := BE◦ψ (i.e., the mechanism that runs BE on top of the assignment found by mechanism ψ).
Since ψ is 2-IR, so is ϕ. Hence, by construction, this must be a selection of BE that satisfies

|T̄k|
|Tk|

p−→ 1 and
|S̄k|
|Sk|

p−→ 1

as n→∞.
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Fix k = 1, ..., K. Fix ε0 ∈ (0, ε). Further assume that ε0 is small enough so that (1− ε0)2 >
1 − δ. Consider the set of pairs (t, s) ∈ Tk × Sk such that s = µ0(t) and either t ranks s within
its ε0|Sk| most favorite schools in Sk or s ranks t within his ε0|Tk| most favorite teachers in Tk.
We eliminate these pairs from Tk × Sk. Observing that the remaining set is a product set, we
denote it by T 0

k × S0
k . Note that, for each pair (t, s) ∈ Tk × Sk such that s = µ0(t), there is a

probability (1− ε0)2 that both t ranks s outside his ε0|Sk| most favorite schools in Sk and s ranks
t outside its ε0|Tk| most favorite teachers in Tk. Let us call this event Ets. For each such (t, s)
where s = µ0(t), we denote 1ts for the indicator function, which takes a value 1 if the event Ets
is true and 0 otherwise. Hence, |T 0

k | =
∑

(t,s)∈Tk×Sk:s=µ0(t) 1ts. Thus, |T 0
k |(= |S0

k |) follows a

Binomial distribution Bin(|Tk|,(1− ε0)2). By the law of large numbers, |T
0
k |
|Tk|

p−→ (1− ε0)2 , which,
by assumption, is strictly greater than 1− δ. This proves that

Pr

{
|T 0
k |
|Tk|
≥ 1− δ

}
→ 1

and

Pr

{
|S0
k |
|Sk|
≥ 1− δ

}
→ 1.

In the sequel, we condition w.r.t. a realization of the random set T 0
k × S0

k assuming that both
|T 0
k |
|Tk|

and |S
0
k|
|Sk|

are greater than 1− δ. Now, fix ε′0 > 0 and note that, conditional on this, each teacher
t ∈ T 0

k draws randomly98 in S0
k his ε′0|S0

k |most favorite schools in S0
k . Similarly, each school s ∈ S0

k

draws randomly in T 0
k its ε′0|T 0

k | most favorite teachers in T 0
k . We build a random bipartite graph on

T 0
k ∪ S0

k where the edge (t, s) ∈ T 0
k × S0

k is added if and only if t ranks s within his ε′0|S0
k | most

favorite schools in S0
k and, similarly, s ranks t within its ε′0 |T 0

k | most favorite teachers in T 0
k . This

random bipartite graph can be seen as a mapping from the set of ordinal preferences into the set of
bipartite graph Gb(|T 0

k |). We denote this random graph by G̃b. While Lemma 14 does not apply
directly to this type of random graph, we will claim below that this random graph has a perfect
matching with probability approaching one as the market grows. Before stating and proving this
result, we must define the following lemma.

Lemma 16 With probability approaching one, for any teacher t ∈ T 0
k , any school s ∈ S0

k with
which ξts ≥ 1− ε′0

2
must be within his ε′0|S0

k | most favorite schools in S0
k . Similarly, with probability

approaching one, for any school s ∈ S0
k , any teacher t ∈ T 0

k , with whom ηts ≥ 1− ε′0
2

must be within
its ε′0|S0

k | most favorite teachers in T 0
k .

PROOF. We prove the first part of the statement, and the other part follows the same argu-
ment. Fix t ∈ T 0

k and let Et be the event that any school s ∈ S0
k with which ξts ≥ 1 − ε′0

2
must

be within his ε′0|S0
k | most favorite schools in S0

k . Let Xt :=
∑
s∈S0

k

1{
ξts≥1−

ε′0
2

} be the number of

98In the following, by randomly, we mean uniformly i.i.d.
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schools in S0
k with which teacher t enjoys an idiosyncratic payoff greater than 1 − ε′0

2
. Observe

that Xt follows a Binomial distribution B(|S0
k |,

ε′0
2

) (recall that ξts follows a uniform distribution
with support [0, 1]) and that Xt ≤ ε′0|S0

k | implies that Et is true. Hence, we have to prove that
Pr {∃t ∈ T 0

k : Xt > ε′0|S0
k |} → 0 as n → ∞. In the sequel, we let Yt be a Binomial distribution

B(|S0
k |, 1−

ε′0
2

), and thus we have

Pr
{
∃t ∈ T 0

k : Xt > ε′0|S0
k |
}
≤ |T 0

k |Pr
{
Xt > ε′0|S0

k |
}

= |T 0
k |Pr

{
Yt ≤ (1− ε′0)|S0

k |
}

≤ |T 0
k | exp

{
−2|S0

k |(
ε′0
2

)2

}
→ 0

as n→∞, where the first inequality is by the union bound and the last one uses Hoeffding inequal-
ity. The limit result uses the fact that under our conditioning event, |T 0

k | = |S0
k | ≥ (1 − δ)|Sk| →

∞.

We now move to our statement on the existence of perfect matching in G̃b.

Lemma 17 With probability going to 1 as n→∞, the realization of G̃b has a perfect matching.

PROOF. In our random environment, the state space, Ω, can be considered as the set of all possi-
ble profiles of idiosyncratic shocks for teachers and schools, i.e., the space of all {{ξts}ts, {ηts}ts}.
We denote by ω a typical element of that set. Let E be the event under which, for each (t, s) ∈
T 0
k × S0

k : ξts ≥ 1 − ε′0
2

and ηts ≥ 1 − ε′0
2

imply that both t ranks s within his ε′0|S0
k | most fa-

vorite schools in S0
k and s ranks t within its ε′0|T 0

k | most favorite teachers in T 0
k . By Lemma 16,

Pr(E) → 1. Now, let us build the following random graph on T 0
k ∪ S0

k where, this time, the edge
(t, s) ∈ T 0

k × S0
k is added if and only if ξts ≥ 1 − ε′0

2
and ηts ≥ 1 − ε′0

2
. Let us call this graph G̃′b.

Therefore, this time, G̃′b can be viewed as a mapping from the set of cardinal preferences to the set
of bipartite graph Gb(|T 0

k |). Let F be the event that the realization of G̃′b has perfect matching. By
Lemma 14, Pr(F ) → 1. By definition, E ∩ F ⊂ Ω. Let us consider the set of all possible profiles
of teachers and schools’ ordinal preferences � induced by states E ∩ F , and let us denote this set
by P . Clearly, Pr(P) ≥ Pr(E ∩ F ) → 1. Now, for each profile of preferences � in P , let G̃b(�)
be the graph corresponding to G̃b when � is the profile of realized preferences. We claim that, for
any � in P , G̃b(�) has a perfect matching. Indeed, let ω ∈ E ∩ F be one state that induces � (this
is well defined by the construction of P). Because ω ∈ F , the realization of G̃′b at profile ω has a
perfect matching. In addition, because ω ∈ E, the realization of G̃′b at profile ω is a subgraph of
G̃b(�). We conclude that G̃b(�) has a perfect matching. Combining this result with the observation
that Pr(P)→ 1, we get

Pr
{
∃ a perfect matching in G̃b

}
→ 1

as n→∞, as claimed.
Now, we build the mechanism ψ as follows. For each realization of ordinal preferences (for each

k = 1, ..., K), we build a graph on T 0
k ∪ S0

k as defined above, i.e., where the edge (t, s) ∈ T 0
k × S0

k
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is added if and only if t ranks s within his ε′0 |S0
k | most favorite schools in S0

k and, similarly, s ranks
t within its ε′0 |T 0

k | most favorite teachers in T 0
k . If there is perfect matching, then under ψ, teachers

in T 0
k are matched according to this perfect matching, while teachers in Tk\T 0

k remain at their initial
assignments. If there is no perfect matching, then under ψ, all teachers in Tk remain at their initial
assignments. Assuming that ε′0+δ < ε0, we obtain that the mechanism built in that way is 2-IR.99 To
see this, consider a teacher t who is not matched to his initial school. This means that t is matched
to a school s given by a perfect matching of the random bipartite graph. By construction, this means
that t ranks s within his ε′0 |S0

k | most favorite schools in S0
k . Hence, s is within his ε′0 |S0

k | + δ |Sk|
most favorite schools in Sk. Since ε′0 |S0

k | + δ |Sk| ≤ (ε′0 + δ) |Sk| < ε0 |Sk| and because t ∈ T 0
k

implies that µ0(t) is not within t’s ε0|Sk| most favorite schools in Sk, we obtain that s is preferred
by t to his initial assignment. Since a similar reasoning holds for schools, we obtain that ψ is 2-IR.

As we have shown, with probability approaching one, our bipartite graph actually has a perfect
matching. Obviously, this perfect matching ensures that all teachers in T 0

k and all schools in S0
k are

matched to a partner within their ε′0 |S0
k | favorites. This holds for any realization of the random set

T 0
k × S0

k such that |T
0
k |
|Tk|

and |S
0
k|
|Sk|

are greater than 1 − δ. Thus, it holds conditional on the random

sets |T
0
k |
|Tk|

and |S
0
k|
|Sk|

being greater than 1 − δ. Hence, this perfect matching ensures that all teachers in
T 0
k and all schools in S0

k are matched to a partner within their (ε′0 + δ) |Sk| favorites in Sk and Tk,
respectively. Hence, under our conditioning event that the random sets |T

0
k |
|Tk|

and |S
0
k|
|Sk|

are greater than
1− δ,

Pr

{
|{t ∈ Tk |ψ(t) is within the (ε′0 + δ) |Sk| most favorite school in Sk }|

|Tk|
> 1− δ

}
→ 1

and

Pr

{
|{s ∈ Sk |ψ(s) is within the (ε′0 + δ) |Sk| most favorite teacher in Tk }|

|Sk|
> 1− δ

}
→ 1

Given that the conditioning event has a probability approaching 1 as n → ∞, this is even true
without conditioning.

Now, without loss of generality, let us assume that δ is small enough so that ε′0 + δ < ε. It
remains to show that these (ε′0 + δ) |Sk| favorite partners in Sk (resp. Tk) yield an idiosyncratic
payoff greater than 1− ε. The following lemma completes the argument.

Lemma 18 With probability approaching 1 as n → ∞, the (ε′0 + δ) |Sk| most favorite schools of
each teacher in Tk yield an idiosyncratic payoff higher than 1−ε and the (ε′0 + δ) |Tk| most favorite
teachers of each school in Sk yield an idiosyncratic payoff higher than 1− ε.

99This is without loss of generality because, if Pr

{
|{t∈Tk|ξtψ(t)≥1−ε}|

|Tk| > 1− δ
}

→ 1 then,

Pr

{
|{t∈Tk|ξtψ(t)≥1−ε}|

|Tk| > 1− δ′
}
→ 1 for any δ′ > δ.
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PROOF. We show that with probability going to 1 as n → ∞, the (ε′0 + δ) |Sk| most favorite
schools of each teacher in Tk yield an idiosyncratic payoff higher than 1 − ε. The other part of the
statement is proved in the same way. For each t ∈ Tk, let Zt be the number of schools s in Sk for
which ξts ≥ 1 − ε. Note that if Zt > (ε′0 + δ) |Sk| then t′s (ε′0 + δ) |Sk| first schools in Sk must
yield an idiosyncratic payoff higher than 1− ε. Thus, it is enough to show that

Pr{∃t ∈ Tk with Zt ≤ (ε′0 + δ) |Sk|} → 0

as n → ∞. Observe that Zt follows a binomial distribution B(|Sk|, ε) (recall that ξts follows a
uniform distribution with support [0, 1]). Hence,

Pr{∃t ∈ Tk with Zt ≤ (ε′0 + δ) |Sk|} ≤
∑
t∈Tk

Pr{Zt ≤ (ε′0 + δ) |Sk|}

= |Tk|Pr{Zt ≤ (ε′0 + δ) |Sk|}

≤ |Tk|
1

2
exp

(
−2

(|Sk|ε− (ε′0 + δ) |Sk|)2

|Sk|

)
=

|Tk|
2 exp

(
2 (ε− (ε′0 + δ))2 |Sk|

) → 0

where the first inequality is by the union bound, while the second equality is by Hoeffding’s inequal-
ity.

I.4 Proof of iii. of Theorem 6

Recall that Tk stands for µ0(Sk), where µ0 is the initial allocation. Fix ζ > 0. We want to show that
for any k = 1, ..., K, |{t ∈ Tk |Ut(TO-BE(t)) ≥ U(uk, 1)− ζ }|/|Tk| converges to 1 in probability.
In the sequel, we let ε > 0 be small enough so that U(uk, 1−ε) > U(uk, 1)−ζ for each k = 1, ..., K
which is well-defined since functions U is continuous. Now, the following proposition is enough for
our purpose.

Proposition 10 Fix any k. Let T̄k := {t ∈ Tk |Ut(TO-BE(t)) ≥ U(uk, 1− ε)}. We have

|T̄k|
|Tk|

p−→ 1.

Proof of Proposition 10. Recall that TO-BE is in the two-sided core (see Section F for the
definition). In particular, this implies that there is no pair of teachers t and t′ so that µ0(t′) �t
TO-BE(t), µ0(t) �t′ TO-BE(t′) (with a strict preference for either t or t′), t′ �µ0(t) t and t �µ0(t′) t

′.
Fix an arbitrary k and let E be the event that the fraction of schools s ∈ Sk s.t. ηµ0(s)s ≤ 1 − δ is
greater than 1− 2δ where δ ∈ (0, 1). By the law of large numbers, we have

1

|Sk|
∑
s∈Sk

1{ηµ0(s)s≤1−δ}
p−→ 1− δ.
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Thus, Pr(E)→ 1. Let T 0
k := {t ∈ Tk

∣∣ηtµ0(t) ≤ 1− δ}.
In the sequel, we condition on event E and fix a realization of

{
ηµ0(s)s

}
s∈S compatible with E.

Observe that T 0
k is non-random once this has been fixed and that, conditional on these, individuals’

preferences are still drawn according to the same distribution (as in the unconditional case) and for
t 6= µ0(s), ηts is also still drawn according to the same distribution. We further observe that, because

event E holds, |T
0
k |
|Tk|
≥ 1 − 2δ and hence |T 0

k | approaches infinity as n → ∞. We define a random
graph with {(t, µ0(t))}t∈T 0

k
as the set of vertices. An edge between (t, µ0(t)) and (t′, µ0(t′)) is added

if and only if ξtµ0(t′) > 1− ε and ξt′µ0(t) > 1− ε and ηt′µ0(t) ≥ ηtµ0(t) and ηtµ0(t′) ≥ ηt′µ0(t′). Then,
in the random graph, each edge between (t, µ0(t)) and (t′, µ0(t′)) is added independently with a
probability of at least ε2δ2 ∈ (0, 1). Now, let T̄ 0

k := {t ∈ T 0
k |Ut(TO-BE(t)) ≤ U(uk, 1− ε)}. It

must be that T̄ 0
k is an independent set, or else, if there is an edge (t, t′) ∈ T̄ 0

k×T̄ 0
k for some realization

of the random graph, then (using the fact that U and V are both increasing functions)

Ut(µ0(t′)) > U(uk, 1− ε) ≥ Ut(TO-BE(t)) and Ut′(µ0(t)) > U(uk, 1− ε) ≥ Ut′(TO-BE(t′)).

In addition, Vµ0(t)(t
′) = V (ηt′µ0(t)) ≥ V (ηtµ0(t)) = Vµ0(t)(t) and Vµ0(t′)(t) = V (ηtµ0(t′)) ≥

V (ηt′µ0(t′)) = Vµ0(t′)(t
′). Therefore TO-BE is blocked by a coalition of size two, a contradic-

tion. Now, we can use Lemma 15 to obtain that Pr

{
|T̄ 0
k | ≥

2 log(|Tk|)
log 1

1−p

}
→ 0 as n → ∞ and thus

|T̄ 0
k |
|T 0
k |

p−→ 0 as n → ∞. Now, since T̄ ck = T̄ 0
k ∪ {t ∈ Tk\T 0

k |Ut(TO-BE(t)) ≤ U(uk, 1− ε)}, we
must have

|T̄ ck |
|Tk|
≤ |T̄

0
k |+ |Tk\T 0

k |
|Tk|

≤ |T̄
0
k |
|Tk|

+ 2δ

Hence, given that |T̄
0
k |
|T 0
k |

p−→ 0, we must have that, with probability approaching 1 as n approaches

infinity, |T̄
c
k |
|Tk|
≤ 3δ and so |T̄k||Tk| ≥ 1− 3δ.

To recap, given eventE and any realization of
{
ηµ0(s)s

}
s∈S , we have |T̄k||Tk| ≥ 1−3δ with probabil-

ity approaching 1 as n→∞. Since the realization of
{
ηµ0(s)s

}
s∈S is arbitrary, we obtain that, given

event E, |T̄k||Tk| ≥ 1 − 3δ with probability approaching 1 as n → ∞. Since Pr(E) → 1 as n → ∞,

we obtain that |T̄k||Tk| ≥ 1 − 3δ with probability approaching 1 as n → ∞. Since δ > 0 is arbitrarily

small, we obtain |T̄k||Tk|
p−→ 1 as n→∞, as claimed.

Remark 4 The statement is related to that of Che and Tercieux (2018). However, since TO-BE is
not Pareto-efficient, their proof/argument does not apply.

Remark 5 The argument relies on the fact that TO-BE is not blocked by any coalition of size 2.
Hence, the result applies beyond the TO-BE mechanism and applies to any mechanism that cannot
be blocked by any coalition of size 2.
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CORRELATION OF REGION-ENTRY CUTOFFS BETWEEN 2012 AND 2013

Figure A.4: MATH Figure A.5: FRENCH

Notes: Figures A.4 and A.5 display correlation between the cutoff in 2012 and the cutoff in 2013 in math and French.
In each region, the cutoff corresponds to the miminum value of the entering teachers priorities. In each subject, there is
one cutoff per region and per year. The coefficient of correlation between the cutoffs in 2012 and 2013 is 0.98 in both
subjects.

J Teacher preference estimations

J.1 Variables used for teacher preference estimations

This Appendix describes the variables we use for teacher preference estimations. See online Ap-
pendix S.2 for further details.

We use the following regions’ characteristics:

• Share of students classified as disadvantaged (labeled as “% disadv stud”).

• Share of students living in an urban area (labeled as “% stud urban”).

• Share of students who attend a school classified as “priority education” (labeled as “% stud
in priority educ”). Priority education is a label given to the most disadvantaged schools in
France.

• Share of students who attend a private school (labeled as “% stud in private school”).

• Share of teachers who are younger than 30 (labeled as “% teachers younger than 30”)

• Region is in South of France (labeled as “Region in South of France”). The following 5
regions are classified as being in the South of France: Aix-Marseille, Bordeaux, Montpellier,
Toulouse, and Nice.
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We use the following teachers characteristics:

• Current region of the teacher (labeled as “Current region”). This is the region a teacher is
initially assigned to.

• Region where a teacher was born (labeled as “Birth region”).

• Distance between the region ranked and the current region of a teacher (labeled as “Distance
current region”).

• Number of years of teaching experience (labeled as “Teach exp”).

• Squared number of years of teaching experience (labeled as “Teach exp sq”).

• Teacher’s current region is Créteil or Versailles, which are the two least attractive regions
(labeled as “Teach from CV”). The attractiveness of a region is measured by the ratio of the
number of teachers who rank the region divided by the number of teachers who ask to leave
the region.

• Teacher is married (labeled as “Married”).

• Teacher has spent at least 5 years in a school labelled as priority education (labeled as “Teach
in disadv sch”).

• Teacher has an advanced teaching qualification (labeled as “Advanced qualif”).
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J.2 Estimation and counterfactual results

We report in this section preference estimates for teachers in sports, Spanish, history-geography,
biology, physics - chemistry, and technology.

84



Table A.1: TEACHERS PREFERENCE ESTIMATES

Sports Spanish History-Geography

coef s.e. coef s.e. coef s.e.

(1) (2) (3) (4) (5) (6)

Region BESANCON 1.22* (0.56) 0.85 (1.34) -2.81* (1.23)
Region BORDEAUX 3.34*** (0.57) 4.85** (1.82) -0.92 (0.90)
Region DIJON 0.63 (0.54) -1.58 (1.19) -4.24*** (0.97)
Region LILLE -0.37 (0.55) -1.95 (1.21) -4.95*** (1.02)
Region REIMS -0.67 (0.46) -0.74 (1.26) -3.73*** (0.99)
Region AMIENS -1.13* (0.54) -3.31* (1.31) -5.46*** (1.02)
Region ROUEN 0.74 (0.44) -2.09 (1.18) -1.97* (0.93)
Region CRETEIL -2.22*** (0.64) -5.97*** (1.42) -6.54*** (0.98)
Region VERSAILLES -0.80 (0.47) -3.61*** (1.04) -4.82*** (0.86)
Current region 25.60** (8.14) 25.58* (12.11) 28.54*** (7.62)
Birth region 4.1 (3.49) 8.19 (5.52) 16.16*** (4.14)
Distance current region 7.36 (7.26) -60.31*** (14.13) -24.61*** (5.46)
% disadv stud x Teach exp -1.40 (1.48) 1.03 (2.08) 1.12 (1.90)
% disadv stud x Teach exp sq 0.08 (0.07) -0.05 (0.10) -0.05 (0.08)
% disadv stud x Birth region 1.53 (6.64) -8.82 (10.37) -25.04** (7.79)
% stud urban x Current region 1.33 (0.83) 0.56 (1.47) -2.15* (0.92)
% stud urban x Teach from CV 1.09 (0.72) 0.75 (1.28) 2.21* (0.91)
% stud in priority educ x Maried -8.18*** (1.34) -17.49*** (3.00) -5.42** (1.76)
% stud in priority educ x Current region 5.05 (2.84) 11.50 * (4.52) -0.43 (3.17)
% stud in private school x Teach in disadv sch 3.33 (1.79) 14.97* (6.49) 4.35 (2.40)
% teachers younger than 30 x Advanced qualif -7.15 (3.75) 9.57 (6.80) 2.46 (4.43)
% teachers younger than 30 x Current region 19.44*** (4.81) 45.16*** (8.95) 47.70*** (5.86)
% teachers younger than 30 x Birth region -28.84*** (4.33) -19.54* (8.13) -13.90** (4.55)
Region in South of France x Teach from CV 0.39 (0.43) 0.95 (0.83) -0.18 (0.41)
Number of teachers 1498 683 573
Fit measure 0.687 0.722 0.622
† Notes: This table reports selected coefficients from estimations of teachers preferences for regions characteristics based on Equation

5.1. We use the estimation method recently developed by Fack et al. (2019). We use a discrete choice model with personalized
feasible choice sets. For each teacher, his feasible choice set is the set of regions that have a cutoff smaller than his own score. We
estimate parameters in columns 1, 3, and 5 using maximum likelihood. We set the fixed effect of the Paris region to 0. The last row
reports our goodness of fit measure, that we compute by looking at the top two schools that a teacher has included in his submitted
rank order list (ROL). We then measure the probability of observing this particular preference ordering in the ROL predicted with
our estimations. Stars correspond to the following p-values: * p< .05; ** p< .01; *** p< .001.
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Table A.2: TEACHERS PREFERENCE ESTIMATES

Biology Physics - Chemistry Technology

coef s.e. coef s.e. coef s.e.
(1) (2) (3) (4) (5) (6)

Region BESANCON 2.11 (1.19) - - - -
Region BORDEAUX 2.49** (0.78) 1.17 (0.96) 1.06 (1.15)
Region DIJON 0.10 (0.78) 0.30 (0.96) -0.78 (1.54)
Region LILLE -1.28 (0.94) -1.17 (0.94) 4.51 (2.84)
Region REIMS -1.69* (0.73) -0.42 (0.88) 1.55 (2.07)
Region AMIENS -1.96* (0.81) -2.21* (0.89) -0.81 (1.52)
Region ROUEN 1.22 (0.66) -1.59* (0.80) -2.74 (1.31)
Region CRETEIL -4.25*** (1.04) -5.04*** (0.99) -9.16*** (2.01)
Region VERSAILLES -1.64* (0.68) -3.44*** (0.76) -7.11*** (1.46)
Current region 23.89* (11.52) 3.21 (9.79) -5.48 (18.38)
Birth region 12.61* (5.19) 15.79*** (4.67) -23.65 (12.89)
Distance current region -2.99 (8.45) -19.51** (7.54) 31.22 (16.82)
% disadv stud x Teach exp 0.31 (2.11) 3.85 (2.60) 2.92 (4.20)
% disadv stud x Teach exp sq -0.03 (0.10) -0.10 (0.12) -0.13 (0.19)
% disadv stud x Birth region -15.96 (9.72) -22.39* (8.85) 54.62* (24.1)
% stud urban x Current region 0.14 (1.23) 1.58 (1.14) -3.65 (2.65)
% stud urban x Teach from CV 0.76 (1.11) 1.45 (1.00) 5.08 (2.70)
% stud in priority educ x Married -8.24** (2.99) -7.03** (2.25) -8.83** (3.05)
% stud in priority educ x Current region 8.91* (4.46) -5.07 (4.00) 13.05 (7.31)
% stud in private school x Teach in disadv sch 4.53 (4.24) 3.19 (3.69) 6.81 (4.58)
% teachers younger than 30 x Advanced qualif 1.58 (4.78) 1.53 (4.72) -74.38 (73.87)
% teachers younger than 30 x Current region 38.89*** (8.21) 43.39*** (7.48) 37.95*** (10.50)
% teachers younger than 30 x Birth region -26.24*** (7.62) -22.76*** (6.62) -43.60*** (10.28)
Region in South of France x Teach from CV -0.56 (0.62) 0.38 (0.51) -2.62* (1.24)
Number of teachers 460 527 469
Fit measure 0.676 0.637 0.846
† Notes: This table reports selected coefficients from estimations of teachers preferences for regions characteristics based on Equation

5.1. We use the estimation method recently developed by Fack et al. (2019). We use a discrete choice model with personalized
feasible choice sets. For each teacher, his feasible choice set is the set of regions that have a cutoff smaller than his own score. We
estimate parameters in columns 1, 3, and 5 using maximum likelihood. We set the fixed effect of the Paris region to 0. The last row
reports our goodness of fit measure, that we compute by looking at the top two schools that a teacher has included in his submitted
rank order list (ROL). We then measure the probability of observing this particular preference ordering in the ROL predicted with
our estimations. Stars correspond to the following p-values: * p< .05; ** p< .01; *** p< .001.
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Figure A.6: Mobility vs. entering / exiting requests ratio

K Extension of TO-BE with newcomers and vacant seats

Definition of TO-BE with newcomers and vacant seats. There are several ways to extend TO-
BE to an environment with newcomers and vacant seats. Recall that TO-BE is a version of TTC
where, in essence, teachers preferences are modified in such a way that any region which finds
him unacceptable is dropped from his preference list (see Appendix B for additional details). TTC
has been extended to the environment with vacant seats and newcomers by Abdulkadiroğlu and
Sonmez (1999). A natural extension of TO-BE would therefore be a version of the algorithm they
define in which regions finding a teacher unacceptable would be dropped from this teacher rank
order list. This would be a straightforward approach to extend TO-BE while keeping its properties.
However, we propose another extension. The motivation for this alternative is given by the following
two requirements which are in line both with our theoretical approach so far as well as with our
understanding of basic policy objectives in the context of teacher assignment. (However, we also
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ran the extension based on Abdulkadiroğlu and Sonmez (1999) on our data and the results are similar
to what we obtain with our proposal).

Requirement (1). One of the main requirements of our analysis is to Pareto-improve both sides of
the market upon the initial assignment, which should be thought of as the previous year assignment.
In our context, because most open seats correspond to teachers retiring (i.e. highly experienced
teachers leaving their position), Pareto-improving the region side upon the initial assignment may
simply not be feasible: there may be no teacher with (weakly) higher experience willing to replace
the retired teachers.100 However, even if this is not feasible, our first natural requirement is that the
vacant positions of the regions should not be filled by newcomers, whenever possible.101

Requirement (2). A key motivation in this paper is to design a mechanism which satisfies as
much as possible the criteria of the college admission problem (i.e., strategy-proofness, 2-PE and
stability). With tenured teachers, this is non-trivial since, as already explained, these criteria conflict
with individual rationality. However, in an environment with only newcomers and vacant seats, we
know that the unique mechanism satisfying these criteria is the regular DA. Hence, we would like
the extended version of TO-BE to coincide with DA in the environment with no tenured teachers.

Description of the mechanism. Given these two requirements, our proposed mechanism is a
simple variation on the TO-BE mechanism defined in Section 4 and we thus only informally describe
it below (details can be found in Section S.7 of the Supplementary Material). We enrich the graph
of TO-BE with nodes corresponding to each newcomer and vacant seat (we add node of the form
(∅, s) for each region s having at least one vacant seat). As in TO-BE, a newcomer points to a
node (t, s) if he has a higher priority than teacher t at region s and s is his favorite region in his
opportunity set.102 We do not allow newcomers to point to a node corresponding to a vacant seat.
However, any node (t, s) can point to a node (∅, s′) if s′ is t’s most favorite region in his opportunity
set. In a first phase, the mechanism searches for cycles of exchange among tenured teachers—
like TO-BE defined in Section 4 —and also searches for chains. Chains are sequences of nodes
{tN , (t1, s1), (t2, s2), ..., (tK , sK), (∅, s)} starting with a newcomer tN and ending with an empty
seat where each node points to his successor, if any. The mechanism implements the cycles and
chains iteratively. The fact that a newcomer cannot point to a node (∅, s) ensures that vacant seats
are only filled by tenured teachers in this first phase. Obviously, the assignment at the end of this
phase may be wasteful, that is, there may be unmatched newcomers together with unfilled seats
that are acceptable to these newcomers. Hence, in a second phase we simply run regular DA for
unmatched newcomers and remaining unfilled positions.

The existence of the second phase not only solves the wastefulness issue, it also ensures that
our mechanism trivially coincides with regular DA in the environment with no tenured teachers.
This fulfills Requirement (2) above. Further, by construction, the mechanism tries to match unfilled
positions first to tenured teachers. It eventually matches unfilled positions to newcomers only to

100In 2013, statistics from the French ministry of education (for the entire market) show that 9,468 teachers retired
and there were 8,974 vacant positions.

101We do not have characteristics of retired teachers associated to open seats. However, as we already pointed out, we
do know that teachers in their early career tend not to perform as well as more experienced teachers (Chetty et al., 2014;
Rockoff, 2004). This is the rationale for avoiding to replace retired teachers with newcomers.

102All ties are broken using a collection of ordering f like in the TO-BE defined in Section 4.
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avoid wastefulness. This is in line with our Requirement (1). Under the natural assumption that
newcomers have a lower priority than tenured teachers, we show in the supplementary material that
this mechanism is two-sided maximal and strategy-proof. Indeed, in our counter-factual analysis,
this TO-BE mechanism is is statistically indistinguishable from a two-sided maximal matching.103

We also prove in this supplementary material that this extension of TO-BE is strategy-proof under
the assumption that newcomers must rank all regions, a condition fulfilled in France.104 Hence,
this mechanism is a natural extension of the TO-BE mechanism defined in Section 4 which, in the
French context, preserves its main properties.

103More specifically, out of our 5,000 preference draws, it is two-sided maximal in 69% of them. Moreover, on
average, we can make 0.8 teachers better-off via a two-sided maximal matching Pareto-dominating TO-BE. With a
variance of 0.54, it is not statistically different from zero. Finally, over all draws, a maximum of 3 teachers can be made
better-off. Recall that we have 10,460 teachers in our data. For further details see Section S.7 of the supplementary
material.

104In France, when teachers do not rank all regions, the ministry fills the list until it reaches 31 regions. This is to
ensure that no new teacher remains unassigned because he ranked too few regions The methodology used by the ministry
to fill the list is described at this link.
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