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Abstract

Lottery-based instrumental variables estimates show that Boston’s charter schools sub-
stantially increase test scores and close racial achievement gaps among their applicants. A
key policy question is whether charter expansion is likely to produce similar effects on a
larger scale. This paper uses a structural model of school choice and academic achieve-
ment to predict the effects of charter expansion for the citywide achievement distribution
in Boston. Estimates of the model suggest that charter applicants are negatively selected
on achievement gains: low-income students and students with low prior achievement gain
the most from charter attendance, but are unlikely to apply to charter schools. This form
of selection implies that lottery-based estimates understate gains for broader groups of stu-
dents, and that charter schools will produce substantial gains for marginal applicants drawn
in by expansion. Simulations suggest that realistic expansions are likely to reduce the gap
in math scores between Boston and the rest of Massachusetts by up to 8 percent, and reduce
racial achievement gaps by roughly 5 percent. Nevertheless, the estimates also imply that
perceived application costs are high and that most students prefer traditional public schools
to charter schools, so large expansions may leave many charter seats empty. These results
suggest that in the absence of significant behavioral or institutional changes, the potential
gains from charter expansion may be limited as much by demand as by supply.
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1 Introduction

Differences in test scores between racial and socioeconomic groups are a pervasive feature

of the American educational landscape. In 2008, 13-year-old black students scored more than

0.8 standard deviations (σ) below their white counterparts on the National Assessment of Edu-

cational Progress Long Term Trend (NAEP-LTT) math test. Similar achievement gaps appear

in all subjects and at all grade levels (Fryer and Levitt 2004, 2006; Vanneman et al., 2009).

Moreover, after several decades of convergence, the relative scores of black students stagnated

in the late 1980s (Neal 1996). Achievement gaps between high- and low-income students have

also grown in recent years (Reardon 2011). Numerous policy interventions with the potential to

affect achievement gaps have been proposed, but few produce gains of the magnitude necessary

to substantially reduce these gaps (Fryer 2010).1 As a result, some analysts have argued that

it is either impossible or inordinately expensive to significantly reduce achievement gaps using

educational policies alone, especially policies that target adolescents (Rothstein 2004; Heckman

2011).

These pessimistic accounts notwithstanding, a growing body of evidence suggests that some

charter schools serving poor, minority populations in urban areas boost achievement sharply.

Charter schools are publicly funded, non-selective schools that typically have more freedom

than traditional public schools to set curricula and make staffing decisions. Studies based on

entrance lotteries show that attendance at charter schools in Boston and New York’s Harlem

Children’s Zone raises achievement by 0.25σ per year or more (Abdulkadiroglu et al. 2011;

Dobbie and Fryer 2011a). Angrist et al. (2011, 2012), Dobbie and Fryer (2011b), Gleason et al.

(2010), Hoxby and Murarka (2009), and Hoxby and Rockoff (2004) also report positive effects

for urban charters. 2

These findings suggest that urban charter schools may have the potential to reduce achieve-

ment gaps. Reflecting this hope, the Massachusetts legislature recently relaxed the state’s

charter school cap with the explicit goal of reducing racial and socioeconomic disparities in

academic performance (Commonwealth of Massachusetts 2010). Twenty Massachusetts charter

schools are approved to open by Fall 2014, including 11 in Boston (Massachusetts Department of

Elementary and Secondary Education 2012b). State officials have announced plans to approve

1A few interventions have larger effects for blacks than for whites. Krueger and Whitmore (2001) use data
from the Tennessee STAR experiment to show that a 50% reduction in class size over three years raises the scores of
blacks and whites by 0.26σ and 0.13σ, respectively. Similarly, Howell and Peterson (2002) estimate that providing
vouchers for private school boosts scores by 0.2σ for black students and has little benefit for whites. Barnett
(1992) and Ferguson (1998) report that the Perry Preschool Project, an intensive early childhood intervention
for at-risk black students, increased achievement in adolescence by roughly 0.4σ.

2Estimates for charter schools outside urban areas are mixed. Gleason et al. (2010) find that non-urban
charters are no more effective than traditional public schools, while Angrist et al. (2011) find negative effects for
non-urban charter middle schools in Massachusetts.
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additional Boston charter schools in the near future (Vaznis 2012).

Despite the substantial effects reported in lottery-based studies, however, some analysts

argue that charter expansion is unlikely to raise achievement on a larger scale. Charter appli-

cants are a small, self-selected subset of the student population; in Boston, only 17 percent of

students apply to a charter, and applicants are less disadvantaged and higher-achieving than

non-applicants.3 Students with the largest potential benefits may be most likely to sign up

for charter lotteries. In support of this view, Ravitch (2010, pp. 144-145) argues that “char-

ter schools enroll the most motivated students in poor communities, those whose parents push

them to do better...as more charter schools open, the dilemma of educating all students will

grow sharper.” Similarly, Rothstein (2004, p. 82) writes of the Knowledge is Power Program

(KIPP), a high-performing urban charter operator: “[T]hese exemplary schools...select from the

top of the ability distribution those lower-class children with innate intelligence, well-motivated

parents, or their own personal drives, and give these children educations they can use to succeed

in life.” In this view, lottery-based estimates that identify effects for charter applicants over-

state the effects of charter attendance for broader groups of students, and charter expansion is

unlikely to boost citywide achievement.

On the other hand, lottery-based estimates could also understate the potential effects of

charter attendance for non-applicants. The parents of low-achieving students may be unlikely

to investigate alternatives to traditional public school, despite evidence that urban charters are

especially effective for such students (Angrist et al. 2012). More generally, since applying to

charter schools requires parental action, the parents of charter applicants may be more motivated

to invest in their children’s human capital than other parents. The inputs provided by charter

schools may either complement or substitute for these parental investments. The efficacy of

charter expansion is therefore theoretically unclear.

The aim of this paper is to predict the consequences of charter school expansion in Boston,

with an emphasis on achievement gaps. To this end, I develop and estimate a structural

model that links students’ charter application decisions to their potential achievement gains

in a parametric selection framework. The model is similar to the stochastic portfolio choice

problem outlined by Chade and Smith (2006): students submit charter applications to maximize

expected utility, taking account of admission probabilities and non-monetary application costs.

To identify the model’s parameters, I combine instruments from entrance lotteries with a second

set of instruments based on proximity to charter schools. The approach taken here is similar

in spirit to other recent studies that use economic theory to extrapolate from experimental or

3The demographics of charter applicants are discussed in detail in Section 2.3.
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quasi-experimental causal estimates (see, e.g., Todd and Wolpin 2010, Card and Hyslop 2006,

Attanasio et al. 2011, Duflo et al. 2012, and Hastings et al. 2009).4 The model accommodates

heterogeneity in student preferences and achievement gains on both observed and unobserved

dimensions. In addition, it allows for heterogeneous effects across charter schools, and permits

charter admission probabilities to adjust endogenously to changes in the set of available schools.

Estimates of the model imply that charter applicants are negatively selected on gains

from charter attendance. Specifically, higher-achieving, less-disadvantaged students have the

strongest preferences for charter schools, but charters are most effective for poor students and

those with low previous achievement. The structural estimates also imply that charter appli-

cants are negatively selected on unobserved dimensions of achievement gains. Surprisingly, these

findings imply that lottery-based estimates understate the achievement effects of charter schools

for broader sets of students. As a result, charter expansion has the potential to substantially

raise achievement for marginal applicants: simulations show that Boston’s proposed expansion,

which raises the share of middle schoolers attending charters from 9 percent to 15 percent, is

expected to reduce the gap in math scores between Boston and the rest of Massachusetts by 5

to 8 percent, and reduce citywide racial achievement gaps by roughly 5 percent.

At the same time, estimates of the model also show that the effects of further expansions

may be limited by weak demand. Students act as if application costs are high, and most prefer

to attend traditional public schools despite the achievement gains they would receive from

charters. As a result, large expansions of the charter system are likely to leave many charter

seats empty without substantially increasing enrollment. In the long run, demand for charters

may rise if parents become more informed or measures are taken to boost application rates.

Taken together, however, the results reported here suggest that at present, parents in Boston

are either unaware of, or unresponsive to, the achievement gains produced by charter schools:

The overall level of demand for charters is low, and the students with the largest potential gains

are relatively unlikely to apply.

These results contribute to a nascent literature assessing the possible consequences of charter

school expansion. Fryer (2011) examines the effects of introducting practices from successful

charter schools in nine low-performing traditional public schools in Houston, Texas. The results

show clear gains in math, suggesting that these practices are effective outside the charter context.

Other related studies include Mehta (2011) and Ferreyra and Kosenok (2011), who develop

4Angrist and Fernandez-Val (2011) and Hotz et al. (2005) describe approaches to extrapolation that em-
phasize variation in treatment effects as a function of observed covariates. Heckman and Vytlacil (2001, 2005),
Carneiro et al. (2010), and Heckman (2010) discuss nonparametric estimation of marginal treatment effects
(MTE), effects at particular values of the unobserved propensity to receive treatment. The approach taken here
includes elements of both of these approaches.
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equilibrium models of charter school entry and use them to conduct counterfactual analyses.

Strategic entry models are less appropriate for the Boston setting because entry is effectively

determined by Massachusetts’ charter school cap legislation. The model estimated here focuses

on the demand for charter schools, with an emphasis on the relationship between preferences

and the achievement effects of charter attendance.

The rest of the paper is organized as follows: The next section gives background on charter

schools in Boston and describes the data. Section 3 benchmarks the effects of charter schools in

the sample of lottery applicants. Section 4 outlines the structural model, and Section 5 discusses

identification and estimation of the model. Section 6 reports the structural estimates. Section

7 uses these estimates to simulate the effects of charter expansion. Section 8 concludes.

2 Setting and Data

2.1 Context: Charter Schools in Boston

Non-profit organizations, teachers, or other groups wishing to operate charter schools in

Massachusetts submit applications to the state’s Board of Education. If authorized, charter

schools are granted freedom to organize instruction around a philosophy or curricular theme, as

well as budgetary autonomy. Charter employees are also typically exempt from local collective

bargaining agreements, giving charters more discretion over staffing than traditional public

schools.5 The Board of Education reviews each charter school’s academic and organizational

performance at five year intervals, and decides whether charters should be renewed or revoked.

Enrollment at Massachusetts charter schools is open to all students who live in the local school

district; if a charter school receives more applications than it has seats, it must accept students

by random lottery. Charters are funded primarily through per-pupil tuition payments from

local districts. Charter tuition is roughly equal to a district’s per-pupil expenditure, though the

state Department of Elementary and Secondary Education partially reimburses these payments

(Massachusetts Department of Elementary and Secondary Education 2011).6

The Boston Public Schools (BPS) district is the largest school district in Massachusetts,

and it also enrolls an unusually large share of charter students. In the 2010-2011 school year, 14

5Massachusetts has two types of charter schools: Commonwealth charters, and Horace Mann charters. Com-
monwealth charters are usually new schools authorized directly by the Board of Education, while Horace Mann
charters are often conversion schools and must be approved by the local school board and teachers’ union prior
to state authorization. Horace Mann employees typically remain part of the collective bargaining unit. I focus
on Commonwealth charter schools. No Horace Mann middle schools operated in Boston during my data window,
though three were scheduled to open in 2010 or later.

6In the first year after an increase in charter enrollment, the state fully reimburses the local district for
the additional charter tuition payments. Subsequent reimbursement rates are 60 percent in the second year, 40
percent in the third year, and zero thereafter.
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charter schools operated in Boston, accounting for 9 percent of BPS enrollment. The analysis

here focuses on middle schools, defined as schools that accept students in fifth or sixth grade; 12

percent of Boston middle schoolers attended charter schools in 2010-2011. Columns (1) through

(3) of Table 1 list names, grade structures and years of operation for the ten Boston charter

middle schools that opened between 1997 and 2010. These schools are marked in black on the

map in Figure 1.7

Many of Boston’s charter schools adhere to a model known as “No Excuses,” a set of practices

that includes extended instruction time, strict behavior standards, a focus on traditional reading

and math skills, selective teacher hiring, and teacher monitoring (Wilson 2008). A growing body

of evidence suggests that these practices boost student achievement (Angrist et al., 2011; Dobbie

and Fryer, 2011b; Fryer, 2011). Consistent with this evidence, Abdulkadiroglu et al. (2011)

use entrance lotteries to show that Boston’s charter schools substantially increase achievement

among their applicants. Their estimates imply that a year of charter middle school attendance

raises test scores by 0.4σ in math and 0.2σ in English Language Arts (ELA).

These encouraging findings make Boston an appealing setting for studying the effects of

charter school expansion. The effects of expansion in Boston are also relevant to an ongoing

policy debate. In recent years, the growth of charters in Massachusetts has been slowed by the

state’s charter cap, a law that limits expenditures on charter schools to 9 percent of the host

district total.8 The Board of Education stopped accepting proposals for new Boston charters

in 2008 when charter expenditure hit the cap (Boston Municipal Research Bureau 2008).

In 2010, the Massachusetts legislature relaxed the charter cap for low-performing school

districts. Specifically, for districts with test scores in the lowest decile, the limit on charter

expenditures is to rise incrementally from 9 percent in 2010 to 18 percent in 2017 (Common-

wealth of Massachusetts 2010). The new law gives priority to “proven providers” who have

previously held leadership positions at schools demonstrating academic success for similar stu-

dent populations (Massachusetts Department of Elementary and Secondary Education 2012a).

The law also requires schools to specify recruitment plans aimed at attracting applicants who

are demographically similar to the local population, though all students are free to apply and

admissions will continue to be determined by lottery (Massachusetts Department of Elementary

and Secondary Education 2012c).

Through 2011, the Board of Education received 51 charter applications under the new law.

Of these, 32 were selected as finalists, and 20 charters were granted, eleven to schools in Boston

7Only nine locations are marked in Figure 1 because Boston Preparatory Charter School opened in the
building previously occupied by Frederick Douglass Charter School after the latter closed.

8Legislation also limits the total number of Commonwealth charter schools to 72 and the number of Horace
Mann charters to 48, though these caps are not currently binding.
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(Massachusetts Department of Elementary and Secondary Education 2012). Table 2 lists the

Boston charter middle schools scheduled to open in the 2011-2012 and 2012-2013 school years,

as well as existing schools operated by the same providers. Two opened in 2011-2012, while

four opened in 2012-2013. Five new schools are linked to existing charters in Boston; the sixth,

KIPP Academy Boston, is part of the Knowledge is Power Program, the nation’s largest charter

management organization.9 The locations of the newly approved schools are marked in red in

Figure 1. The state Board of Education has announced that it will consider proposals for

additional Boston charter schools opening in 2013 and later (Vaznis 2012).

2.2 Data Sources and Sample Construction

The data used in my analysis comes from three sources. First, I obtain demographics, school

attendance, and test scores from an administrative database provided by the Massachusetts

Department of Elementary and Secondary Education (DESE). Second, I draw spatial location

data from student addresses provided by the BPS district. Finally, I obtain information on

charter school applications and offers from lottery records gathered from individual charter

schools.

The DESE database covers all Massachusetts public school students from the 2001-2002

school year through the 2010-2011 school year. Key variables include sex, race, subsidized lunch

status, limited English proficiency (LEP), special education status (SPED), town of residence,

schools attended, and scores on Massachusetts Comprehensive Assessment System (MCAS)

math and ELA achievement tests. I begin by selecting all white, black, and Hispanic students

in the database who attended a traditional BPS school in 4th grade between 2006 and 2009.

I also require students to have non-missing 4th grade demographics and test scores, as well as

school attendance information and test scores in 6th, 7th, or 8th grade. I use only the earliest

test taken by a given student in a particular subject and grade.

Next, I merge the student address database to the DESE administrative file using a crosswalk

between BPS and state student identifiers. The address database includes a record for every

year that a student attended a traditional BPS school between 1998 and 2011. I drop students

in the state database without BPS address data. This restriction eliminates less than 1 percent

of Boston 4th graders. The address information is used to measure proximity to each Boston

charter school. I measure proximity using road distance in miles.10

9KIPP operates two charter schools in Lynn, a poor suburb of Boston. In a lottery-based evaluation of one
of these schools, Angrist et al. (2012) estimate effects similar to those of Boston’s charter middle schools.

10Road distance is obtained using the STATA traveltime command, which queries Google Maps to obtain
travel distance between any two locations. Versions of the model using other measures of proximity, such as
direct “as the crow flies” distance or driving time, produced very similar results.
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I then match the student data to records from lotteries held at seven charter middle schools in

Boston.11 I focus on middle schools because applicant records were more consistently available

in middle school than in elementary or high school, and I restrict attention to applicant cohorts

attending 4th grade in 2006 and later because records for earlier cohorts were missing for several

schools. Column (4) of Table 1 summarizes the availability of lottery records for the ten charter

middle schools that operated between 1997 and 2010.12 Of the three schools without available

records, two closed prior to the 2009-2010 school year; the third declined to provide records. In

the analysis below, I treat these schools as equivalent to traditional public school. I matched the

available lottery records to the administrative data by name, grade, year, and (where available)

date of birth. This process produced unique matches for 92 percent of lottery applicants.

After matching the lottery files to the student data, I constructed two subsamples for sta-

tistical analysis. The first is used to estimate causal effects for lottery applicants. This sample

excludes students that did not apply to charter schools, as well as applicants who were not ran-

domized. The latter group includes siblings guaranteed admission, and late applicants, who are

typically placed on a waiting list. The lottery sample includes 1,822 applicants to charter middle

schools. A second sample is used to estimate the structural model. In addition to randomized

applicants, this sample includes students who did not apply to charter schools and applicants

who were not randomized. The structural sample includes 10,986 students who attended BPS

schools in 4th grade between 2006 and 2009.

2.3 Descriptive Statistics

Applicants to Boston charter schools differ from the general population of Boston students.

Specifically, charter applicants tend to have higher socioeconomic status, and to enter middle

school with higher prior achievement than non-applicants. This can be seen in Table 3, which

reports summary statistics for the structural sample in column (1) and the applicant sample in

column (2). Seventeen percent of students applied to at least one charter lottery, and ten percent

attended a charter school. Compared to the general student population, charter applicants are

less likely to be Hispanic, to be eligible for subsidized lunch, to have special education status,

or to be classified as limited English proficient. Charter applicants are more likely to be black,

and also live closer to charter schools on average (1.64 miles from the closest charter school,

compared to 1.84 miles for the full population).

11The lotteries used here are an expanded version of the middle school sample used by Abdulkadiroglu et al.
(2011), including two additional schools.

12I classify charter schools as middle schools if they accept applicants in 5th or 6th grade. Two Boston charter
schools accept students prior to 5th grade but serve grades 6 through 8. Since I restrict the analysis to students
who attended traditional BPS schools in 4th grade, no students in the sample attend these schools.
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The last two rows of Table 3 display information about 4th grade MCAS scores. I stan-

dardize MCAS scores to have mean zero and standard deviation one within each grade-year in

Massachusetts. Boston 4th graders lag behind the state average by 0.54σ and 0.66σ in math and

ELA. Students who apply to charter schools have substantially higher scores than the general

Boston population: applicants’ 4th grade scores exceed the Boston average by more than 0.2σ

in both subjects. Taken together, these summary statistics indicate that charter applicants are

higher-achieving, less economically disadvantaged, and less likely to have academic problems

than students who do not apply to charter schools.

3 Effects on Lottery Applicants

3.1 Lottery Estimates

To motivate my analysis of the effects of charter expansion, I begin by benchmarking the

effects of charter attendance among the selected subset of students who apply to charter schools.

I interpret these effects in the Local Average Treatment Effect (LATE) notation described by

Imbens and Angrist (1994), which provides a formal framework for analyzing heterogeneity in

causal effects across individuals. Let Yi(1) be applicant i’s potential test score if she attends a

charter school, and let Yi(0) be her test score if she attends a public school. Si indicates charter

attendance (the “treatment”), and Zi is a lottery offer dummy. Let Si(1) and Si(0) denote

potential treatment status as a function of Zi. The LATE framework is based on the following

assumptions for the lottery applicant sample:

A1 Independence and Exclusion: (Yi(1), Yi(0), Si(1), Si(0)) is independent of Zi.

A2 First Stage: 0 < Pr[Zi = 1] < 1 and Pr[Si(1) = 1] > Pr[Si(0) = 1].

A3 Monotonicity : Si(1) ≥ Si(0) ∀i.

The Independence and Exclusion assumption is motivated by the observation that offers are

randomly assigned among applicants, and are unlikely to affect test scores through any channel

but charter attendance. The First Stage assumption requires that winning the lottery makes

applicants more likely to attend charter school on average. Monotonicity requires that winning

the lottery does not discourage any applicant from attending charter school.

Under assumptions A1-A3, applicants can be partitioned into three groups: never takers,

who never attend charters (Si(1) = Si(0) = 0), always takers, who attend regardless of the

offer (Si(1) = Si(0) = 1), and compliers, who are induced to attend by receiving offers (Si(1) >
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Si(0)). Imbens and Angrist (1994) show that conventional instrumental variables (IV) methods

consistently estimate LATE, the average treatment effect for compliers. We have

E[Yi|Zi = 1]− E[Yi|Zi = 0]

E[Si|Zi = 1]− E[Yi|Si = 0]
= E[Yi(1)− Yi(0)|Si(1) > Si(0)] (1)

The Wald (1940) IV estimator is the empirical analogue of the left-hand side of equation (1).

I estimate LATE using a two-stage least squares (2SLS) procedure that combines obser-

vations from multiple lotteries. Specifically, the estimating equation for the lottery analysis

is

Yi = ψ` + βSi + εi (2)

where Yi is a test score for applicant i, Si is a dummy variable indicating charter school atten-

dance, and ψ` is a set of fixed effects capturing all combinations of charter lotteries entered by

students in the data. I code a student as attending charter school if she attends a charter at

any time after the lottery and prior to the test. The first stage equation is

Si = κ` + πZi + ηi (3)

The instrument Zi is one for students who receive any charter offer before the start of the school

year following the lottery.13 The 2SLS estimate of β can be interpreted as a weighted average

of within-lottery LATEs.14 To use all available test score information, the sample stacks test

scores in grades six through eight. Standard errors are clustered at the student level.

Consistent with the results reported by Abdulkadiroglu et al. (2011), the 2SLS estimates

show that Boston’s charter schools have dramatic effects on student achievement for lottery

applicants. As shown in column (1) of Table 4, receipt of a lottery offer increases the probability

of charter attendance by 0.65. The second-stage estimates, reported in columns (2) and (3),

imply that attending a charter school increases math scores by 0.50σ and boosts ELA scores by

0.31σ. These effects are precisely estimated.

These pooled results mask substantial heterogeneity in the benefits of charter school at-

tendance across racial groups. The second row of Table 4 shows that the effects of charter

schools are relatively modest for white students: the math estimate for whites is a statistically

insignificant 0.14σ, and the ELA estimate is negative and insignificant. In contrast, the third

13With random assignment of Zi, pre-lottery characteristics should be balanced across winners and losers.
Appendix Table A1 examines balance for observable student characteristics. There are few significant differences
between lottery winners and losers, and joint tests of balance never reject at conventional significance levels. Even
with random assignment, the validity of the instrument can be compromised by non-random attrition. Appendix
Table A2 shows that the followup rate for the lottery sample is 84 percent, and followup rates for lottery winners
and losers are very similar. Column (1) of Appendix Table A2 shows that followup rates are similar in the lottery
and structural samples.

14The 2SLS estimate is a weighted average of within-lottery Wald estimates, with weights proportional to the
variance of the first-stage fitted values (Angrist and Imbens 1995).

10



and fourth rows reveal large, significant effects for black and Hispanic students in both sub-

jects. Charter attendance boosts scores for black students by 0.62σ in math and 0.38σ in ELA.

The corresponding effects for Hispanics are 0.57σ and 0.53σ. The last row of Table 4 reports

p-values from Wald tests of the equality of charter effects across races. The null hypothesis of

equal effects is rejected at conventional significance levels (p < 0.1) for both subjects. These

results show that Boston’s charter schools raise test scores for non-white students much more

than for whites.

3.2 Effects on Score Distributions by Race

As a final piece of motivation for the structural analysis to follow, I next use the lottery

sample to ask whether charter schools close racial achievement gaps among applicant compliers.

To estimate effects on black and white score distributions, I modify the methods described

by Abadie (2002, 2003). Abadie notes that in addition to LATE, the marginal distributions

of Yi(1) and Yi(0) are separately identified for compliers in instrumental variables settings.

Intuitively, the distribution of Yi for students with Si = Zi = 0 is a mixture of the distributions

of Yi(0) for compliers and never takers. The distribution of Yi(0) for never takers is directly

observable among students with Zi = 1 and Si = 0. The distribution of Yi(0) for compliers can

therefore be recovered by a deconvolution procedure that uses these two observed distributions.

A similar argument shows that the distribution of Yi(1) for compliers can be recovered using the

distribution of Yi for students with Si = Zi = 1 together with the distribution for students with

Si = 1 and Zi = 0. Abadie provides simple methods for estimating CDFs of potential outcome

distributions for compliers, and outlines bootstrap procedures for testing hypotheses about

these distributions. I extend these methods to estimate potential outcome densities separately

by race, and test for black-white equality among applicant compliers who are randomly assigned

to charter schools or public schools.

The estimating equations for the distributional analysis are of the form

Kh (y − Yi) · Si = κ`y + γ(y) · Si + ηiy, (4)

where Si is treated as an endogenous regressor and instrumented with lottery offers. Here

Kh(t) = 1
hK

(
t
h

)
, K(t) is a kernel function, and h is a bandwidth. Let f cs (y) be the density of

Yi(s) for lottery compliers. Appendix A shows that the probability limit of the 2SLS estimate of

γ(y) is f c1(y), the density function for treated compliers. f c0(y) can be estimated by replacing Si

with (1− Si) in equation (4). I use a Kolmogorov-Smirnov (KS) statistic to test distributional

equality for blacks and whites.15

15The KS statistic is proportional to the maximum difference in complier CDFs between racial groups. I
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Boston’s charter schools cause math score distributions for black and white applicant com-

pliers to converge. This can be seen in Figure 2, which plots the estimated complier densities

of Yi(0) and Yi(1) for math, separately by race and year since application. The densities are

estimated using a triangle kernel with bandwidth 1σ.16 Black vertical lines indicate the pooled

mean of Yi(0) in each figure, while red lines mark the mean of Yi(1) in plots for treated students.

At baseline (prior to treatment), distributions for treated and non-treated compliers are similar,

and black students lag behind whites throughout the distribution. The KS test rejects baseline

distributional equality at conventional significance levels (p = 0.01 for the untreated, p = 0.09

for the treated). In post-treatment years, the black distribution moves towards the white dis-

tribution for treated compliers, and in 7th and 8th grade the null hypothesis of distributional

equality cannot be rejected for treated students (p ≥ 0.54).

In contrast with the results for treated compliers, no convergence occurs for untreated com-

pliers. The left-hand panels of Figure 2 show that black compliers who attend public schools

lag behind their white counterparts in every year, with little relative change in the distributions

after baseline. The null hypothesis of distributional equality between untreated black and white

compliers is always rejected at the 10-percent level or lower. These results suggest that Boston’s

charter schools close otherwise persistent achievement gaps between black and white compliers

in math. As shown in Figure 3, black-white convergence is less pronounced for ELA than for

math, though large shifts in mean ELA scores are evident in the plots for 7th and 8th grade.

4 Modeling Charter School Attendance

4.1 Setup

The lottery estimates in Section 3 show that Boston’s charter schools have dramatic ef-

fects on average test scores and racial achievement gaps for applicant compliers. At the same

time, effects for non-applicants may differ systematically from those for applicants, so these

results need not provide an accurate guide to the likely consequences of charter expansion. To

extrapolate from the lottery-based estimates, I use a structural model of charter application,

attendance, and achievement. As in Chade and Smith (2006) and Ajayi (2011), the charter

estimate these CDFs by replacing Kh (y − Yi) with 1{Yi ≤ y} in equation (4). Inference is based on a stratified
bootstrap procedure. For each of 200 bootstrap replications, I draw observations with replacement within lotteries
to obtain a new sample with the same lottery-specific sample sizes as the original sample. I then randomly assign
observations in each lottery to racial groups in the same proportions as in the original sample, and recalculate
the KS statistic. The results provide the sampling distribution of the KS statistic under the null hypothesis of
distributional equality for black and white compliers.

16Imbens and Rubin (1997) point out that instrumental variables estimates of potential outcome densities are
not guaranteed to be positive. I follow their suggestion and set the estimated densities to zero in a small number
of cases where the 2SLS estimate is negative.
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school application decision is modeled as a random utility portfolio choice problem: students

choose a set of applications to maximize expected utility, taking into account admission prob-

abilities and application costs. The model also allows for heterogeneous effects across charter

schools.

Figure 4 explains the sequence of events described by the model. First, students decide

whether to apply to each of K charter schools, indexed by k ∈ {1...K}. The dummy variable

Aik ∈ {0, 1} indicates that student i applies to school k. Second, charter schools randomize

offers to applicants. The dummy variable Zik ∈ {0, 1} indicates an offer for student i at school k,

and πk denotes the admission probability for applicants to school k. In the third stage, students

choose schools denoted Si, where Si = 0 indicates public school attendance. Any student can

attend public school, but student i can attend charter school k only if Zik = 1. Finally, students

take achievement tests in grades six through eight. Yijg denotes student i’s score in grade g on

math and ELA tests, indexed by j ∈ {m, e}.

4.2 Student Choice Problem

4.2.1 Preferences

Students’ preferences for schools depend on demographic characteristics, spatial proximity,

application costs, and unobserved heterogeneity. Specifically, the utility of attending charter

school k is

Uik = γ0
k +X ′iγ

x + γd ·Dik + θi + vik − γa · |Ai| (5)

where Xi is a vector of characteristics for student i including sex, race, subsidized lunch status,

special education status, limited English proficiency, and 4th grade math and ELA scores. Dik

measures distance to school k. The utility of public school attendance is

Ui0 = vi0 − γa · |Ai|.

The quantity γa · |Ai| represents the utility cost of applying to |Ai| charter schools.17 Ap-

plication costs include the disutility of filling out application forms and the opportunity cost of

time spent attending lotteries. These costs may also capture frictions associated with learning

about charter schools. Charter schools are not included in the standard BPS school choice

system, and are not typically listed in informational resources provided to parents by the dis-

trict.18 Parents who wish to learn about charter schools must undertake additional efforts, such

17Variables without k subscripts refer to vectors, so that Ai ≡ (Ai1...AiK)′ and so on.
18For example, the “What Are My Schools?” tool located at https://externalweb.mybps.org provides a list of

the BPS schools to which children are eligible to apply, but does not list charter schools.
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as visiting individual school websites or attending information nights. Applicants pay these

costs whether or not they attend a charter.

The variables θi and vik represent unobserved heterogeneity in tastes. θi, which characterizes

student i’s preference for charter schools relative to traditional public school, is the key unob-

servable governing selection into the charter sector. This variable includes any latent factors

that influence students to opt out of traditional public school in favor of charter schools, such as

the perceived achievement gain from attending charter schools, proximity to the relevant public

school, and parental motivation.19 In the language of the random-coefficients logit model (see,

e.g., Hausman and Wise 1978, Berry et al. 1995, and Nevo 2000), θi is the random coefficient on

a charter school indicator. The presence of θi implies that charter schools are closer substitutes

for each other than for traditional public schools. I assume that θi follows a normal distribution

with mean zero and variance σ2
θ .

The vik capture idiosyncratic preferences for particular schools, which are further decom-

posed as

vik = τik + ξik.

Students know τik and θi before applying to charter schools, and learn ξik after applying. The

post-application preference shock explains why some applicants decline charter school offers. To

generate multinomial logit choice probabilities, τik and ξik are assumed to follow independent

extreme value type I distributions with variances σ2
τ and π2/6.20

4.2.2 School Lotteries

In the second stage of the model, schools hold independent lotteries. School k admits

applicants with probability πk. The probability mass function for the offer vector Zi conditional

on Ai is

f(Zi|Ai;π) =
∏
k

[Aik · (πkZik + (1− πk)(1− Zik)) + (1−Aik) · (1− Zik)]. (6)

Initially, admission probabilities are treated as parameters to be estimated. However, ad-

mission rates are likely to change as the system of charter schools expands. In the simulations

to follow, the πk adjust so that schools fill their seats in equilibrium. Section 7.2 and Appendix

D discuss the determination of endogenous admission probabilities.

19Proximity to public school is treated as an unobservable because Boston has a citywide choice plan, so
students have a large number of traditional public schools to choose from.

20That is, ξik follows a standard Gumbel distribution, which provides the scale normalization for the model.
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4.2.3 Application and Attendance Decisions

I derive students’ optimal application and attendance rules by backward induction. A stu-

dent is faced with a unique attendance decision after each possible combination of charter school

offers, because the set of offers in hand determines the available school choices. Consider the

decision facing a student at stage 3 in Figure 4. At this point, the student knows her charter

offers, application costs are sunk, and there is no uncertainty about preferences. Student i can

attend public school or any charter school that offers a seat. Her choice set is

C(Zi) = {0} ∪ {k : Zik = 1}.

Define

Ũik(θi, τik) ≡ γ0
k +X ′iγ

x + γd ·Dik + θi + τik

with Ũi0(θi, τi0) ≡ τi0. Student i’s optimal school choice is

Si = arg max
k∈C(Zi)

Ũik(θi, τik) + ξik

and the probability that student i chooses school k is given by

Pr[Si = k|Xi, Di, Zi, θi, τi] =
exp

(
Ũik(θi, τik)

)
∑

j∈C(Zi) exp
(
Ũij(θi, τij)

)
≡ Pik(Zi, θi, τi).

The expected utility associated with this decision (before the realization of ξi) is

Wi(Zi, θi, τi) ≡ E[maxk∈C(Zi) Ũik(θi, τi0) + ξik|Xi, Di, Zi, θi, τi]

= ν + log

 ∑
k∈C(Zi)

exp
(
Ũik(θi, τik)

)
where ν is Euler’s constant.

Students choose charter applications to maximize expected utility, anticipating offer prob-

abilities and their own attendance choices. Consider the application decision facing a student

at stage 1 in Figure 4. The student knows θi and τi, but does not know ξi, and her choice of

Ai induces a lottery over values of Zi at a cost of γa · |Ai|. The expected utility from choosing

Ai = a is given by

Vi(a, θi, τi) ≡
∑

z∈{0,1}K
[f(z|a;π) ·Wi(z, θi, τi)]− γa · |a|.

The optimal application rule is therefore

Ai = arg max
a∈{0,1}K

Vi(a, θi, τi)

≡ A∗(Xi, Di, θi, τi).
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4.3 Achievement

Students are tested after application and attendance decisions have been made. Potential

achievement for student i at charter school k in subject j and grade g is given by

Yijg(k) = α0
jk + α0

jgc +X ′iα
x
jgc + αθjgc · θi + εijgk (7)

while potential traditional public school achievement is

Yijg(0) = α0
jgp +X ′iα

x
jgp + αθjgp · θi + εijg0. (8)

The subscripts c and p in these equations refer to charter school and public school. The causal

effect of attending charter school k relative to traditional public school for student i in subject j

and grade g is Yijg(k)−Yijg(0). Observed scores for student i are the potential scores associated

with her optimal school choice: Yijg = Yijg(Si).

The unobserved determinants of academic achievement may be correlated both over time and

across subjects. To capture this possibility, I allow εijgk to follow the first-order autoregressive

process

εijgk = ρjk · εij(g−1)k + ζijgk, (9)

where the ζijgk are serially independent and the vector (ζimgk, ζiegk)
′ has a bivariate normal

distribution with covariance matrix Σk. I assume that ρjk and Σk are the same across charter

schools, though they may differ between charter schools and traditional public schools.

4.4 Comments on Modeling Choices

Equations (5) through (9) provide a complete description of charter demand and potential

academic achievement. This section provides intuition for some of the key modeling choices

implicit in these equations.

First, the model emphasizes differences between charter and traditional public schools, while

limiting differences between charter schools. Heterogeneity in preferences and achievement

across students with different observed characteristics is governed by the vectors γx and αxjg`

for ` ∈ {c, p}. This specification allows observed characteristics to affect the choice of charter

schools relative to traditional public schools, and to interact differently with achievement in char-

ter and public schools, but requires that these characteristics affect preferences and achievement

the same way at every charter. Similarly, equation (7) implies that the relationship between

the unobserved taste θi and student achievement is the same at every charter school. Hetero-

geneity in preferences and achievement across charter schools is captured by the school-specific

intercepts γ0
k and α0

jk. These restrictions allow me to limit the number of parameters to be
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estimated while also parsimoniously summarizing heterogeneity in preferences and achievement

gains across both students and schools. Moreover, this emphasis on differences between charters

and traditional public schools mirrors the approach to identification described in Section 5.3,

which emphasizes selection into the charter sector rather than across charter schools.

A second notable feature of the model is that potential achievement does not enter directly

in students’ utility functions. Instead, achievement and preferences are linked through the

charter taste θi, which appears in equations (7) and (8). Appendix C formally shows that this

specification nests a standard model of Roy (1951) selection in which students seek to maximize

achievement and have private information about their potential scores in charter and public

schools. The model described here is more flexible than this Roy model, in the sense that it

allows students’ preferences to depend on unobserved factors besides achievement. For example,

students may be more likely to choose charter schools if they expect to receive large achievement

gains, but they may also be more likely to choose charters if they have more motivated parents,

and parental motivation may be positively or negatively correlated with achievement gains.

Equations (7) and (8) admit either possibility by allowing for a flexible relationship between

the unobserved charter taste θi and potential achievement. The next section formally discusses

my strategy for identifying this relationship and outlines my estimation procedure.

5 Identification and Estimation

5.1 Exclusion Restriction

The central challenge in extrapolating from lottery-based estimates of charter effects is

that lottery applicants are self-selected. This leads potential achievement distributions for

applicants to differ from the corresponding population distributions. The model described here

accounts for this self-selection while placing structure on the selection process for the purposes

of identification. Specifically, identification of the parameters of equations (7) and (8) is based

on the following exclusion restriction:

E[ζijgk|Xi, θi, Zi, Di, τi, ξi] = 0. (10)

Equation (10) three identifying assumptions. First, the lottery offer vector Zi is excluded

from equations (7) and (8). The offer choice Ai is a deterministic function of Xi, Di, θi, and

τi, and lottery offers are randomly assigned conditional on Ai. The exclusion of Zi is therefore

equivalent to assuming that offers have no direct effect on student achievement, a standard

assumption in the charter lottery literature. Second, assumption (10) requires that distance

to charter schools is unrelated to the idiosyncratic component of potential achievement, ζijgk.
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Finally, the school-specific preference shocks τi and ξi are also taken to be unrelated to potential

achievement. I next discuss the latter two assumptions in detail and provide suggestive evidence

in support of them.

5.2 Exclusion of Distance

If distance to charter schools is unrelated to ζijgk and affects students’ charter attendance

decisions, it is a valid instrument for charter school attendance. The use of this instrument

parallels the use of proximity-based instruments in research on higher education (see, e.g., Card

1993). The exclusion of distance seems plausible in the model described here, since Xi includes

detailed student characteristics and baseline achievement. The exclusion restriction requires

that distance to charter schools is effectively random conditional on these variables. Together,

the lottery and distance instruments identify the taste coefficients αθjg` in equations (7) and (8).

For example, if lottery applicants who are willing to travel long distances to attend charters

benefit more than students who live nearby, this suggests that unobserved tastes for charters

are positively related to achievement gains from charter attendance. Appendix B demonstrates

how the combination of lotteries and distance identifies the taste coefficients in a simplified

model with one charter school.

Table 5 explores the validity of the distance instrument and compares IV estimates based on

lotteries and distance. Columns (1) and (2) report coefficients from ordinary least squares (OLS)

regressions of 4th grade test scores on distance to the closest charter middle school, measured

in miles. The estimates in the first row show that students who live further from charter middle

schools have significantly higher 4th grade test scores, suggesting that charter schools tend to

locate in low-achieving areas of Boston. The second row shows that adding controls for observed

characteristics shrinks these imbalances considerably and renders the coefficients statistically

insignificant. This suggests that observable student characteristics capture the relationship

between location and academic achievement, and lends plausibility to the use of distance as an

instrument in models that control for these characteristics.

Columns (3) through (5) of Table 5 compare 2SLS estimates using lottery offers and distance

as instruments for charter attendance. Models using the lottery instrument control for lottery

fixed effects and limit the sample to applicants, while models using the distance instrument

control for demographics and 4th grade test scores, and include the full sample. Column (3)

shows that both instruments have strong, statistically significant first stage effects on charter

attendance: winning a lottery increases the probability of charter attendance among applicants

by 0.65, while a one-mile increase in distance decreases the probability of charter attendance by
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2.2 percentage points. Columns (4) and (5) show that the two instruments produce similar esti-

mates of the effects of charter attendance, though the distance estimates are much less precise.

The lottery instrument produces estimates of 0.50σ and 0.31σ for math and ELA tests, while the

distance instrument generates estimates of 0.54σ and 0.19σ. The structural estimates reported

below efficiently combine information from both sources of variation in charter attendance.21

5.3 Exclusion of School-specific Preferences

The exclusion of school-specific tastes from equations (7) and (8) implies that selection on

unobservables has a “single-index” form: the relationship between potential achievement and

unobserved preferences is driven only by the average charter school taste θi. This allows selec-

tion on unobservables to be parsimoniously characterized by the set of coefficients αθjg`. The

single-index restriction requires that students view charter schools as a homogeneous treatment,

implemented at multiple sites throughout Boston. Students may know about cross-site hetero-

geneity in average effects (captured by α0
jk) and about their own suitability for the charter

treatment (captured by θi), but the model requires that students do not make choices based on

their own idiosyncratic treatment gains across sites.

The exclusion of school-specific preferences is more plausible if the charter treatment is in

fact homogeneous across schools. Table 6 lists responses to a survey on school practices for

the seven charter middle schools included in the sample.22 For comparison, column (8) reports

average responses for other charter middle schools in Massachusetts. The survey results show

that practices are highly uniform across Boston’s charter middle schools, and differ markedly

from schools elsewhere in the state. Boston middle schools have more instructional time than

other charter schools; five of seven have longer school years than the non-Boston average, and six

of seven have longer school days. The seven Boston middle schools all strongly identify with the

No Excuses educational approach, choosing at least 4 on a 5-point scale measuring adherence to

No Excuses, whereas other charter schools are less likely to identify with No Excuses. Boston’s

schools uniformly emphasize traditional reading and math skills, discipline and comportment,

and measurable results, while other charters place less emphasize on these ideas. With a few

exceptions, Boston middle schools ask parents and students to sign commitment contracts,

require students to wear uniforms, and utilize formal merit/demerit systems to reward and

punish student behavior. In the classroom, cold-calling and drills for math and reading are

21The lottery and distance instruments need not produce similar estimates even if both instruments are valid,
because they identify effects for different sets of compliers. The close correspondence between the lottery and
distance estimates in Table 5 suggests that average effects for lottery and distance compliers are similar, though
I cannot reject relatively large differences due to the imprecision of the distance estimates.

22Schools are randomly ordered to avoid divulging information about individual schools.
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commonly used by Boston’s charters, and less likely to be used by charters elsewhere. The

pattern in Table 6 shows that educational practices are similar across charter middle schools in

Boston, lending support to the assumption that students are unlikely to make choices based on

private information about school-specific achievement gains.

To further motivate the exclusion of τi and ξi from equations (7) and (8), Table 7 summarizes

the relationship between distance to charter schools and the choice of schools among charter

applicants. In the model outlined above, the decision to choose one charter school over another

is determined by the combination of distance and school-specific tastes. If application portfolio

choices are dominated by distance, then there is little scope for selection on school-specific

tastes.

The results in Table 7 show that the choice of school conditional on applying is determined

mostly by distance. Thirty-nine percent of applicants apply to the closest school, and these

students travel an average of 1.63 miles to their chosen schools. An additional twenty-two

percent apply to the second closest charter, traveling an average of 1.17 miles beyond the

closest school, and 12 percent choose the third closest, on average traveling 1.82 miles further

than necessary. Only 14 percent of applicants apply to the fifth, sixth, or seventh closest

school. These facts show that although students are free to apply to distant schools, few do so;

conditional on choosing to apply to a charter, most students apply to one close by, leaving little

potential for matching on school-specific achievement gains.

5.4 Estimation

I estimate the parameters of the model by maximum simulated likelihood (MSL). Let Ω

denote the parameters of equations (5) through (9). The likelihood contribution of a student

with endogenous variables (Ai, Zi, Si, Yi) is given by

Li(Ω) =

ˆ
1{A∗(Xi, Di, θ, τ) = Ai} · f(Zi|Ai;π) · Pis(i)(Zi, θ, τ)

× φm
(
Ỹi(θ)

)
dF (θ, τ |Xi, Di,Ω) (11)

where

Ỹijg(θ) ≡ Yijg − α0
js(i) − α

0
jgs(i) −X

′
iα
x
jgs(i) − α

θ
jgs(i) · θ

and φm(·) is the multivariate normal density function of the εijgk implied by equation (9). The

subscript s(i) denotes the school attended by student i.23

23Here s(i) is used to refer both to the specific school chosen by student i, as in the school-specific intercept
α0
js(i), and to the type of school chosen by student i (charter or public), as in the demographic coefficient vector
αxjgs(i).
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I evaluate the integral in equation (11) by simulation. The indicator function in the integrand

creates practical difficulties: for some values of Ω there may be no simulations where the observed

value of Ai is chosen, leading to a zero value for the likelihood (note that there are 27 =

128 possible values of Ai). I therefore approximate the indicator function with a logit kernel

smoother. For λ close to zero, we have

1{A∗(Xi, Di, θi, τi) = a} ≈
exp

(
Vi(a,θi,τi)

λ

)
∑

a′∈{0,1}K
exp

(
Vi(a

′,θi,τi)
λ

) . (12)

The kernel smoothing approach, suggested by McFadden (1989) and discussed in detail by Train

(2003), is equivalent to estimation without smoothing in the limit as λ approaches zero, and it

produces an objective function with better computational properties. In the empirical work to

follow, I set λ = 0.1, the smallest value of λ for which the exponential functions in equation

(12) did not evaluate to infinity during the estimation procedure.24

Let θri and τ ri be draws of θ and τ for individual i in simulation r. Define

ˆ̀r
i (Ω) =

exp
(
Vi(Ai,θ

r
i ,τ

r
i )

λ

)
∑

a exp
(
Vi(a,θ

r
i ,τ

r
i )

λ

) · f(Zi|Ai;π) · Pis(i)(Zi, θri , τ ri ) · φm
(
Ỹi(θ

r
i )
)

The simulated likelihood for observation i is

L̂i(Ω) =
1

R

R∑
r=1

ˆ̀r
i (Ω)

where R is the number of draws. The MSL estimator is defined by

Ω̂MSL = arg max
Ω

1

N

N∑
i=1

log L̂i(Ω)

If R rises faster than
√
N , the MSL estimator is

√
N -consistent and has the same asymptotic

distribution as the conventional maximum likelihood estimator (Train 2003).

6 Estimates of the Structural Model

6.1 Preference Parameters

The MSL estimates were produced using 200 draws of θi and τi for each student. The results

were not sensitive to increasing the number of draws. To code Si, I assigned a student to the

24Values of λ between 0.1 and 0.3 produced very similar results. An alternative to smoothing is to view
the right-hand side of equation (12) as the true choice probability and treat λ as an additional parameter to be
estimated (see, e.g., Berkovec and Stern 1991). Walker et al. (2004) note that estimating the smoothing parameter
typically results in an objective function that is flat at the optimum, with poor numerical performance. Assuming
the existence of tastes specific to combinations of charter applications also seems economically unattractive. For
these reasons, I use the kernel smoothing approach.
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charter school where she attended the most days in grades five through eight; students who

spent no time in charter schools were assigned to public school.

Table 8 reports MSL estimates of the parameters governing preferences for charter schools.25

Estimates of the vector γx are consistent with the demographic patterns reported in Table 2.

Subsidized lunch status, special education, and limited English proficiency are associated with

weak demand for charter schools, while black students and students with higher baseline math

and ELA scores have stronger preferences for charters. The intercept of charter utility γ0,

which is the average of γ0
k across schools, is negative and significant. This implies that most

students in the omitted demographic category would prefer traditional public schools to charter

schools even in the absence of application and distance costs.26 Column (3) of Table 8 shows

average marginal effects of observed characteristics on the probability of applying to at least

one charter school.27 Poverty has the largest marginal effect on application behavior: Holding

other variables constant, subsidized lunch status reduces the probability of submitting a charter

application by 7 percentage points.

The bottom half of Table 8 reports estimates of the parameters governing preferences for

distance, application costs, and heterogeneity in tastes. Increased distance significantly reduces

the utility of charter school attendance. The marginal effect in column (3) shows that a one-mile

increase in driving time to a charter school reduces the probability of applying to that school

by roughly one percentage point.28 The application cost γa is positive, large, and statistically

significant. Its magnitude suggests that applying to a charter school involves a utility cost

roughly equivalent to a 2.3 mile increase in driving distance. The estimates capturing unobserved

heterogeneity in preferences for charter schools are statistically significant and economically

important: in utility terms, a one-standard-deviation increase in θi is roughly equivalent to a

10-mile increase in distance to all charter schools. The corresponding effect for τi is about three

miles. The last row of Table 8 shows that the average lottery admission probability is 0.64.29

25I calculate standard errors using the average outer product of the gradient of the simulated likelihood. Define

V̂ ≡ 1

N

∑
i

∇Ω log L̂i
(

Ω̂MSL

)
∇Ω log L̂i

(
Ω̂MSL

)′
Then V̂ −1 is a consistent estimate of the asymptotic variance of

√
N
(

Ω̂MSL − Ω0

)
, where Ω0 is the true param-

eter vector.
26Fourth grade scores are de-meaned in the estimation sample, so the omitted category is white males without

subsidized lunch, limited English proficiency, or special education status with average 4th grade scores.
27Marginal effects for discrete variables are computed by simulating the model first with the relevant character-

istic set to zero for each student and then with it set to one, and computing the average difference in application
probabilities across these simulations. Marginal effects for continuous variables are average simulated numerical
derivatives of the application probability.

28The reported marginal effect for distance is obtained by first computing the marginal effect of a one-mile
increase in distance to each school on the probability of applying to that school, and then averaging these effects
across schools.

29I allow admission probabilities to differ across schools and cohorts, and set them equal to one for students with
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The MSL estimates imply that charter applicants are a highly selected subset of the student

population. Define

Pi ≡ X ′iγx + θi

Pi indexes student i’s preference for charter schools relative to public school as a function of

observed characteristics and unobserved tastes. Panel A of Figure 5 plots kernel densities of

Pi for applicants and all students in standard deviation units. The mean of the applicant

preference distribution is more than a full standard deviation above the population mean, and

the variance of preferences is also lower among applicants. This figure highlights the intuition

for identification: the model uses variation in preferences among lottery applicants driven by

the distance instrument to extrapolate beyond effects for applicants and predict the distribution

of achievement effects for the full population.

6.2 Achievement Parameters

The structural estimates reveal important heterogeneity in the achievement effects of charter

schools on both observed and unobserved dimensions. This can be seen in Table 9, which reports

estimates of the parameters of the math potential outcome equations. Estimates for 6th, 7th,

and 8th grade are shown in panels A, B, and C, respectively. In each panel, column (1) shows

estimates for charter schools, column (3) shows estimates for public schools, and column (5)

shows the difference, the causal effect of charter school attendance. Columns (2), (4), and (6)

report standard errors.

The estimates in Table 9 show that charter schools have larger effects on math scores for

more disadvantaged students. The constant term reported in column (5) implies that charter

attendance raises math scores for students in the omitted demographic category by 0.37σ in 6th

grade, 0.25σ in 7th grade, and 0.39σ in 8th grade.30 Subsidized lunch students receive further

benefits of around 0.15σ in every grade, while black and Hispanic students also experience

larger gains. A one standard deviation improvement in baseline math scores decreases the

effect of charter attendance by between 0.11σ and 0.16σ, and these baseline interactions are

statistically significant. As shown in columns (1) and (3), blacks, Hispanics, and subsidized

lunch students lag behind other students in public school, but these characteristics are not

predictive of scores in charter schools conditional on the other included covariates. In this

sense, the structural estimates imply that charter schools close math achievement gaps between

racial and socioeconomic groups.

siblings at charter schools (siblings are guaranteed admission). The reported estimate is the average admission
probability for randomized applicants across schools and cohorts.

30The constant reported for charter schools is an average of school-specific estimates.
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The last row of each panel shows the relationship between unobserved charter preferences

and math scores. The estimates in column (1) suggest that tastes for charter schools are not

systematically related to achievement in charter schools. On the other hand, column (3) shows

that students with stronger unobserved preferences for charters do better in public school in

every grade. A one standard deviation increase in charter school tastes is associated with

an increase of between 0.03σ and 0.07σ in public school math achievement. Together, these

estimates imply that stronger tastes for charter schools are associated with slightly smaller

math gains, a fact documented in column (5).

Table 10 shows that the pattern of estimates for ELA is broadly similar to the corresponding

results for math.31 Column (5) shows that charter schools have substantial effects on the ELA

scores of students in the omitted demographic category (0.41σ and 0.39σ in 7th and 8th grade),

with significantly larger effects for subsidized lunch students and students with low baseline math

scores. As in math, race and subsidized lunch status are not predictive of ELA scores in charter

schools. Furthermore, the pattern of negative selection on unobservables is more pronounced in

ELA than in math: a one standard deviation increase in tastes for charter schools reduces the

effect of charter attendance by 0.06σ and 0.10σ in 6th and 8th grade, though the estimate for

7th grade is not significant.

Taken together, the estimates reported in tables 9 and 10 reveal two important patterns.

First, charter schools reduce differences in achievement between racial and socioeconomic groups.

Race and subsidized lunch status are highly predictive of test scores in public school, but not

predictive of charter school scores conditional on other characteristics. Baseline achievement is

also less predictive of scores in charter schools than public schools, especially in math. Broadly

speaking, charter schools raise scores the most for the students who lag furthest behind their

peers, reducing achievement gaps relative to the public school counterfactual.

Second, when combined with the utility parameters in Table 8, the achievement parameters

show a consistent pattern of negative selection on gains from charter attendance. Students with

subsidized lunch status and those with low baseline math scores receive large achievement gains

from charter schools, but have atypically weak preferences for charter attendance. Students

with stronger unobserved tastes for charter schools also experience smaller gains, especially in

reading. Black students are an exception to this pattern, as they have stronger-than-average

preferences for charters and receive larger-than-average gains. As shown in panel B of Figure 5,

however, the full set of preference and achievement coefficients implies a decreasing relationship

between preferences for charter schools and achievement gains. To summarize the relation-

31Estimates of the model’s covariance parameters are reported in Appendix Table A3.

24



ship between gains and preferences, this figure plots the causal effect of charter attendance

conditional on the charter preference Pi, averaged across K schools and 3 grades. Define

βj(p) ≡ E
[

1
3·K

∑8
g=6

∑K
k=1 (Yijg(k)− Yijg(0))|Pi = p

]
Figure 5 plots the βj(p) functions implied by the MSL estimates.32 For both math and ELA,

βj(p) is downward sloping, reflecting the fact that students with stronger preferences for charter

schools benefit less from charter attendance. This pattern is somewhat surprising; one might

have expected the students with the largest potential benefits to be the most likely to seek out

charter schools. Instead, the findings reported here suggest that disadvantaged students struggle

the most in traditional public schools, but are unlikely to investigate the charter alternative.

6.3 School Effects

Table 11 reports estimates of the model’s school-specific parameters, including the average

utility γ0
k , the admission probability πk, and the test score effects (α0

jk − α0
j60) for j ∈ {m, e}

(the omitted grade effect in equation (7) is 6th grade, so the school-specific intercepts measure

effects in grade six). The utility estimates in column (1) show that some charters are more

popular than others, but all of the estimates are negative, indicating that on average students

prefer traditional public school to charter attendance. The admission probabilities, which are

averages across applicant cohorts, range from 0.39 to 0.87.

The achievement effects reported in Table 11 suggest that the math effects of Boston’s

charters are not driven by any particular school; all seven charter middle schools increase

student achievement relative to traditional public school for students in the omitted demographic

category. The estimated math effects range from 0.23σ to 0.64σ, and all of them are statistically

significant. The ELA effects reported in column (4) vary more across schools, and only two are

positive and statistically significant. Interestingly, the two most effective schools, School 6 and

School 7, are relatively unpopular as measured by the average utility parameters in column (1).

This mirrors the negative selection with respect to student characteristics documented in tables

8 through 10: Students with the most to gain are less likely to apply to charter schools, and

students who apply to charters are less likely to choose the most effective schools.

6.4 Model Fit

The model estimated here matches observed charter application and attendance behavior

well. This can be seen in Table 12, which shows empirical choice probabilities, together with

32There is no closed-form expression for βj(p). The plots are constructed from simulated data using local
linear regressions with a triangle kernel and a bandwidth of 0.5 standard deviations.
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the corresponding model-based predictions.33 The model slightly under-predicts the fraction of

students applying to charter schools (16.6 percent in the data compared to 14.4 percent from the

model) and the fraction of students attending charters (10.0 percent compared to 9.3 percent).

It also under-predicts the fraction of applicants that submit multiple applications: 26.7 percent

of applicants choose more than one charter, while the model predicts a rate of 18.1 percent.

The remaining rows of Table 11 show that the model generally matches the relative popularity

of particular charter schools among charter applicants and attenders.

Table 13 shows that predicted math and ELA score distributions closely match the cor-

responding empirical distributions. For both math and ELA and in every grade, the model-

predicted mean scores for charter and public school students are within 0.03σ of the corre-

sponding empirical means. Predicted standard deviations are also very close to their empirical

counterparts for all tests and grades in both charters and public schools.

7 Predicting Expansion Effects

7.1 Description of Expansions

The model estimated in this paper allows for a parsimonious description of charter demand

that can be used to make out-of-sample predictions about student choices and achievement test

scores in counterfactual environments. I use the model to investigate the effects of changing

Boston’s charter school network on the distribution of middle school test scores for the cohort of

students attending 4th grade in 2009. I begin with a look at the effects of closing all of Boston’s

charter schools. This simulation shows how the existence of the charter sector has affected test

scores. I then simulate the effects of Boston’s planned expansion, which adds six new charter

middle schools to the existing set of seven. This is followed by an analysis of progressively larger

expansions that add schools one by one until the number of charter schools reaches 30. Finally,

I simulate the effects of forcing all Boston middle school students to attend charter schools.

While unrealistic, this last scenario allows me to compare the population average treatment

effect (ATE) to other treatment parameters and put upper bounds on the possible effects of

charter expansion.

7.2 Additional Assumptions

Expansions are defined by sets of charter schools, with each school characterized by a loca-

tion, an average utility γ0
k , math and ELA intercepts α0

mk and α0
ek, and an admission probability

33The predictions are produced by simulating the model 100 times for each observation in the data set, and
averaging across simulations and then observations.
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πk. Choosing these characteristics for new schools requires additional assumptions. I next de-

scribe these assumptions in detail and outline the procedures I use to acquire the parameters

for each new school.

7.2.1 School Locations

To choose charter locations for Boston’s planned expansion, I use the addresses of the

new schools scheduled to open through 2013. Larger expansions require that I specify where

additional schools are located. Charter schools in Boston usually locate in vacant buildings,

such as empty churches (Roy 2010). To manage the computational complexity of the model, I do

not model charter locations as strategic choices, and instead assign them randomly. Specifically,

I draw addresses at random from a grid of half-mile by half-mile blocks covering Boston; if a

drawn block does not already contain a charter school, I add the next school in this location.

Other models of location choice might produce slightly different predictions of the effects of

charter expansion. As shown in Section 7.3, however, my estimates imply that the market for

charter schools will be saturated by the time 30 schools have been added: at this point, almost

all students live in close proximity to a charter offering guaranteed admission. For expansions

at this scale, other models of location choice are therefore likely to produce results similar to

those reported below. Figure 6 shows the locations used for the counterfactual simulations.34

7.2.2 Utility and Test Score Parameters

I assign utility and test score effects for Boston’s planned expansion using the MSL estimates

for the linked schools listed in Table 2.35 For larger expansions, I randomly assign each new

school a draw of the vector (γ0
k , α

0
mk, α

0
ek)
′ from the estimated distribution of school effects. This

approach requires two assumptions. First, I assume that new charter schools are drawn from

the same distribution that generated the existing set of schools, which implies that new charter

entrants can successfully replicate the education production function used by existing schools.

This assumption seems plausible for Boston’s planned expansion, which involves the expansion

of existing charter schools to a small number of satellite campuses located elsewhere in the city.

For larger expansions, replicating the production function may become increasingly difficult, as

teachers, principals, or other inputs used by charter schools could become scarce. As with all

out-of-sample simulation exercises, therefore, my quantitative predictions for larger expansions

should be viewed as more uncertain.

34For the scenario in which all students are forced to attend charter schools, I randomly assign students to
charters, so spatial locations are not relevant.

35KIPP Academy Boston is not linked to an existing Boston charter. I assign this school the mean utility and
test score effects.
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Second, I assume that the school-specific parameters of the utility and achievement equa-

tions remain constant as students’ application and attendance decisions change in counterfactual

scenarios. Importantly, this assumption implies that there are no peer effects on student achieve-

ment, so that students’ own potential test scores are not affected by changes in their classmates’

characteristics. I abstract from peer effects because differences in peer quality are unlikely to

be the primary mechanism driving the effects of charter schools. As shown in Table 3, charter

applicants’ baseline test scores are about 0.25σ above the Boston average. For this difference

in peer quality to explain the effects reported in Table 4, peer effects would have to be roughly

2σ and 1σ per standard deviation of baseline peer quality in math and ELA. In a summary

of the peer effects literature, Sacerdote (2011) reports a wide range of estimates, almost all of

which are substantially less than these magnitudes. This suggests that charter schools produce

achievement gains mostly through channels other than peer effects, so ignoring peer effects is

unlikely to cause important errors in predictions of charter expansion effects.36

7.2.3 Admission Probabilities

To predict admission probabilities in the counterfactual simulations, I assume that schools

set their admission probabilities to maximize their own enrollments, accounting for optimal

student behavior and admission probabilities at other schools. Specifically, I look for a Subgame

Perfect Nash Equilibrium in which students correctly anticipate πk and apply optimally, and

schools optimally choose πk given students’ application decisions and other schools’ admission

probabilities. Appendix D formally outlines the structure of the game, shows that an equilibrium

exists, and gives conditions under which the equilibrium is unique. I numerically solve for the

equilibrium admission probabilities in each counterfactual simulation.

7.3 Simulation Results

Figures 7, 8, and 9 summarize the simulated effects of charter expansion on school choices,

charter oversubscription, and test scores. In each panel, a vertical black line indicates the

existing number of charter schools, and a red line indicates the size of Boston’s planned charter

expansion. Panel A of Figure 7 shows how application and attendance rates change as the

number of charter schools rises, while panel B shows the effects of expansion on admission

probabilities and the share of charter seats filled. Figure 8 shows effects on average math and

36To directly explore the relevance of peer effects in my sample, I followed the approach of Abdulkadiroglu et
al. (2011) and estimated 2SLS regressions in the lottery sample that interact charter attendance with average peer
baseline scores for students in the same lottery, instrumenting this interaction term with the interaction of peer
quality and the lottery offer. The coefficients on the interaction terms were small and statistically insignificant
for both math and ELA, suggesting that the effects of charter attendance are not larger for applicants who
experience larger increases in peer quality when they attend charter schools.
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ELA scores, and Figure 9 shows effects on white-black achievement gaps. Tables 14, 15, and 16

show numerical results for choice behavior, math scores, and ELA scores, respectively.

The simulations imply that charter schools have had a substantial impact on the distribution

of test scores in Boston. This can be seen in the second row of Tables 15 and 16, which show

the effects of closing all charter schools. Without charter schools, average middle school math

scores in Boston would fall by between 5 and 11 percent relative to the state average, and ELA

scores would fall by up to 8 percent. Closing Boston’s charters is also predicted to increase

citywide white-black achievement gaps by roughly 5 percent; the largest increase in the gap, 7

percent, occurs for 8th grade math and ELA.

The charter expansions scheduled to take place through 2013 are likely to produce further

increases in average test scores and reductions in the achievement gap. Specifically, these

expansions are predicted to raise charter application and attendance rates to 22 and 15 percent,

raise average scores by 5 to 8 percent in math and 1 to 6 percent in ELA, and further reduce

achievement gaps by 4 to 6 percent in math and 2 to 3 percent in reading. Columns (3), (6), and

(9) of Tables 15 and 16 show the effect of treatment on the treated (TOT), the average effect

of charter attendance for the students who attend charters in each counterfactual. The TOTs

associated with Boston’s planned expansion are all larger than the TOT for the existing system.

This reflects the pattern of selection discussed in Section 6: at the margin, charter expansion

draws in students with weaker tastes for charter schools, who receive larger achievement gains.

Columns (3) and (4) of Table 14 show that the availability of additional charter seats reduces

oversubscription. The average admission probability increases from 0.63 to 0.80, and only 85

percent of charter seats are filled, reflecting the fact that 6 of 13 schools are undersubscribed

(see column (2) of Table A4).

Figure 7 through 9 display the effects of opening additional charter schools one by one.

Opening more charters smoothly raises application and attendance rates, increases test scores,

and reduces achievement gaps. However, panel B of Figure 7 shows that charters are increasingly

undersubscribed as more are added, and the share of charter seats filled falls sharply as the

number of schools increases. With 30 schools, 24 percent of students attend a charter, average

8th grade scores rise by 20 percent and 5 percent in math and ELA, and 8th grade achievement

gaps in these subjects fall by 14 and 11 percent. However, only 60 percent of charter seats are

filled.

The counterfactual simulations highlight two important insights implied by the structural

estimates. First, since there is negative selection on achievement gains, the achievement effects

of charter schools are increasing in the share of students who attend charters. This can be seen
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most clearly in the last rows of tables 15 and 16, which report the effects of a hypothetical

expansion that forces all students to attend charter schools. When all students attend charters,

the TOT is equal to the population average treatment effect (ATE). In both subjects and for

all grades, the ATE is larger than the TOT for today’s charter students. This result implies

that effects for current charter applicants are smaller than potential effects for typical students

in Boston.

Second, the simulation results imply that despite their large potential achievement effects,

additional demand for charter schools in Boston is limited. In the 30-school expansion, few

schools are oversubscribed, so almost all students live in close proximity to a charter offering

guaranteed admission. Nevertheless, only one-third of students apply to a charter, and 40

percent of charter seats are left unfilled. This result is due to the large application cost reported

in Table 8 together with the negative average utilities reported in Table 11, which are in turn

driven by the fact that charter application rates in Boston are low despite reasonably high

admission probabilities. Only students in the upper tail of the taste distribution are interested

in attending charter schools, and these students are spread increasingly thin as the charter

system expands. Since the model also predicts that charters would have substantial impacts on

the test scores of the remaining non-applicants, this lack of demand implies that preferences for

charter schools are dominated by factors other than achievement gains. This finding suggests

that large-scale charter expansions may be ineffective without concomitant efforts to boost

charter application rates.

8 Conclusion

Estimates based on admission lotteries show that Boston’s charter middle schools have

substantial positive effects on test scores and quickly close racial achievement gaps among their

applicants. At the same time, the implications of these findings for charter school expansion

are unclear; applicants are a small, non-random subset of the student population, so such gains

may be atypical. This paper develops a structural model of charter applications, school choice,

and academic achievement that links the decision to apply to charter schools to achievement

gains from charter attendance. To identify the parameters of the model, I combine two sets of

instruments based on random lotteries and proximity to charter schools. I then use estimates of

the model to predict out-of-sample effects for non-applicants and simulate the effects of charter

expansion on the citywide test score distribution.

Estimates of the model reveal that tastes for charter schools are inversely related to achieve-

ment gains. Specifically, low-achievers and poor students gain the most from charter attendance,
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but are unlikely to apply to charters. Consistent with this finding, counterfactual simulations

show that the average effect of charter schools is increasing in the size of the charter sector,

as larger expansions draw in students with weaker preferences who receive larger gains. This

pattern is surprising – the standard Roy model of selection suggests that students with larger

potential gains should be more likely to apply. However, the “reverse Roy” pattern described

here is consistent with results from other contexts, such as the long-term care insurance market

described by Finkelstein and McGarry (2006). Finkelstein and McGarry note that the decision

to purchase long-term care insurance is driven by both risk aversions and health risk; since more

risk-averse people also tend to have lower health risks, they find that those who purchase more

insurance are not higher risk on average. More generally, in settings where participation deci-

sions are driven by multiple factors, selection on one dimension can lead to apparent negative

selection on gains on another dimension. In the charter school context, application decisions

are driven by socioeconomic status and baseline achievement, which are negatively correlated

with achievement gains from charter attendance.

Despite the large effects of charter schools for marginal applicants, however, the structural

estimates also imply that charter demand in Boston is limited. Most students prefer traditional

public school attendance to charter schools, and act as if applying to charter schools is costly. As

a result, when the charter market share reaches 24 percent, most schools are undersubscribed

and 40 percent of charter seats are left empty. This finding suggests that skeptical views of

large-scale charter school expansion, such as those expressed by Ravitch (2010) and Rothstein

(2004), may reach the right conclusion, but for the wrong reason. Charter schools do not

attract students who receive atypically large benefits, but the effects of charter expansion may

nevertheless be attenuated by weak demand.

These findings raise the further question of whether parents who forgo large potential

achievement gains are truly uninterested in achievement, or simply unaware of differences in

effectiveness across schools. The model estimated in this paper does not distinguish between

these two possibilities. In the former case, the simulation results reported here reflect the long-

run demand for charter schools in Boston, and the potential achievement gains from charter

expansion are ultimately limited. On the other hand, if the lack of demand for charter schools

reflects a lack of parental information, the demand for charters may rise in the long run as par-

ents become more informed, and the simulation results correspond to a short-run equilibrium.

In related work, Hastings and Weinstein (2008) show that providing test score information leads

parents to choose higher-performing schools, which suggests that informational frictions may

play a role. Changes in recruitment practices may also change the pattern of selection into
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charter schools; the recent legislation authorizing charter expansion in Massachusetts requires

schools to take efforts to recruit applicants who are demographically similar to students in the

local district. In future work, I plan to use data from Boston’s planned expansion to validate

the model estimated here, and study changes in the demand for charter schools as the city’s

charter network expands.
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Figure 1:  Charter Middle Schools in Boston

Notes: Black stars mark the locations of charter middle schools operating between 1995-1996 and 2010-2011. Red 

stars mark the locations of charter middle schools scheduled to open in 2011-2012 or later.
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p -value for distributional equality = 0.09 p -value for distributional equality = 0.70

Notes:  This figure plots kernel densities of math test scores for black and white lottery compliers.  Black vertical lines show mean scores for untreated compliers, while red vertical 

lines in the treated plots show means for treated compliers. The treated densities are estimated from 2SLS regressions of a kernel smoother interacted with a charter dummy on the 

charter dummy and lottery fixed effects.  The charter dummy is instrumented with an indicator for winning the lottery. All densities use a triangle kernel with a bandwidth of 1.25 

standard deviations. Untreated densities are estimated using analogous regressions that replace the charter dummy with a non-charter dummy. P -values are from Kolmogorov-

Smirnov tests of distributional equality.

Figure 2:  Math Score Distributions for Black and White Compliers

p -value for distributional equality = 0.02 p -value for distributional equality = 0.09

p -value for distributional equality = 0.04 p -value for distributional equality = 0.01

p -value for distributional equality = 0.06 p -value for distributional equality = 0.54
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p -value for distributional equality = 0.38 p -value for distributional equality = 0.50

Notes:  This figure plots kernel densities of ELA test scores for black and white lottery compliers.  The treated densities are estimated from 2SLS regressions of a kernel 

smoother interacted with a charter dummy on the charter dummy and lottery fixed effects.  The charter dummy is instrumented with an indicator for winning the lottery. All 

densities use a triangle kernel with a bandwidth of one standard deviation. Untreated densities are estimated using analogous regressions that replace the charter dummy with 

a non-charter dummy. P -values are from Kolmogorov-Smirnov tests of distributional equality.

Figure 3:  ELA Score Distributions for Black and White Compliers

p -value for distributional equality = 0.00 p -value for distributional equality = 0.08

p -value for distributional equality = 0.10 p -value for distributional equality = 0.12

p -value for distributional equality = 0.02 p -value for distributional equality = 0.45
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Figure 5: Charter Tastes and Achievement Effects

Notes: This figure describes the relationship between tastes for charter school attendance and the achievement effects of charter schools relative to traditional 

public school. Panel A plots the distribution of preferences for charter schools among charter applicants and all students as a function of observed and unobserved 

characteristics. Panel B plots the average causal effect of charter school attendance at each value of charter tastes for math and ELA. The vertical dashed lines 

indicates the mean preferences among applicants. The plots are produced from simulating the model using the MSL estimates and the empirical distribution of 

observed student characteristics. The graphs show kernel densities (panel A) or local linear regressions (panel B) estimated in the simulated data with a triangle 

kernel and a bandwidth of 0.5 standard deviations.

A. Charter Tastes B. Charter Effects
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Figure 6:  Charter School Expansions

Notes: Black stars mark the locations of the charter middle schools used to estimate the structural model. Red stars 

mark the locations of schools scheduled to open in 2011-2012 and 2012-2013. Yellow stars mark the locations of 

schools opened in a hypothetical expansion that raises the number of charters to 30.
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Figure 7: Simulated Effects of Charter School Expansion -- Choice Behavior

Panel A. Applications and attendance Panel B. Oversubscription

Notes: This figure displays simulated effects of charter school expansio on application and attendance behavior. The black dashed line in 

each panel corresponds to the existing number of charter schools, while the red dashed line corresponds to Boston's planned expansion. 

Panel A shows the fraction of students who apply to and attend charter schools. Panel B shows the average admission probability for 

applicants and the fraction of charter seats that are filled. The figures are produced by simulating the model 100 times for each of the 

2,485 students in the 2009 cohort of the structural sample.
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Figure 8: Simulated Effects of Charter School Expansion -- Average Citywide Test Scores

Panel A. Average math scores Panel B. Average ELA scores

Notes: This figure displays simulated effects of charter school expansion on average test scores in Boston.The black dashed line in each 

panel corresponds to the existing number of charter schools, while the red dashed line corresponds to Boston's planned expansion. Panel A 

shows math scores, while Panel B shows ELA scores. The figures are produced by simulating the model 100 times for each of the 2,485 

students in the 2009 cohort of the structural sample.
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Figure 9: Simulated Effects of Charter School Expansion -- Citywide Achievement Gaps

Panel A. Math achievement gap Panel B. Average ELA achievement gap

Notes: This figure displays simulated effects of charter school expansion on white/black achievement gaps in Boston. The black dashed 

line in each panel corresponds to the existing number of charter schools, while the red dashed line corresponds to Boston's planned 

expansion. Panel A shows the gap in math, while Panel B shows the ELA gap. The figures are produced by simulating the model 100 

times for each of the 2,485 students in the 2009 cohort of the structural sample.
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School name Grade coverage Years open

Lotteries 

available

(1) (2) (3) (4)

Academy of the Pacific Rim 5-12 1997-present Yes

Boston Collegiate 5-12 1998-present Yes

Boston Preparatory 6-12 2004-present Yes

Edward Brooke K-8 (with 5th entry) 2002-present Yes

Excel Academy 5-8 2003-present Yes

Frederick Douglass 6-10 2000-2005 No

MATCH Middle School 6-8 2008-present Yes

Smith Leadership Academy 6-8 2003-present No

Roxbury Preparatory 6-8 1999-present Yes

Uphams Corner 5-8 2002-2009 No

Table 1:  Boston Charter Middle Schools

Notes:  This table lists charter middle schools serving traditional student populations in Boston, 

Massachusetts from 1997-1998 through 2010-2011.  Schools are included if they accept students in 

5th or 6th grade.  Column (3) lists the calendar years of operation for each school through 2010.  

Column (4) indicates whether lottery records were available for cohorts of applicants attending 4th 

grade between 2006 and 2009.
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School name Grade coverage Year opening Linked schools

(1) (2) (3) (4)

Dorchester Preparatory 5-12 2012-2013 Roxbury Preparatory

Edward Brooke II K-8 (with 5th entry) 2011-2012 Edward Brooke

Edward Brooke III K-8 (with 5th entry) 2012-2013 Edward Brooke

Excel Academy II 5-12 2012-2013 Excel Academy

Grove Hall Preparatory 5-12 2011-2012 Roxbury Preparatory

KIPP Academy Boston 5-8 2012-2013 KIPP Academy Lynn (Lynn, MA)

Table 2: Boston Charter Middle School Expansions

Notes:  This table lists Boston charter middle schools opening in 2011-2012 and 2012-2013.  Schools are included if 

they planned to serve traditional student populations and accept students in 5th or 6th grade.  Column (2) lists the 

planned grade coverage for each school.  Column (3) shows the academic year in which the school opened. Column 

(4) lists Massachusetts charter middle schools operated by the same organization.
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All students Charter applicants

(1) (2)

Applied to charter school 0.166 1.00

Attended charter school 0.100 0.571

Female 0.481 0.483

Black 0.461 0.520

Hispanic 0.390 0.306

Subsidized lunch 0.817 0.715

Special education 0.231 0.178

Limited English proficiency 0.206 0.130

Miles to closest charter school 1.84 1.64

4th grade math score -0.544 -0.326

4th grade ELA score -0.657 -0.418

N 10986 1822

Table 3: Descriptive Statistics

Notes: This table shows descriptive statistics for students attending 4th grade 

at traditional public schools in Boston between 2006 and 2009. The sample 

excludes students with missing middle school test scores.
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First stage Math effect ELA effect

Race (1) (2) (3)

All 0.652*** 0.502*** 0.306***

(0.024) (0.087) (0.090)

N 3792

White 0.599*** 0.139 -0.156

(0.052) (0.169) (0.183)

N 638

Black 0.674*** 0.615*** 0.377***

(0.027) (0.113) (0.117)

N 1989

Hispanic 0.634*** 0.569*** 0.534***

(0.038) (0.145) (0.148)

N 1165

- 0.053 0.010

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  This table reports 2SLS estimates of the effects of 

attendance at Boston charter schools on test scores for lottery 

applicants. The sample stacks test scores in grades 6 through 8. 

The treatment variable is a dummy for attending any charter 

school after the lottery and prior to the test.  The instrument is a 

dummy for receiving an offer from any charter school.  Column 

(1) reports coefficients from regressions of charter attendance on 

the offer variable.  Columns (2) and (3) report second stage 

estimates for math and ELA scores.  All models control for lottery 

fixed effects.  P -values are from Wald tests of the hypothesis that 

the 2SLS coefficients are the same across races.  Standard errors 

are robust to heteroskedasticity and are clustered at the student 

level.

Table 4:  Lottery-based Estimates of Charter Effects

p -value for 

racial equality
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Math ELA First stage Math ELA

Controls (1) (2) Instrument (3) (4) (5)

None 0.031*** 0.042*** Lottery 0.652*** 0.502*** 0.306***

(0.010) (0.011) (0.024) (0.087) (0.090)

3792

-0.003 0.011 Distance -0.022*** 0.540** 0.190

(0.007) (0.007) (0.003) (0.251) (0.240)

23638

Table 5: The Distance Instrument

Notes: Columns (1) and (2) show regressions of 4th grade test scores on miles to the closest charter middle 

school.  The first row includes no controls, while the second controls for student characteristics, including 

sex, race, free lunch status, special education status, limited English proficiency, and 4th grade score in the 

other subject. Columns (3) through (5) show 2SLS results for middle school test scores using the lottery 

and distance instruments. The lottery 2SLS models control for lottery fixed effects, while the distance 

models control for demographics and 4th grade test scores. Standard errors for the 2SLS models are 

clustered at the student level.

2SLS comparisonBalance check: 4th grade scores

10986

10986

Student 

characteristics
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School 1 School 2 School 3 School 4 School 5 School 6 School 7 Other MA

Practice (1) (2) (3) (4) (5) (6) (7) (8)

Instruction time

Days per year 190 190 190 180 185 193 190 185

Length of school day (hours:minutes) 8:25 7:00 8:30 7:56 9:00 7:33 7:14 7:17

School philosophy (5 pt. scale)

No Excuses 4 4 4 5 5 5 5 2.76

Emphasize traditional reading and math 5 5 5 5 5 5 4 3.86

Emphasize discipline/comportment 5 5 5 5 5 5 5 3.33

Emphasize measurable results 5 5 5 5 5 5 5 3.62

School practices (1 or 0 for yes/no)

Parent and student contracts 1 1 1 0 1 1 1 0.67

Uniforms 1 1 1 1 1 1 1 0.74

Merit/demerit system 1 1 1 1 0 1 1 0.30

Classroom techniques (5 pt. scale)

Cold calling 3 5 5 5 5 3 5 2.48

Math drills 2 4 5 5 5 5 5 3.33

Reading aloud 4 5 5 4 4 5 4 3.14

Table 6: School Practices

Notes: This table shows school practices at Boston charter middle schools, measured from a survey of school administrators. Columns 

(1)-(7) show practices for the 7 schools used to estimate the structural model, while column (8) shows an average for other charter 

middle schools in Massachusetts.
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Fraction Mean distance Extra distance

Fraction of applicants choosing: (1) (2) (3)

Closest charter 0.394 1.63 0.00

2nd closest 0.219 2.61 1.17

3rd closest 0.119 3.51 1.82

4th closest 0.115 4.98 3.22

5th closest 0.072 6.04 4.26

6th closest 0.066 7.66 5.89

7th closest 0.005 10.58 8.73

Table 7: Charter School Choices Among Applicants

Notes: This table shows the fractions of applicants in the structural sample applying to charter 

schools by distance. Column (1) shows fractions of students making each choice. Column (2) shows 

mean distance to applicants' chosen schools. Column (3) shows extra distance relative to the closest 

charter school. If an applicant applied to multiple charters, the closest one is used in these 

calculations.
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Estimate Standard error Marginal effect

Parameter Description (1) (2) (3)

γ
0

Constant -2.10*** 0.153 -

γ
x

Female 0.086 0.069 0.007

Black 0.411*** 0.115 0.031

Hispanic 0.042 0.118 0.004

Subsidized lunch -0.769*** 0.095 -0.068

Special education -0.162* 0.088 -0.011

Limited English proficiency -0.513*** 0.101 -0.041

Baseline math score 0.203*** 0.050 0.017

Baseline ELA score 0.108** 0.050 0.008

γ
d

Distance (miles) -0.238*** 0.010 -0.007

γ
a

Application cost 0.543*** 0.006 -

σθ Standard deviation of charter school tastes 2.45*** 0.101 -

στ Standard deviation of school-specific tastes 0.773*** 0.031 -

π Acceptance probability 0.640*** 0.046 -

N Sample size 10986

* significant at 10%; ** significant at 5%; *** significant at 1%

Table 8:  Maximum Simulated Likelihood Estimates of Utility Parameters

Notes:  This table reports maximum simulated likelihood estimates of the parameters of the structural school 

choice model. Column (1) reports parameter estimates, while column (2) reports standard errors. The constant 

is the average of school-specific intercepts, and its standard error is computed using the delta method. The 

reported acceptance probability is an average across schools and cohorts. Column (3) reports average marginal 

effects of observed characteristics on the probability of applying to at least one charter school. The marginal 

effect for distance is the effect of a one-mile increase in road distance to a school on the probability of 

applying to that school, averaged across schools.
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Estimate Standard error Estimate Standard error Estimate Standard error

Parameter Description (1) (2) (3) (4) (5) (6)

α
0
m6ℓ Constant 0.119 0.079 -0.249*** 0.025 0.368*** 0.083

α
x
m6ℓ Female 0.007 0.038 -0.006 0.014 0.013 0.040

Black -0.068 0.063 -0.199*** 0.022 0.131** 0.067

Hispanic 0.078 0.067 -0.091*** 0.023 0.169** 0.071

Subsidized lunch 0.016 0.045 -0.131*** 0.020 0.147*** 0.049

Special education -0.355*** 0.044 -0.337*** 0.016 -0.018 0.047

Limited English proficiency -0.097* 0.053 0.042** 0.018 -0.139** 0.056

Baseline math score 0.400*** 0.026 0.564*** 0.010 -0.164*** 0.028

Baseline ELA score 0.159*** 0.025 0.105*** 0.009 0.054** 0.026

α
θ
m6ℓ ∙ σθ Taste for charter schools (std. dv. units) -0.039** 0.017 0.027*** 0.005 -0.066*** 0.018

α
0
m7ℓ Constant 0.110 0.095 -0.140*** 0.028 0.249** 0.099

α
x
m7ℓ Female 0.095** 0.044 0.002 0.015 0.093** 0.046

Black 0.041 0.074 -0.199*** 0.025 0.240*** 0.078

Hispanic 0.136* 0.080 -0.086*** 0.026 0.223*** 0.085

Subsidized lunch 0.010 0.051 -0.147*** 0.023 0.157*** 0.056

Special education -0.360*** 0.059 -0.361*** 0.018 0.001 0.061

Limited English proficiency 0.018 0.063 0.080*** 0.020 -0.061 0.066

Baseline math score 0.372*** 0.031 0.480*** 0.011 -0.108*** 0.032

Baseline ELA score 0.100*** 0.031 0.106*** 0.010 -0.005 0.033

α
θ
m7ℓ ∙ σθ Taste for charter schools (std. dv. units) 0.021 0.019 0.057*** 0.006 -0.037* 0.020

α
0
m8ℓ Constant 0.230* 0.126 -0.164*** 0.035 0.394*** 0.130

α
x
m8ℓ Female -0.007 0.057 -0.029 0.019 0.023 0.060

Black 0.048 0.082 -0.218*** 0.031 0.266*** 0.088

Hispanic 0.156* 0.093 -0.107*** 0.032 0.262*** 0.098

Subsidized lunch 0.043 0.068 -0.088*** 0.028 0.131* 0.074

Special education -0.386*** 0.070 -0.387*** 0.022 0.001 0.073

Limited English proficiency 0.003 0.080 0.083*** 0.024 -0.080 0.084

Baseline math score 0.347*** 0.041 0.487*** 0.013 -0.140*** 0.042

Baseline ELA score 0.026 0.040 0.066*** 0.012 -0.039 0.041

α
θ
m8ℓ ∙ σθ Taste for charter schools (std. dv. units) -0.016 0.026 0.019*** 0.006 -0.035 0.027

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  This table reports maximum simulated likelihood estimates of the parameters of the math achievement distribution. The constant in the charter school equation is the 

sum of the average of the school-specific effects and the relevant grade effect. Its standard error is computed using the delta method.

Table 9:  Maximum Simulated Likelihood Estimates of Math Achievement Parameters

Charter school Traditional public school Charter effect

Panel A: 6th grade

Panel B: 7th grade

Panel C: 8th grade
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Estimate Standard error Estimate Standard error Estimate Standard error

Parameter Description (1) (2) (3) (4) (5) (6)

α
0
e6ℓ Constant -0.194** 0.090 -0.289*** 0.026 0.095 0.094

α
x
e6ℓ Female 0.094** 0.042 0.166*** 0.015 -0.072 0.045

Black 0.028 0.066 -0.144*** 0.024 0.172** 0.070

Hispanic 0.024 0.069 -0.088*** 0.025 0.112 0.073

Subsidized lunch -0.049 0.049 -0.142*** 0.022 0.093* 0.053

Special education -0.319*** 0.050 -0.331*** 0.016 0.011 0.053

Limited English proficiency -0.036 0.064 -0.051*** 0.019 0.015 0.066

Baseline math score 0.096*** 0.028 0.176*** 0.010 -0.080*** 0.030

Baseline ELA score 0.492*** 0.028 0.462*** 0.009 0.030 0.029

α
θ
e6ℓ ∙ σθ Taste for charter schools (std. dv. units) 0.027 0.021 0.086*** 0.006 -0.059*** 0.022

α
0
e7ℓ Constant 0.005 0.113 -0.407*** 0.030 0.411*** 0.117

α
x
e7ℓ Female 0.145*** 0.050 0.211*** 0.017 -0.065 0.053

Black 0.027 0.079 -0.098*** 0.027 0.125 0.083

Hispanic 0.136 0.087 -0.009 0.028 0.146 0.091

Subsidized lunch 0.033 0.059 -0.138*** 0.025 0.171*** 0.064

Special education -0.425*** 0.067 -0.400*** 0.019 -0.025 0.069

Limited English proficiency -0.067 0.072 -0.014 0.021 -0.054 0.075

Baseline math score 0.094*** 0.035 0.189*** 0.010 -0.095*** 0.036

Baseline ELA score 0.352*** 0.035 0.361*** 0.010 -0.009 0.036

α
θ
e7ℓ ∙ σθ Taste for charter schools (std. dv. units) 0.019 0.025 0.045*** 0.006 -0.026 0.025

α
0
e8ℓ Constant 0.043 0.143 -0.344*** 0.038 0.387*** 0.148

α
x
e8ℓ Female 0.146** 0.067 0.202*** 0.021 -0.055 0.071

Black -0.016 0.097 -0.101*** 0.034 0.085 0.102

Hispanic 0.129 0.110 -0.009 0.036 0.137 0.116

Subsidized lunch 0.064 0.079 -0.119*** 0.031 0.183** 0.085

Special education -0.419*** 0.085 -0.395*** 0.024 -0.024 0.089

Limited English proficiency 0.001 0.107 0.012 0.026 -0.011 0.110

Baseline math score 0.080* 0.049 0.169*** 0.013 -0.089* 0.050

Baseline ELA score 0.272*** 0.046 0.349*** 0.013 -0.077 0.048

α
θ
e8ℓ ∙ σθ Taste for charter schools (std. dv. units) -0.018 0.031 0.085*** 0.007 -0.104*** 0.032

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  This table reports maximum simulated likelihood estimates of the parameters of the ELA achievement distribution. The constant in the charter school equation is the 

sum of the average of the school-specific effects and the relevant grade effect. Its standard error is computed using the delta method.

Table 10:  Maximum Simulated Likelihood Estimates of ELA Achievement Parameters

Charter school Traditional public school Charter effect

Panel A: 6th grade

Panel B: 7th grade

Panel C: 8th grade
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Average utility 

(γ
0

k )

Admission probability 

(πk )

Math effect

(α
0

mk -α
0

m60 )

ELA effect

(α
0

ek -α
0

e60 )

School (1) (2) (3) (4)

Charter school 1 -1.812*** 0.544*** 0.291*** -0.047

(0.153) (0.059) (0.089) (0.095)

Charter school 2 -1.603*** 0.389*** 0.275*** -0.004

(0.153) (0.052) (0.082) (0.096)

Charter school 3 -2.071*** 0.642*** 0.233** -0.039

(0.157) (0.036) (0.093) (0.104)

Charter school 4 -2.554*** 0.724*** 0.346*** 0.064

(0.159) (0.047) (0.092) (0.107)

Charter school 5 -0.880*** 0.431*** 0.329*** -0.178*

(0.150) (0.037) (0.092) (0.100)

Charter school 6 -3.308*** 0.829*** 0.467*** 0.409***

(0.172) (0.049) (0.102) (0.118)

Charter school 7 -2.498*** 0.871*** 0.637*** 0.461***

(0.168) (0.036) (0.116) (0.115)

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  This table reports maximum simulated likelihood estimates of the school-specific parameters from the 

structural model.  The admission probabilities in column (2) are averages for 2006-2009. The school effects in 

column (3) correspond to 6th grade, as the 6th grade intercept is omitted from the model for charter achievement. 

Standard errors are in parentheses.

Table 11:  Maximum Simulated Likelihood Estimates of School-specific Parameters
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Data Model Data Model

Choice (1) (2) (3) (4)

Apply/attend any charter 0.166 0.144 0.100 0.093

Among applicants/attenders:

More than one charter 0.267 0.181 - -

Charter school 1 0.179 0.145 0.154 0.115

Charter school 2 0.215 0.188 0.168 0.146

Charter school 3 0.283 0.225 0.170 0.204

Charter school 4 0.208 0.212 0.222 0.181

Charter school 5 0.282 0.240 0.128 0.191

Charter school 6 0.098 0.083 0.084 0.076

Charter school 7 0.093 0.089 0.076 0.087

Table 12:  Model Fit -- Choice Probabilities

Notes:  This table compares empirical choice probabilities to simulated probabilities using the MSL 

estimates. Model statistics are produced by simulating the model 100 times for each observation in 

the sample, and then averaging over simulations and observations.

Application Attendance
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Data Model Data Model Data Model Data Model

Subject Grade (1) (2) (3) (4) (5) (6) (7) (8)

Math 6th -0.56 -0.56 1.04 1.03 0.28 0.29 0.83 0.85

7th -0.50 -0.49 0.98 0.97 0.34 0.33 0.75 0.78

8th -0.46 -0.45 0.97 0.95 0.42 0.39 0.71 0.73

ELA 6th -0.57 -0.56 1.07 1.06 -0.03 -0.03 0.92 0.94

7th -0.54 -0.56 0.99 0.99 0.10 0.07 0.83 0.86

8th -0.52 -0.53 0.98 0.97 0.17 0.12 0.79 0.81

Notes:  This table compares empirical test score distributions to simulated distributions using the MSL estimates. 

Model statistics are produced by simulating the model 100 times for each observation in the sample, and then averaging 

over simulations and observations.

Table 13: Model fit -- Achievement Distributions

Traditional public schools Charter schools

Mean Standard deviation Mean Standard deviation
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Fraction applying Fraction attending

Avg. admission 

probability

Fraction of 

seats filled

Policy change (1) (2) (3) (4)

None (7 charter schools) 0.147 0.087 0.632 1.000

0.223 0.148 0.799 0.854

(51.4%) (69.5%) (26.4%) (-14.6%)

Expand to 30 schools 0.331 0.239 0.912 0.598

(125.0%) (173.9%) (44.3%) (-40.2%)

Table 14:  Simulated Effects of Policy Changes -- Choice Behavior

Notes:  This table reports simulated effects of expanding Boston's charter school network on charter application 

and attendance behavior.  Numbers in parentheses are percentage changes relative to the existing policy 

environment. The predictions are produced by simulating the model 100 times for each of the 2,485 students in 

the 2009 cohort of the structural sample.

Boston's planned expansion 

(expand to 13 schools)
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Boston 

average

White-black 

gap TOT

Boston 

average

White-

black gap TOT

Boston 

average

White-black 

gap TOT

Policy change (1) (2) (3) (4) (5) (6) (7) (8) (9)

None (7 charter schools) -0.507 0.651 0.327 -0.395 0.593 0.438 -0.403 0.565 0.537

All charter schools close -0.534 0.671 - -0.432 0.621 - -0.448 0.602 -

(-5.3%) (3.1%) (-9.5%) (4.7%) (-11.2%) (6.7%)

-0.482 0.628 0.360 -0.367 0.560 0.458 -0.371 0.535 0.559

(4.9%) (-3.6%) (10.0%) (7.2%) (-5.6%) (4.6%) (7.9%) (-5.2%) (4.0%)

Expand to 30 schools -0.450 0.610 0.397 -0.329 0.522 0.482 -0.321 0.488 0.583

(11.3%) (-6.3%) (21.6%) (16.8%) (-12.0%) (9.9%) (20.2%) (-13.6%) (8.5%)

0.060 0.415 0.591 0.175 0.244 0.604 0.267 0.165 0.714

(111.7%) (-36.3%) (81.0%) (144.2%) (-58.8%) (37.7%) (166.4%) (-70.8%) (32.8%)

Notes:  This table reports simulated effects of modifying Boston's charter school network on the citywide math score distribution.  Numbers in parentheses 

are percentage changes relative to the existing policy environment. Predictions are produced by simulating the model 100 times for each of the 2,485 

students in the 2009 cohort of the sample, and then averaging over the simulations.

7th grade 8th grade

Table 15:  Simulated Effects of Policy Changes -- Math Scores

6th grade

Boston's planned expansion 

(expand to 13 schools)

All students forced to attend 

charter schools
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Boston 

average

White-black 

gap TOT

Boston 

average

White-

black gap TOT

Boston 

average

White-black 

gap TOT

Policy change (1) (2) (3) (4) (5) (6) (7) (8) (9)

None (7 charter schools) -0.465 0.562 0.132 -0.485 0.454 0.581 -0.435 0.428 0.257

All charter schools close -0.466 0.584 - -0.523 0.476 - -0.446 0.457 -

(-0.2%) (3.8%) (-7.8%) (4.7%) (-2.4%) (6.8%)

-0.462 0.547 0.160 -0.457 0.440 0.598 -0.425 0.420 0.311

(0.7%) (-2.7%) (21.4%) (5.6%) (-3.2%) (2.9%) (2.4%) (-1.9%) (20.8%)

Expand to 30 schools -0.473 0.528 0.193 -0.430 0.407 0.616 -0.412 0.382 0.371

(-1.7%) (-6.2%) (47.1%) (11.3%) (-10.4%) (6.0%) (5.4%) (-10.8%) (44.4%)

-0.204 0.347 0.362 0.092 0.222 0.714 0.139 0.190 0.684

(56.2%) (-38.3%) (175.2%) (119.1%) (-51.0%) (22.8%) (132.0%) (-55.6%) (166.0%)

Notes:  This table reports simulated effects of modifying Boston's charter school network on the citywide ELA score distribution.  Numbers in parentheses 

are percentage changes relative to the existing policy environment. Predictions are produced by simulating the model 100 times for each of the 2,485 

students in the 2009 cohort of the structural sample, and then averaging over the simulations.

Table 16:  Simulated Effects of Policy Changes -- ELA Scores

6th grade 7th grade 8th grade

Boston's planned expansion 

(expand to 13 schools)

All students forced to attend 

charter schools
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Appendix A: Complier Densities

This appendix shows that 2SLS estimation of equation (4) produces consistent estimates of

potential outcome densities for lottery compliers. This result is an extension of the methods

developed in Abadie (2002). Abadie’s Lemma 2.1 implies that the 2SLS estimate of γ(y) is a

consistent estimator of the expectation of Kh(y−Yi(1)) for compliers as N →∞. I show that as

h → 0 and Nh → ∞, this estimator converges in probability to the complier density function.

Imbens and Rubin (1997) outline an alternative method for estimating complier densities based

on linear combinations of empirical densities for the four possible combinations of Zi and Si. The

approach taken here allows these densities to be estimated in a simple one-step IV procedure.

Let f cs (y), fats (y), and fnts (y) be the density functions of Yi(s) for compliers, always takers,

and never takers, respectively, with s ∈ {0, 1}. Define Kh(u) ≡ 1
hK

(
u
h

)
, where K(·) is a function

that satisfies
´
K(u)du = 1,

´
uK(u)du = 0,

´
u2K(u)du <∞, and

´
K2(u)du <∞. Consider

the equation

Kh(y − Yi) · 1{Si = s} = αs(y) + γs(y) · 1{Si = s}+ εisy

for s ∈ {0, 1}. If Zi is used as an instrument for 1{Si = s} in this equation, the resulting IV

estimator is

γ̂s(y) ≡ EN [Kh(y − Yi) · 1{Si = s}|Zi = 1]− EN [Kh(y − Yi) · 1{Si = s}|Zi = 0]

EN [1{Si = s}|Zi = 1]− EN [1{Si = s}|Zi = 0]
(13)

where EN [·] is the empirical expectation operator. The following theorem shows that this

estimator is consistent for f cs (y).

Theorem: Suppose that assumptions A1-A3 hold, and that the density functions f cs (y), fat1 (y),

and fnt0 (y) exist and are twice differentiable at y. Then

plim
h→0,Nh→∞

γ̂s(y) = f cs (y)

Proof: I demonstrate the result for s = 1. The proof for s = 0 is analogous. I begin by

considering the expectation and variance of the each term in the numerator of (13). Define

Êz(y) = EN [Kh(y − Yi) · 1{Si = 1}|Zi = z]

Êz is a sample average, so it is unbiased for the corresponding population moment. For z = 1,

we have

E
[
Ê1(y)

]
= E[Kh(y − Yi) · 1{Si = 1}|Zi = 1]

= E[Kh(y − Yi(1))|Si(1) > Si(0)] · Pr[Si(1) > Si(0)]

+ E[Kh(y − Yi(1))|Si(1) = Si(0) = 1] · Pr[Si(1) = Si(0) = 1]
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which can be written

E
[
Ê1(y)

]
=

ˆ
Kh(y − t) ·

(
φcf c1(t) + φatfat1 (t)

)
dt

where φc and φat are the fractions of compliers and always takers, respectively. Using the change

of variables u = y−t
h and taking a second-order Taylor expansion around h = 0 yields

E
[
Ê1(y)

]
= φcf c1(y) + φatfat1 (y) +

h2

2
·
(
φcf c

′′
1 (y) + φatfat

′′
1 (y)

)
·
ˆ
K(u)u2du+ o(h2)

which implies

lim
h→0

E[Ê1(y)] = φcf c1(y) + φatfat1 (y).

A similar argument shows that

lim
h→0

E[Ê0(y)] = φatfat1 (y).

Next, consider the variance of Ê1(y). We have

V ar
(
Ê1(y)

)
= 1

N1
E[K2

h(y − Yi) · 1{Si = 1}|Zi = 1]− 1
N1
E[Ê1(y)]2

where N1 is the number of observations with Zi = 1. The argument above shows that E[Ê1(y)]

is bounded as h → 0, so as N1 → ∞ (which is implied by N → ∞ together with (A2)) the

second term is negligible. The first term is

1
N1
E[K2

h(y − Yi) · 1{Si = 1}|Zi = 1] = 1
N1

ˆ
K2
h(y − t) ·

(
φcf c1(t) + φatfat1 (t)

)
dt

= 1
N1h
·
(
φcf c1(y) + φatfat1 (y)

)
·
ˆ
K2(u)du+ o

(
1
Nh

)
.

Therefore, we have

lim
h→0,Nh→∞

V ar
(
Ê1(y)

)
= 0.

A similar calculation shows that the variance of Ê0(y) also converges to zero.

The arguments so far imply that as h → 0 and Nh → ∞, Ê1(y) and Ê0(y) converge in

mean square, and therefore in probability, to
(
φcf c1(y) + φatfat1 (y)

)
and φatfat1 (y), respectively.

When s = 1, the probability limit of the denominator of (13) as N → ∞ is φc. Then by the

continuous mapping theorem we have

plim
h→0,Nh→∞

γ̂1(y) =
φcf c1(y) + φatfat1 (y)− φatfat1 (y)

φc

= f c1(y).

This completes the proof.
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Appendix B: Identification of Preference Coefficients

This appendix uses a simplified version of the structural model to show analytically that

the combination of lottery and distance instruments identifies the coefficients on the charter

preference θi in equations (7) and (8). Suppose there is a single charter school, and the utilities

of charter and public school attendance are given by

Ui1 = γ0 + γd ·Di + θi + vi − γa ·Ai

Ui0 = −γa ·Ai

where Di is distance to the charter school, Ai indicates charter application, θi ∼ N(0, σ2
θ) is

observed prior to the application decision, and vi ∼ N(0, 1) is observed after the application

decision.37 The charter school holds a lottery for applicants with acceptance probability π.

The expected utility of applying to the charter school is

π · E[max{γ0 + γd ·Di + θi + vi, 0}|θi]− γa

while not applying yields utility of zero with certainty. It is optimal to apply if

ψ
(
γ0 + γd ·Di + θi

)
>
γa

π

where ψ(t) ≡ Φ(t) · (t + φ(t)). It is straightforward to show that ψ(·) is strictly increasing, so

the application rule can be written

Ai = 1{θi > θ∗(Di)}

where

θ∗(D) = ψ−1
(
γa

π

)
− γ0 − γd ·D.

Note that with γd < 0, we have dθ∗

dD > 0: students who live further from the charter school must

have stronger tastes for charter attendance to justify incurring the application cost.

Let Si(z) indicate charter attendance as a function of Zi. Rejected applicants cannot attend,

so Si(0) = 0 ∀i. Attendance for admitted applicants is given by

Si(1) = 1{γ0 + γd ·Di + θi + vi > 0}.

Lottery applicant compliers choose to apply and have Si(1) = 1. Compliers are therefore

characterized by

Ai = 1 ∩ (Si(1) > Si(0))⇐⇒ θi > max{θ∗(Di),−γ0 − γd ·Di − vi}
37I use a normal distribution rather than an extreme value distribution for vi because it allows me to obtain

analytic formulas in the calculations to follow.
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The model for potential outcomes in charter and public school is

Yi(1) = α0
1 + αθ1 · θi + εi1

Yi(0) = α0
0 + αθ0 · θi + εi0

with E[εi`|θi, Di] = 0 for ` ∈ {0, 1}. It is straightforward to show that average potential

outcomes for compliers who live a distance D from charter schools are given by

E[Yi(`)|Ai = 1, Si(1) > Si(0), Di = D] = α0
` + αθ` · µcθ(D)

where

µcθ(D) =σθ · Φ
(
ψ−1

(
γa

π

))
· λ
(
θ∗(D)
σθ

)
+ σθ · (1− Φ

(
ψ−1

(
γa

π

))
) ·
ˆ
λ
(
−γ0−γd·D−vi

σθ

)
dF
(
vi|vi < −ψ−1

(
γa

π

))
.

Here λ(t) ≡ φ(t)
1−Φ(t) is the inverse Mills ratio.

The inverse Mills ratio is an increasing function, so µcθ(D) is increasing in D. Applicant com-

pliers who apply to charter from further away therefore have stronger preferences for charters,

and comparisons of potential outcomes for lottery compliers who live different distances from

charter schools identify the relationship between preferences and achievement. Specifically, for

D1 6= D0, we have

E[Yi(`)|Ai = 1, Si(1) > Si(0), Di = D1]− E[Yi(`)|Ai = 1, Si(1) > Si(0), Di = D0]

µcθ(D1)− µcθ(D0)
= αθ`

for ` ∈ {0, 1}. The numerator of the left-hand side of this equation can be computed using the

methods described in Abadie (2002) for estimating marginal mean counterfactuals for compli-

ers. The denominator is non-zero because complier preferences vary with distance; it can be

calculated with knowledge of the parameters of the student utility function, which are identified

from charter application and attendance behavior. The selection parameters αθ` are therefore

identified.
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Appendix C: Relationship to Roy Model

This appendix shows that equations (5), (7), and (8) nest a Roy model of selection in which

students seek to maximize achievement and have private information about their test scores in

charter and public schools. For simplicity, I omit application costs and preferences for distance,

and focus on scores in a single subject and grade. Achievement for student i at charter school

k is given by

Yi(k) = α0
k +X ′iα

x
c + ηic + νik

while public school achievement is

Yi(0) = α0
0 +X ′iα

x
p + ηip + νi0

where E[νik|Xi, ηic, ηip] = 0. Assume that students know the parameters of these equations,

their own characteristics Xi, and private signals of their achievement in charter and public

schools ηic and ηip. Also assume that (ηic, ηip)
′ follows a bivariate normal distribution with

E[ηi`|Xi] = 0, V ar(ηi`) = σ2
` , and Cov(ηic, ηip) = σcp. The νik represent random fluctuations in

test scores unknown to the student.

Suppose that students choose schools to maximize expected achievement. Then student

utility can be written

uik = α0
k +X ′iα

x
c + ηic

ui0 = α0
0 +X ′iα

x
p + ηi0

Subtracting ui0 from uik, student preferences can be equivalently represented by the utility

functions

Uik = γ0
k +X ′iγ

x + θi

where

γ0
k = αk − α0

γx = αxc − αxp

θi = ηic − ηi0

and Ui0 ≡ 0. These preferences are a special case of equation (5) with γd = γa = 0 and

V ar(vik) = 0.

Returning to the test score equation, we have

E[Yi(k)|Xi, θi] = α0
k +X ′iα

x
c + αθc · θi

E[Yi(0)|Xi, θi] = α0
0 +X ′iα

x
p + αθp · θi
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where

αθc =
σ2
c − σcp

σ2
c + σ2

p − 2σcp

αθp =
σcp − σ2

p

σ2
c + σ2

p − 2σcp

This implies that potential test scores are given by

Yi(k) = α0
k +X ′iα

x
c + αθc · θi + εik

Yi(0) = α0
0 +X ′iα

x
p + αθp · θi + εi0

where E[εik|Xi, θi] = 0, which is the specification for achievement in equations (7) and (8).

Finally, note that the Roy framework implies that αθc > 0, αθp < 0, and αθc − αθ0 = 1. If

students choose schools to maximize academic achievement, then charter preferences will be

positively related to scores in charter schools, negatively related to scores in public schools, and

the causal effect of charter attendance will be increasing in charter preferences.

67



Appendix D: Equilibrium Admission Probabilities

Description of the Game

This appendix describes the determination of equilibrium admission probabilities in counter-

factual simulations. These probabilities are determined in a Subgame Perfect Nash Equilibrium

(SPE) in which students make utility-maximizing choices as described in Section 4, and schools

set admission probabilities to maximize enrollment subject to capacity constraints. Enrollment

at school k is given by

ek = E [1{Si = k}] .

Qk denotes school k’s capacity, which is its maximum potential enrollment. In the simulations,

I set capacities for existing schools equal to their average enrollment in years when they were

oversubscribed. Capacity for new schools is set equal to average capacity for existing schools.

The timing of the game follows Figure 4. Strategies in each stage of the game are as follows:

1. Students first choose application vectors.

2. Schools observe students’ application choices, and choose their admission probabilities.

3. Offers are randomly assigned among applicants.

4. Students observe their offers and make school choices.

To simplify the game, note that the distribution of students is atomless, so schools do not

change their admission probabilities in the second stage in response to the application decisions

of individual students in the first stage. Students therefore act as “price takers” in the first stage,

in the sense that they do not expect schools to react to their application choices. Without loss

of generality, therefore, the game can be analyzed as if applications and admission probabilities

are chosen simultaneously. I analyze the static Nash equilibria of this simultaneous-move game,

which are equivalent to Subgame Perfect equilibria of the dynamic game described above.

Definition of Equilibrium

An equilibrium of the game requires an application vector A∗i for each student, a vector

of admission probabilities π∗, and a rule for assigning school choices that satisfy the following

conditions:

1. Student application choices are given by A∗i = A∗(Xi, Di, θi, τi;π
∗), where A∗ is defined as

in Section 4.2 and now explicitly depends on the vector of admission probabilities students

expect to face in each lottery.
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2. For each k, π∗k is chosen to maximize ek subject to school k’s capacity constraint, taking

student application decisions as given and assuming that other schools choose π∗−k, which

denotes the elements of π∗ excluding the k-th.

3. After receiving the offer vector z, student i chooses school k with probability Pik(z, θi, τi)

as in Section 4.2.

School Best Response Functions

I begin by deriving a school’s optimal admissions probability as a function of students’

expected admission probabilities and the actions of other schools. Suppose that students antic-

ipate the admission probability vector πe when making application decisions in the first stage of

the model. Their application decisions are given by A∗(Xi, Di, θi, τi;π
e). In addition, suppose

that schools other than k admit students with probability π−k. If school k admits students with

probability πk in the second stage, its enrollment is given by

ek(πk, π−k, π
e) = E

 ∑
z∈{0,1}K

f(z|A∗(Xi, Di, θi, τi;π
e);πk, π−k)Pik(z, θi, τi)


School k chooses πk to solve

max
πk∈[0,1]

ek(πk, π−k, π
e) s.t. ek(πk, π−k, π

e) ≤ Qk (14)

The best response function πBRk (π−k, π
e) is the solution to problem (14). The optimal

admission probability sets school k’s enrollment equal to its capacity. The following equation

implicitly defines πBRk at interior solutions:

E

 ∑
z∈{0,1}K

f
(
z|A∗(Xi, Di, θi, τi;π

e);πBRk , π−k
)
Pik(z, θi, τi)

 = Qk

This equation can be rewritten

E

∑
z−k

f−k
(
z−k|A∗−k(Xi, Di, θi, τi;π

e);π−k
)
· fk

(
1|A∗k(Xi, Di, θi, τi;π

e);πBRk
)
· P̃ik(1, z−k)

 = Qk

where the sum is over all values of z−k in {0, 1}K−1. Here P̃ik(zk, z−k) is Pik(z) with the k-th

element of z set to zk and the remaining elements set to z−k, and I have used the fact that

P̃ik(0, z−k) = 0 since school k is not in student i’s choice set if she does not receive an offer.

Substituting in fk yields

E

∑
z−k

f−k
(
z−k|A∗−k(Xi, Di, θi, τi;π

e);π−k
)
·A∗k(Xi, Di, θi, τi;π

e) · πBRk · P̃ik(1, z−k)

 = Qk
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which can be solved for πBRk :

πBRk =
Qk

E[A∗k (Xi, Di, θi, τi;πe) ·
∑

z−k
f−k

(
z−k|A∗−k (Xi, Di, θi, τi;πe) ;π−k

)
P̃ik(1, z−k)]

≡ Γk(π−k, π
e)

If the denominator of Γk is sufficiently small, it may exceed one, in which case school k

cannot fill its capacity. In this case, the optimal action is to set πk = 1 and fill as many seats as

possible. Furthermore, note that the denominator of Γk is zero when the measure of students

applying to school k is zero, in which case this function is undefined. If no students apply,

school k’s enrollment does not depend on its own admission probability, so every point in the

unit interval is a best response. These arguments imply that the best response function is given

by

πBRk (π−k, π
e) =


min{Γk (π−k, π

e) , 1}, E [A∗k(Xi, Di, θi, τi;π
e)] > 0

[0, 1], E [A∗k(Xi, Di, θi, τi;π
e)] = 0

Existence of Equilibrium

Define πBR(π) ≡
(
πBR1 (π−1, π), ..., πBRK (π−K , π)

)′
. A vector π∗ supports a Nash equilibrium

if and only if it is a fixed point of πBR(π):

π∗ ∈ πBR (π∗) (15)

A Nash equilibrium always exists, though it is not unique. Existence can be proved construc-

tively by noting that the vector 0K always supports an equilibrium. If students expect not to be

admitted to any school, none will apply, and it is a best response for each school to set πk = 0.

This equilibrium is an artifact of the assumption that the distribution of students is atomless.

If an individual students had positive mass, she could deviate and apply to a charter school,

and the school would strictly prefer to raise its admission probability and admit her, breaking

the equilibrium. The no-admission equilibrium is not economically interesting, and other equi-

libria with positive admission probabilities generally exist. In the counterfactual simulations, I

compute equilibria by numerically solving the system of nonlinear equations implied by (15),

restricting the πk to be strictly positive.38 I never found more than one equilibrium in any

simulation. Table A4 lists the equilibrium admission probabilities used to simulate the effects

of charter expansion.

38For expansions involving many charter schools, the student choice set becomes very large and solving this
system becomes infeasible. For example, with 30 schools, there are 230 = 1, 073, 741, 824 possible application
choices. To limit the number of choices, I assume that no student would apply to more than two charter schools
when computing the equilibrium probabilities and simulating counterfactuals. Less than 1 percent of students
applied to more than two schools in the data.
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Uniqueness of Non-trivial Equilibrium

As noted above, the equilibrium of this game is not unique, as there are many trivial

equilibria. For example, π = 0K is always an equilibrium, there are K equilibia where πk > 0

and π−k = 0K−1, and there are typically other similar equilibria where admission probabilities

are zero for one or more schools. However, I ignore all equilibria with πk = 0 for any k, and

there may exist a unique equilibrium where each school has a positive measure of applicants.

Define the function

ψk(π) ≡ πk − Γk(π−k, π)

Let ψ(π) = (ψ1(π), ..., ψK(π))′. A vector π∗ ∈ (0, 1)K is a non-trivial, interior equilibrium if

ψ(π∗) = 0. Moreover, π∗ is the only such equilibrium if the Jacobean of ψ(·) is a positive

dominant diagonal matrix. This requires the following two conditions:

1.
∂ψk
∂πk

> 0 ∀k

2.

∣∣∣∣∂ψk∂πk

∣∣∣∣ ≥∑
j 6=k

∣∣∣∣∂ψk∂πj

∣∣∣∣ ∀k
These conditions provide intuition for when a unique equilibrium is more likely. The first

condition requires that ∂Γk
∂πk

< 1. This is always satisfied: Γk is decreasing in πk. As students’

expected admission probability at school k rises, more choose to apply, and it is optimal for

school k to lower πk to maintain enrollment at capacity. The second condition requires the effect

of πk on ψk to dominate the effects of admission probabilities at other schools. This condition is

more likely to hold when there is little substitution across charter schools. For example, if the

pools of potential applicants at each charter school are disjoint sets, then ∂ψk
∂πj

= 0 for k 6= j and

the second condition is satisfied. More generally, this condition is likely to be satisfied when

few students apply to multiple charter schools, which is more likely when charter schools are

more geographically disbursed, or preferences for spatial proximity are stronger.
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All White Black Hispanic

Variable (1) (2) (3) (4)

Black 0.008 - - -

(0.029)

Hispanic 0.015 - - -

(0.027)

Female -0.042 0.020 -0.109** 0.039

(0.031) (0.077) (0.043) (0.058)

Free/reduced lunch 0.015 0.032 0.043 -0.053

(0.027) (0.068) (0.035) (0.047)

Special education 0.005 -0.011 0.022 -0.011

(0.024) (0.060) (0.034) (0.045)

Limited English proficiency -0.001 0.025 0.040* -0.093*

(0.020) (0.021) (0.022) (0.050)

Baseline math score -0.066 -0.104 -0.074 0.076

(0.061) (0.105) (0.091) (0.112)

Baseline ELA score -0.010 -0.033 -0.073 0.169

(0.063) (0.110) (0.091) (0.120)

p -value from joint test 0.755 0.945 0.117 0.567

N 1822 317 948 557

* significant at 10%; ** significant at 5%; *** significant at 1%

Table A1:  Covariate Balance for the Lottery Sample

Notes:  This table reports coefficients from regressions of baseline student characteristics 

on an offer dummy and lottery fixed effects. P -values are from joint tests of the hypothesis 

that the offer variable has a zero coefficient in all regressions.  Robust standard errors are 

in parentheses.
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All students

Follow-up rate Follow-up rate Differential

Race (1) (2) (3)

All 0.863 0.839 -0.002

(0.020)

N 27881

White 0.853 0.845 0.020

(0.052)

N 4067

Black 0.865 0.830 -0.006

(0.027)

N 13020

Hispanic 0.864 0.853 0.000

(0.038)

N 10794

* significant at 10%; ** significant at 5%; *** significant at 1%

1374

Notes:  This table reports the fraction of follow-up test scores that are 

observed for students attending 4th grade in Boston between 2006 and 

2009. Column (1) shows the follow-up rate for the full sample.  

Column (2) shows the follow-up rate for lottery applicants, while 

column (3) shows the difference in follow-up rates for lottery winners 

and losers. This differential is computed from a regression that 

controls for lottery fixed effects. Standard errors are robust to 

heteroskedasticity and are clustered at the student level.

774

Table A2:  Attrition

4579

Lottery applicants

2431
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Estimate Standard error Estimate Standard error Estimate Standard error

Parameter Description (1) (2) (3) (4) (5) (6)

ρmℓ Serial correlation of math scores 0.589*** 0.016 0.679*** 0.005 -0.089*** 0.017

ρeℓ Serial correlation of ELA scores 0.468*** 0.021 0.589*** 0.006 -0.121*** 0.022

Var (ζimgk )
1/2

Standard deviation of math shocks 0.568*** 0.009 0.658*** 0.004 -0.090*** 0.010

Var (ζiegk )
1/2 Standard deviation of ELA shocks 0.628*** 0.009 0.681*** 0.004 -0.053*** 0.010

Corr (ζimgk ,ζiegk ) Correlation between math and ELA shocks 0.386*** 0.018 0.435*** 0.006 -0.049*** 0.019

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes:  This table reports maximum simulated likelihood estimates of the covariance parameters of the math and ELA achievement distributions.

Table A3:  Maximum Simulated Likelihood Estimates of Covariance Parameters

Charter school Traditional public school Charter effect
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No change

Planned 

expansion 30 schools

(1) (2) (3)

School 1 0.584 0.813 1.000

School 2 0.450 0.604 0.847

School 3 0.548 0.740 1.000

School 4 0.759 1.000 1.000

School 5 0.383 0.505 0.703

School 6 0.907 1.000 1.000

School 7 0.793 1.000 1.000

School 8 - 1.000 1.000

School 9 - 0.367 0.537

School 10 - 1.000 1.000

School 11 - 0.390 0.560

School 12 - 1.000 1.000

School 13 - 0.969 1.000

School 14 - - 1.000

School 15 - - 1.000

School 16 - - 1.000

School 17 - - 1.000

School 18 - - 1.000

School 19 - - 0.574

School 20 - - 1.000

School 21 - - 1.000

School 22 - - 1.000

School 23 - - 0.820

School 24 - - 0.692

School 25 - - 1.000

School 26 - - 0.645

School 27 - - 1.000

School 28 - - 1.000

School 29 - - 1.000

School 30 - - 0.986

Table A4: Equilibrium Admission Probabilities

Notes: This table shows equilibrium admission probabilities for the 

counterfactual simulations. The procedure for determining these 

probabilities is described in Appendix B.
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