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1 Introduction

Boston Public Schools (BPS) is considering modifications to their school assignment plan for the
2013-2014 school year. We analyzed several proposals by simulating what would have happened in
Round 1 of 2012-2013 if a new plan had been implemented that year, holding everything else fixed.
The executive summary and main report is contained in Pathak and Shi (2013). The purpose of
this technical appendix is to provide a detailed explanation of our methodology and assumptions.

There are three main steps to the analysis. First, we use data on choices submitted during the
Round 1 in 2011-2012 to estimate demand for schools. These methods build on discrete-choice
econometric models of demand applied to school choice, following among others Abulkadiroglu,
Agarwal, and Pathak (2012) and Walters (2012). Next, we validate these preference estimates
to ensure that they can account for aggregate patterns of choice within sample (using data from
2011-2012) and by comparing our forecasts of choices to those made out-of-sample (using data from
2012-2013). Finally, using the descriptions of the alternative choice plans provided by BPS together
with our validated estimates of the preference distribution, we simulate how participants would
rank schools under the alternative plans and how the assignment algorithm would take those choices
together with school priorities and processing order to determine school offers. The approach only
provides a snapshot of offers at the conclusion of Round 1 and does not factor in wait-lists or
enrollment decisions.

2 Data and Econometric Approach

Boston Public Schools (BPS) assigns students using a mechanism based on the student-proposing de-
ferred acceptance algorithm (see, e.g., Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu, Pathak,
Roth, and Sönmez (2005), and Pathak and Sönmez (2008)). Students interested in enrolling in or
switching schools are asked to list schools each January. Students entering kindergarten can either
apply for elementary school at Grade K1 or Grade K2 depending on whether they are four or five
years old.

BPS provided us access to Round-1 choice data for 2011-2012 and 2012-2013 and a separate file
containing demographic information such as race and free-lunch status of participants. It is our
understanding that this demographic information is collected after students submit their choices
and enroll in schools, and therefore coverage is not complete. If an applicant cannot be matched
to the demographic file, we do not have information on race or free lunch status. Table 1 presents
descriptive statistics on the 2012-2013 data set. There are a total of 6,696 applicants in our file, of
which nearly 70% are new applicants who are not assigned to a present school and 52% also do not
have a sibling at the school. There are more applicants at Grade K1 than Grade K2; however, many
grade K2 applicants are continuing students who obtained a school assignment at Grade K1.

The student assignment mechanism prioritizes applicants in the following order: continuing
students (students attending the same school at the earlier grade) have highest priority, followed by
students who have a sibling at the school. Moreover, each school program is internally divided into
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Type Number of students % of Sample
All 6696 100%

Present Schoolers 2271 34%
New Applicants (No Present School) 4625 69%

New Families (No Sibling, No Present School) 3468 52%
K1 2666 40%
K2 4030 60%

Black 1436 21%
White 1059 16%
Asian 445 7%

Hispanic 2892 43%
Other 196 3%

Missing 668 10%
Free Lunch 3251 49%

Reduced Lunch 236 4%
Non-Free Reduced Lunch 778 12%

Missing 2431 36%
LEP (Limited English Proficiency) 2675 40%

Table 1: Student dataset used for our analysis. (Non-substantially separate SPED K1, K2 applicants
in 2012-2013 Round-1 choice.) Race information missing for 668 students and lunch information
missing for 2431 students.

two halves, a “walk-half” and an “open-half.” For the walk-half, two students who either both have
siblings or both don’t are prioritized based on who lives within 1 mile radius of the school. Students
who live within 1-mile straight line distance of school are said to live in the school’s “walk-zone.” For
the open-half, walk-zone priority plays no role. Each student receives a single, independently and
identically distributed random number, and the same number is used for all programs. Students in
the same priority group are ordered based on their random number.

The above defines for every program “half” a relative ranking over all students. After students
submit rankings of programs, the assignment algorithm converts this to a ranking over program
“halves” by having students in the walk-zone applying to the “walk-half” first, and students outside
of the walk-zone applying to the “open-half” first. The assignment from students to program “halves”
is then computed using the student-proposing deferred acceptance algorithm. Since the mechanism is
based on student-proposing deferred acceptance and there is no restriction on the number of choices
that can be listed, the assignment mechanism is strategy-proof. This means that truth-telling is a
weakly dominant strategy.

The district also informs families of this property on the application form where BPS (School
Guide 2012) advises families to

list your school choice in your true order of preference. If you list a popular school first,
you won’t hurt your chances of getting your second choice school if you don’t get your first
choice.

Since the mechanism is strategy-proof, we take the submitted preferences of families as representing
their true preferences.
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In the choice data, we observe a proxy for the student’s home address upon applying (called a
“geocode”; Boston is partitioned into 868 geocodes). We observe the student’s race, socioeconomic
status (whether the student receives free lunch, reduced lunch or neither) and English proficiency
status. We also observe the student’s top 10 choices, random number, as well as where the student is
assigned (if assigned at all). For each choice, we can infer from the priority whether the student has a
sibling at that school or is a continuing student. For continuing students, if they do not choose their
current program, the BPS mechanism appends their current program to their choice list, and assigns
them a special priority known as “FinalPass.” For these students, we follow the BPS mechanism
and append their current program to their choice list (capturing the apparent convention that if the
students are not offered any other program they will choose to remain in their current program).

We begin by describing the tradeoffs expressed in student choices using a random utility model.
Let i index students, j index school programs. j can be represented as ordered pair (s, p), where sj
is the school and pj is the program type. (i.e. for j=Quincy KED, sj=Quincy and pj=KED.) The
following are data:

Siblingis : Indicator for i having sibling at s

Walkis : Indicator for s being in i’s walkzone

Presentij : Indicator for j being i’s current program

dis : Estimated Walk distance from i to s

zli : Student characteristic, indexed by l

xls : School characteristic, indexed by l.

The following parameters are estimated from choice data:

δs : Fixed effect for school s

δp : Fixed effect for program type p

α, β, γ : Taste parameters.

We model student i’s indirect utility for program j using the following specification:

uij = δj + θij + κij + εij , where (1)

δj = δsj + δpj

θij = γ · ~f(disj ) + β1Siblingisj + β2Walkisj + β3Presentij

κij =
∑
l

αlzlix
l
sj .

The first set of variables represent school and program fixed effects. Each represents a single
dimensional variable which captures what makes a school or program popular in general. The fixed
effects represent the net overall effect of a school or program on the ranking decision and form a
composite of attributes which do not to vary with student but only across schools (such as safety,
facilities, and principal/teacher characteristics). We assume that tastes for schools and programs
can be written in an additively separable form rather than school-program type interactions for
statistical power. The second set of variables represent a student’s special affinities for a program,
based on a function (or functions) of the walk-distance, whether the student has a sibling at the

4



school, whether the school is in the walk-zone, and whether the student is already enrolled in the
same school program. The third set of variables are interaction terms between the student’s observed
characteristics and the school’s observed characteristics. This formulation allows for differing tastes
for particular school characteristics across demographic or socioeconomic groups.

Finally, εij is an error term drawn from an extreme value type-I (Gumbel) distribution with
variance normalized without loss of generality to π2

6 . Hence, our model is a multinomial logit
discrete choice model or rank-ordered logit. We estimate this model by maximum likelihoods and
report conventional standard errors.

The logit functional form allows us to write the likelihood in closed form, sidestepping the need
for numerical integration. The logit assumption also comes with the Independence of Irrelevant
Alternatives (IIA) property, which implies that if the choice set changes, the relative likelihood of
ranking any two schools does not change.

It is worth noting that this model does not include an outside option in the choice set. The
reason is that the majority of applicants rank 5 or fewer school programs. If we interpret the
outside option as more preferred than any unlisted program, then most students prefer their outside
option above most schools. This implication would be misleading since the majority of students who
submit incomplete lists enroll in Boston Public Schools the following school year implying that they
do not prefer their outside option. Moreover, families may only rank a few programs also because of
limited information or confidence that they will get in to where they ranked, weighing against the
assumption that unranked programs are less desirable than the outside options.

To forecast the outcomes under new plans with our preference estimates, it is important to
have a way to simulate how many programs a typical applicant ranks. If an applicant submits a
ranking over all possible schools in their menu, then the amount of competition will be vastly higher
than in reality. Moreover, to estimate “access to quality” according to the definition in our main
report (Pathak and Shi 2013), it is important to have some notion of individual rationality, or what
programs are “acceptable” to each student. For this report, we make the behavioral assumption that
families find their top 10 options in choice menu “acceptable”, while any programs outside of the top
10 are not listed. This behavioral assumption is convenient because it allows us to truncate every
choice list exactly to 10 without worrying about strategic concerns. However, it also implies that
what families find acceptable is directly influenced by what menus they are offered. We discuss this
assumption in more detail in Section 5.

3 Estimating the Demand Model

In our model specified in equation (1), we have the following choices:

• What years of data, grades, and students to focus on?

• How do students evaluate distance to closest school, i.e., what distance transformation func-
tions ~f(·) to use?

• What student and school characteristics zli and x
l
s influence the ranking decision?

Because we wish to incorporate models with substantial taste heterogeneity to predict the choices
of all non-substantially separate special needs students in 2012-2013 Round-1 data set, we use the
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largest possible sample of students. Moreover, because Grade K1 programs naturally transition into
Grade K2 programs, and in conversations with parents it seems that many are making a conscious
choice between waiting until Grade K2 and applying to a certain program or applying to Grade K1
program a year earlier, we assume that Grade K1 and K2 programs act as substitutes and therefore
pool together choices at Grade K1 and K2 to increase precision of our estimates of school and
program type fixed effects.

However, because school information and statistics (and even location) change from year to year,
without a fuller analysis of the precise changes that occurred, we decided it conservative to fit the
model one year at a time. Therefore, we estimate school and program type fixed effects for each
years independently.

Our methodology for specification selection is as follows. We use 2011-2012 choice data as
training set (in-sample), and 2012-2013 choice data as evaluation set (out-of-sample). For our actual
simulations, we use the model fit using 2012-2013 choice data.

We report estimates from four specifications:

1) (Simple): ~f(d) = (d); no cross interactions.

2) (Simple2): ~f(d) = (d,
√
d); no cross interactions.

3) (Medium): ~f(d) = (d,
√
d); interaction between student’s race (indicator for each of black,

white, Asian, Hispanic, other) and school’s %Black, %White, %Asian and %Other.1 Also
interaction between the student’s socioeconomic status (indicator for each of free lunch, reduced
lunch, or none) with the school’s % free lunch.

4) (Medium2): Same as Medium except we also interact the distance vector with the student’s
socio-economic status (free lunch, reduced lunch, none). We also add an additional binary
variable which is 1 if and only if both the school and the student are in East Boston, given
that is geographically separate from the rest of the city.

For all models, distance is computed using the Google Map Walk Distance from the centroid of the
family’s geocode to the centroid of the school’s geocode.

To fit the choice model, we also need to specify the choices offered to each student. Below are
our assumptions on choice menus:

• Every English Proficient student is offered all same grade regular education programs within
their walk-zone and the zone in which their geocode resides (home zone).

• Every Limited English Proficiency (LEP) student is offered all the programs English Proficient
students are offered, plus the following:

– Multi-lingual ELL programs: all within their walk-zone or home zone.

– Spanish Language Specific ELL programs (only offered to Spanish speakers): all within
their walk-zone or home zone.

– Non-Spanish Language Specific ELL programs (only offered to students speaking that
language): any in the city.

1We do not include %Hispanic because it is linearly dependent of the others and serves as the omitted category.
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We infer whether a student speaks a certain language by looking at the first language field in
our choice data. Given that we are missing first languages for some students, we also augment
this by assuming a student speaks a language if he/she chose or is assigned to a language-specific
ELL program of that language. (We assume that Family Resource Center staff only allows students
to choose a language specific ELL program if the language matches.) The reason we assume all
non-Spanish Language Specific ELL programs are citywide is that we observed out-of-zone, out-of-
walk-zone choices for these programs, and because the BPS choice website states:

If your child needs special education services or an English Language Learner program, as
determined by testing or evaluation, the schools available to him/her could be different than
those listed here. Please consult with staff at any FRC to learn more.2

Although ELL programs are only offered to LEP students whose ELD score is 1-3, in our choice
data we have ELD scores only for 741 out of 2,676 LEP students, so we make the conservative
assumption that every LEP student is potentially offered an ELL program.

3.1 In-Sample Fit

Figure 1 show the estimates and standard errors of different specifications. Table 2 tabulates the
log likelihoods.

Specification Log Likelihood (LL) Gain in LL # Additional Variables LL Gain per variable
Simple -49486
Simple2 -49342 144 1 144
Medium -48766 576 24 24
Medium2 -48716 50 7 7.1

Table 2: Log Likelihood (In-Sample Fit).

The total number of choices indicated by all 5,758 students in 2011-2012 choice file is 20,533.
Since the specifications are nested, it is possible to evaluate the relative gain in likelihood by adding
additional parameters. Under the Bayesian Information Criteria (BIC), we are justified in including
an extra parameter if it produces a log likelihood gain of ln 20533

2 = 4.96.
Observe that going from Simple to Simple2, the addition of square root of distance produces

a sizable improvement in fit. This corroborates the intuition that while 0.5 miles and 1.5 miles may
represent a big difference for families sending children to kindergarten, 4 miles and 5 miles may
be not so important because the student would already be on their commute. From Simple2 to
Medium, we add interactions with demographics, and this yields a log likelihood gain of 24 per
additional variable. Intuitively these variables are important because they allow families of different
demographic groups to have differential preferences for demographics and for unobserved attributes
correlated with demographics, such as school atmosphere or safety. From the BIC test the gain from
these variables is justified.

2Taken from BPS “What Are My Schools?” web app. on January 20, 2013. https://externalweb.mybps.org/
/ExternalWeb/home.aspx?tabindex=1&tabid=32
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Figure 1: Model Coefficients (both in-sample and out-of-sample)

8



Comparing Medium to Medium2, we add interaction effects between student’s socioeconomic
status and distance, capturing the intuition that families of taste for distance may vary with so-
cioeconomic background. The gain in likelihood per variable is 7.1, which passes the BIC criteria.
However, it is not far from the threshold. Moreover, the estimates are noisier, with no statisti-
cally detectable differences between free lunch students and non-free-reduced lunch students. To
err on the side of being conservative, we therefore focus on the Medium specification rather than
Medium2.

The estimates for the Medium specification fitted with 2012-2013 Round-1 data are in column
(5) of Figure 1. Interestingly, many of the point estimates are similar to those using a different year
of data from 2011-2012, suggesting that there are some common patterns of student preferences.
These parameter estimates are used to evaluate all of the assignment plans.

3.2 Out-of-Sample Fit

To test the predictive power of our demand model, we next examine how well the model fit using
2011-2012 data can predict the actual choices made by families in 2012-2013. When doing this,
we use the specification Medium but with the student set, student characteristics, and school
characteristics from 2012-2013 data. This exercise constitutes an out-of-sample validation because
without using their choice data, we estimate what families participating in 2012-2013 would have
chosen and compare it to what they actually chose. If the predictions and actual choices are close,
then we have confidence that our preference estimates capture the main patterns of behavior and
provide a credible way to simulate alternatives.

We report a series of scatter plots, each of which corresponds to a student set I and some
parameter k. In the plots, each point corresponds to a school program j. The x-axis shows out of all
students in I, the fraction of students for whom program j is among their top k actual choices. The
y-axis shows for the same students, the fraction of students for whom program j is among their top k
predicted choices. Predicted choices are computed from a single draw of the preference distribution,
plus the idiosyncratic error for the empirical distribution of student and school characteristics. If we
perfectly predict families’ relative choices, then points should lie on the 45 degree line. How closely
the points hug the 45 degree line provides a measure of how well we can predict the top k choices
of these families. Points that lie above this line means we over-estimated demand for this school
program. Points below the line means we under-estimated demand.

Figure 2 shows how well we can predict the top 1, 3, 5 and 7 choices made by all families. The
mean error reports the absolute difference between the prediction and the observed choices made
averaged over all points and provides a convenient summary measure of how well the prediction
matches actual choices. As can be seen although we only used 2011-2012 data in the model, we
can predict choice shares relatively well in 2012-2013 in aggregate. While we successfully predict
aggregate total choice share, it is possible that our demand estimates do not provide an adequate
representation of the heterogeneity of preferences. To examine this possibility, we produce the top
3 choice share graph for students of different race (Figure 3), subsidized lunch status (Figure 4),
grade (Figure 5), English proficiency (Figure 6) levels, and neighborhoods (Figure 7). If the fit is
good for the majority of these subgroups, then we have confidence that our model captures the main
aspects of preference heterogeneity. We focus on the top 3 to avoid too many extra exhibits, though
examining top 1, 5 or 7 looks similar.
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As shown by the out-of-sample choice share comparisons, our model predicts relative choice
patterns between various programs reasonably well, both in the aggregate and for subgroups of
students split by race, socio economic status, lep status, grade, or neighborhood. It is therefore
possible to use these estimates to simulate the consequences of alternative assignment policies.

(a) Top 1 Choice (b) Top 3 Choices

(c) Top 5 Choice (d) Top 7 Choices

Figure 2: Out-of-Sample fit of Medium specification, fitted using 2011-2012 data and evaluating on
2012-2013 data. Each point represents a school program. The x-axis shows the % of all families top
k choices that is for this program. The y-axis shows what the model predicts.
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(a) Black (b) White

(c) Asian (d) Hispanic

(e) Other (f) No Race Information

Figure 3: Out-of-Sample fit of Medium specification by race. The x-axis shows the % of all families
top 3 choices that is for this program. The y-axis shows what the model predicts. Note that we can
predict well for all except “Other” which represents 3% of the data set and are spread across the city
so their top programs are different from one another (so no program has a major share).
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(a) Free Lunch (b) Reduced Lunch

(c) Non-Free/Reduced Lunch (d) No Lunch Information

Figure 4: Out-of-Sample fit of Medium specification by subsidized lunch status. The x-axis shows
the % of all families top 3 choices that is for this program. The y-axis shows what the model predicts.
Note that we can predict well except for “Reduced Lunch” which represents 4% of our data and is
spread across the city, so that their top programs are different from one another.
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(a) Grade K1 (b) Grade K2

Figure 5: Out-of-Sample fit of Medium specification by grade. The x-axis shows the % of all families
top 3 choices that is for this program. The y-axis shows what the model predicts.

(a) English Proficient (b) Limited English Proficiency

Figure 6: Out-of-Sample fit of Medium specification by LEP status. The x-axis shows the % of all
families top 3 choices that is for this program. The y-axis shows what the model predicts. Note
that we can predict choices better for English Proficient students than LEP students. This may be
partly due to our lack of consistent data on which students have ELD 1-3 and are thus should be
offered ELL-programs.
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(a) Allston/Brighton (b) Back Bay (c) Central Boston (d) Charlestown

(e) East Boston (f) Fenway/Kenmore (g) Hyde Park (h) Jamaica Plain

(i) Mattapan (j) N. Dorchester (k) Roslindale (l) Roxbury

(m) South Boston (n) S. Dorchester (o) South End (p) W. Roxbury

Figure 7: Out-of-Sample fit of Medium specification by neighborhood. The x-axis shows the % of
all families top 3 choices that is for this program. The y-axis shows what the model predicts. For
some neighborhoods, we have relatively few students in sample so the graphs for those neighborhood
seems “pixelated.”
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4 Replicating BPS Assignment Algorithm and Computing Cutoffs

4.1 Describing the Algorithm

In this section, we describe precisely how we implement the algorithm used by Boston Public Schools.
There are a few reasons we do not expect to exactly replicate the BPS assignment. First, the BPS
assignment algorithm uses all families choices, while our dataset only contains the top 10 ranked
schools for each student. Next, the BPS mechanism has some minor exceptions, such as using the
best random number for applicants who are twins, and also an administrative procedure for assigning
unassigned students if capacity is available. Since we do not have all of the data that the algorithm
uses, we aim to replicate the algorithm as closely as possible given the data we have. Table 3 shows
that using 2012-2013 actual choice data, we can replicate 98.7% of BPS assignments (matching
6613/6698 students).

# Students % Replicated
Grade K1 2668 98.3%
Grade K2 4030 99.0%
All 6698 98.7%

Table 3: Replicating BPS assignment algorithm using our implementation using 2012-2013 Round
1 choice data. For every student, we look at whether he/she receives the same assignment (either
to a school program or unassigned) in the BPS algorithm and in our algorithm, and we calculate
the percentage of students we can match. (We treat administrative assigned as unassigned, so this
is match with BPS algorithm before the administrative assignment stage.)

For each student i, there is a single random number ri, which we normalize to be between 0 and
1, with 1 being best, 0 being worst. For each school program j (i.e. Quincy KED K2), we internally
break the program into two portions–a walk-half and an open-half–according to the program’s “walk-
percentage.” Hernandez has walk percentage of 0% since it is citywide, Orchard Gardens has walk
percentage 75%, and all other programs have walk percentage 50%. When there are an odd number
of seats, we allocate the extra seat to the walk half. For ease of exposition, we refer to each of these
units (i.e. Quincy KED K2 Walk-half) as a “bin.”

For each bin b and student i, compute the student’s “score” πbi as follows: Let j be the program
that bin b represents.

1. Initialize πbi = ri

2. If the student has “Guarantee” or “FinalPass” priority to j (present program), then add 8 to
πbi and terminate at this point.

3. If the student has “PresentSchool” in his/her priority to j, then add 4 to πbi.

4. If the student has Sibling in the school sj , add 2 to πbi.

5. If the program is a walk-half, and the student is in the program’s walkzone3, add 1 to πbi.
3For precise definition of walk-zone, we are using a file from BPS which contains a geocode to school correspondence
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The above scores πbi induces a strict ranking of each bin b for all students.
For transforming students’ rankings of programs j to rankings of bins, there are two approaches

described in Dur, Kominers, Pathak, and Sönmez (2012). In each approach, we replace where the
program j is in the student’s ranked list by some ordered list of bins (specified below) representing
that program, to form an ranking over bins.

• Old Processing Order: Students in the walk-zone rank first the walk-half, then the open-
half. Students outside the walk-zone rank first the open-half, then the walk-half.

• New Processing Order: The open-half is divided into two: a first-open-quarter, and a
second-open-quarter. The split is done evenly, rounding up for the second-open-quarter. All
students, regardless of whether they are in the walk-zone, rank first the first-open-quarter,
then the walk-half, then the second-open-quarter, in that order.

These two processing order defines a strict, partial ranking over bins for every student, as well
as for every bin a strict, complete ranking over students. We then form a student to bin matching
using the student-proposing deferred acceptance algorithm, and transform this into a student to
program matching. For all of the validations and simulations involving the current 3-zone model,
we use the Old Processing Order. For all of the new assignment plans, we use the New Processing
Order, which in general is more advantageous to walk-zone students than the old processing order
(Dur, Kominers, Pathak, and Sönmez 2012).

4.2 Estimating “Access” Using Bin Cutoffs

The scores provide a way to estimate “access.” In any assignment outcome, for each bin b, define its
“bin cutoff” cb as 0 if its capacity is not filled, and the minimum πbi over the students assigned to it
if it is filled. Intuitively, this is the minimum score needed to be offered an assignment in the bin,
possibly displacing out the lowest-scoring applicant assigned to that bin.

For any student i and any program j, we define the student’s estimated access to program j,
aj(i), as

aj(i) = max
b representing j

(πbi − ri) + 1− cb,

where πbi−ri is the student’s “score boost” due to priority, as calculated in the way described before
(i.e. 0 for NoPriority, 1 for Walk-Only, 2 for sibling, 3 for SiblingWalk, 4 for PresentSchool, etc).
As a result, 1− aj(i) is the minimum random number ri student i needs to get into one of the bins
in j. The above calculation is exact if

1. when a student’s application in the algorithm causes another student to be rejected initiating
a chain, it eventually returns to cause the first student to be rejected;

2. there is no difference between the minimum score that was assigned and the maximum score
of someone who applied but was rejected out (distributed roughly as 1

n where n is the number
of applicants of the cutoff priority level who apply to the bin).

of which schools are in each geocode’s walk-zone at each grade. This was computed by BPS by drawing a 1-mile circle
from the school’s coordinate and adding any geocode that this circle touches. BPS has announced they will their
definition of walk-zone to 1-mile straightline distance from school to home address starting 2013-2014.
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In any finite problem, both of these situations are possible. However, when there are a large number
of students compared to programs (as in our data where there are roughly 24 students per program),
the approximation error from using aj(i) as a measure of student’s access to program j grows small.4

5 Length of Simulated Rank Order Lists

The model developed in Section 3 can tells us families’ relative preferences. However, since we do not
model outside options (i.e. private schools, out-of-district charters, METCO, etc), this model does
not tell us how many choices families will rank. We have not modeled what options families find
“acceptable,” in the sense that they would actually attend in assigned. Because of the availability of
outside options in reality presumably many families do have some “cutoff” for acceptability.

One possibility is to assume that families find every BPS option acceptable, in which case a
utility maximizer would rank every single choice in their menu. However, the mode number of
choices ranked (in 2012-2013 Round-1 data) is 5, and the mean is 4.2. If families were to rank every
single choice in their menu, then we should see between 24 to 65 choices by everyone, which would
imply a greater level of competition than what we observe in data.

Figure 8 plots how using the demand model from 2011-2012 data, we can predict the level of
competition in 2012-2013 by various amounts of choice list truncation. We proxy competition using
the program score cutoff (minimum bin cutoff of all bins b representing the program; see Section 4.2)
changes as we truncate families choice lists to 1, 4, 7, 10, 13 and no-truncation respectively. The
way to interpret the figure is as follows: the closer we are to the 45 degree line, the better we
are predicting the level of competition for every individual program. For programs below the 45
degree line, we under-predict the level of competition. For programs above the 45 degree line, we
over-predict competition.

As can be seen in Figure 8, without truncating choice lists, we over-predict demand (most points
lie above the 45 degree line), and the mean error (0.298) is greater than if we had truncated at 10
(0.240). While 10 is not the truncation that yields the best fit (between 4 and 7 would be better),
we truncate at 10 because of the following reasons:

• The choice data file we were provided truncated choice lists at 10.

• When using the demand model to simulate access to quality, we are conservative. Truncating
at a lower number decreases the overall level of competition, which would increase the apparent
access to quality.

• BPS recently proposed an option for families to have their rank lists automatically appended
based on distance, which makes the effective choice lists of the families who ranked only a few
programs longer.

• 10 performs reasonably well (error of 0.240 compared to 0.235 with 7).

When we simulate other options, the choice menu would change, but we have no systematic
way to predict the right way to change our truncation point. To isolate the effects of changes in

4Kojima and Pathak (2009) formally demonstrate the first case is unlikely when the number of programs grows,
holding fixed the length of applicant rank order lists.
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choice menus, we truncate at 10 across all assignment plans. This implicitly is making the following
individual rationality assumption:

Behavioral Assumption: Families consider only their top 10 choices in menu
as “acceptable.” In other words, they prefer their outside option over their 11th
choice.

This implies that the acceptability threshold is directly influenced by what menu they are pre-
sented. For example, if a family who has access to some schools considered “quality” in one assign-
ment plan is offered more choices that are not considered “quality” but which they prefer (perhaps
by virtue of being close to home and of good match for other reasons), then their “access to accept-
able quality” would decrease. Therefore, offering participants more choices that are not considered
“quality,” but which the applicant likes can decrease the person’s access to quality. Conversely, by
taking away choices that are not considered “quality” but which the family prefers according to the
demand model, one can increase their “access to quality” because suddenly the (perhaps far away)
“quality” schools would fall within their top 10 list and they would find that acceptable. While it is
possible that families’ acceptability threshold is influenced by framing and how the information on
schools is presented, it is unclear about a more appropriate assumption. A restriction to ten choices
seems more appealing to us than assuming that families find everything to be acceptable, which
contradicts the fact that families do not rank all choices.

6 Validation of Simulation Approach

Equipped with a model for predicting families’ relative choices, a behavioral model of how many
choices they will list, and an algorithm implementation that almost exactly matches the BPS algo-
rithm, we can now simulate what might happen given a new assignment plan. As a validation of
the simulation engine as a whole, we first predict what actually happened in 2012-2013 choice using
2011-2012 demand model.

For definitions of the metrics that we use to compare the different plans, see the main body of
the report (Pathak and Shi 2013). We are unable to validate the following metrics because they
all depend on the demand model (and for actual assignment we do not observe families complete
preferences over all programs):

• Access to Acceptable Quality and Access to Acceptable Capacity (because we only count access
if we estimate a program to be “acceptable” to student, and we do not observe what all that
is “acceptable” in real choice data.)

• Element of Choice - Access to Top k Dream Choice.

We focus here on K2 New Families because these families do not have to weigh the influence of
present school or sibling priority. As a result, we expect their choices to be more difficult to predict.
The choice of K2 New Families is also consistent with the main report.

In the main report, all our figures are averages of 25 simulations (so we are showing expected
values), where we draw from the estimated preference distribution 25 times. For this report, since
we only observe one sample in our validation for 2012-2013, we draw preferences only once.
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6.1 Access to Quality Ignoring Acceptability

The Access to Quality notion defined in the main report cannot be calculated using the actual
choice data. This is because it is defined by access to high MCAS schools that the family finds
“acceptable.” For simulated data, we can compute this metric because we can define what each
family finds “acceptable” as their top 10 choices. For actual choices, we cannot identify what families
find “acceptable” and assuming that they find unacceptable any choice they haven’t ranked, even
for those who only rank a few choices, seems unrealistic.

However, we are able to evaluate an alternative measure of Access to Quality, that ignores their
individual rationality conditions one at a time while maintaining the condition for other families.
This corresponds to computing answering the following question: what is my access given the
rankings of other participants and if I accept any BPS option if the MCAS is enough. While
this notion is not self-consistent (we keep the acceptability threshold for everyone else, but ignore
it for the family we are evaluating), it provides a simple way to evaluate the Access to Acceptable
Quality in the main report, and it is an interesting to check whether we can predict this well.

For this, we simply simulate the assignment, then calculate the maximum estimated access aj(i)
(See Section 4.2) for all “quality” programs j in student i’s menu. Because aj(i) is based on random
numbers of the bin-assignments, it is a well-defined quantity in both real and simulated assignments.
To factor away the randomness due to random tie-breaking numbers, we endow student i with the
same random number ri as in the real assignment.

Figure 9 shows how we can predict this access to quality figure for Grade K2 new families in
2012-2013. To emphasize, this metric is different from that computed in the report because it ignores
the individual rationality condition. The boxplots represent student data distributions. They are
interpreted as follows: the red line shows the median. The box shows the 25% and 75% percentiles,
respectively. The lower and upper line shows the min and the max, respectively.

6.2 Access to Top Menu Choice

Using score cutoffs, we compute for both actual and simulated assignment, the measures of access
to top choice in the main report and the ranking of the choice received. Figure 10 shows that the
proximity of our approach to what actually occurred.

6.3 Proximity

We aim to predict the distribution of distances to assignment in 2012-2013. Figure 11 shows that
we are able to provide a close approximation to what happened that year.

6.4 Diversity

We aim to predict the distribution of % Assigned Class of a certain demographic group. Figure 12
shows that we can match both the distributions closely at all quartile levels.
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6.5 Community

We calculate the actual # of same grade neighbors going to the same school (neighbors defined as
within 0.5 miles of walking distance), and compare with what our simulation yields. Note that our
utility model for students assume that families make decisions independently (when in reality several
families may choose one school together). Moreover, the uniform truncation of choice list may also
deviate from data (in which choice list length may be correlated based on geography). Both of
these reasons tend to make our prediction lower than the actual, which is what we see in Figure 13.
Nevertheless, on this dimension, the match is still reasonable (actual average is 4.44 compared to
the predicted average of 3.85.)

7 Simulation Methodology for Evaluation

Having validated our simulation engine, we finally describe how we use it to evaluate various assign-
ment plans in the main report (Pathak and Shi 2013).

In simulating assignment plans, we simulate each assignment plan 25 times and report the average
of 25 draws. For each simulation, we hold the random tie-breakers and the realizations of the random
variables fixed to ensure that the outcomes are comparable. More precisely, for each run (from 1 to
25), we generate the following for every student:

• A random tie-breaker for every student.

• A relative ranking of all BPS programs (including those that are not in the student’s choice
menu). We call this the “dream ranking” (if the student could rank every BPS program, even
those not in their menu, what would their relative ranking be.)

This sample of draws is held fixed regardless of the assignment plan.
For each plan, we then compute the actual rankings of each student by taking the dream ranking

and removing the programs not in his/her choice menu, and truncating this list to 10. We then feed
this generated choice data and random numbers to the assignment algorithm, from which we obtain
simulated assignment outcomes.

There are 25 simulated outcomes for every plan, and the outcomes are linked across plans in the
underlying “randomness” so they are comparable. We then evaluate these outcomes using a variety
of metrics. We average the 25 results and producing a consistent measure of relative performance
across plans.

Note that this averaging makes all our estimates “expected values,” which is conditioned on the
student’s observable characteristics, but taking expectation over the student’s εij (random variable
for “taste” in 1), random number, and everyone else’s random number and idiosyncratic taste shock.
Suppose, for example, that we estimate a student’s distance to assignment is 2 miles. This number
comes from a calculation where, given the student’s attributes, we draw preferences and the random-
tie breaker 25 times for each student, and compute the average distance across 25 realizations of the
assignment mechanism with these inputs.
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(a) Truncate to 1 (b) Truncate to 4

(c) Truncate to 7 (d) Truncate to 10

(e) Truncate to 13 (f) No truncation

Figure 8: How well we predict competition in 2012-2013 (using Medium model fitted using 2011-2012
data). Each point is a program. The x-axis plot the observed minimum bin cutoff of the program (1
minus this cutoff is the exactly the access for student without any priority.) The y-axis plot what is
predicted given we truncate choice list to what is indicated. Each plot shows an independent run of
1 sample. We use the actual random numbers in both cases. The more we hug the 45 degree line,
the more we predict competition exactly. Programs below this line means we are under-predicting
competition, and above this line means we are over-predicting.
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(a) Top 1/4 MCAS (b) Top 1/3 MCAS

(c) Top 1/2 MCAS (d) Top 2/3 MCAS

Figure 9: Box plots comparing simulated access and actual access, both estimated using score cutoffs
for new families (non-present school, non-siblings) in Grade K2. (See Section 4.2). For each family,
we estimate what would happen if everyone else ranks schools as they do, but they find all BPS
programs to be acceptable and rank to maximize their access to each group of Top MCAS schools.
We then aggregate this across students. (Note: this approach ignores the family’s acceptability
threshold when calculating their access, but maintains it when calculating others’ access.) Simulated
represents one simulation, using the Medium 2011-2012 demand model, truncating rank order list
length at 10. As can be seen in the box-plots, we reasonably match real access in various thresholds,
but we slightly under estimate access because competition in our environment–where everyone ranks
10–is tougher than in actual assignment data, in which the average is less than 5.
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(a) Top 1 Choice (b) Top 3 Choice

(c) Top 5 Choice (d) Choice Number Got

Figure 10: Box plots comparing simulated access and actual measures of access to top choice mea-
sures, both estimated using score cutoffs.
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Figure 11: Box plot comparing actual distance to assignment versus predicted distance to assign-
ment.
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(a) Black (b) White

(c) Asian (d) Hispanic

(e) Free Lunch (f) Non-Free/Reduced Lunch

Figure 12: Box plot comparing simulated % of Assigned class (school program) of a certain demo-
graphic group and actual.
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Figure 13: Comparison of actual same grade neighbor count (# others who live within 0.5 miles
walking distance who go to the same school and same grade as me) with simulated result.
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