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Abstract

A central issue in school choice is the debate over who obtains seats at oversubscribed schools.

Choice plans in many cities grant students higher priority for some seats at their neighborhood

schools. This paper demonstrates how the precedence order, i.e. the order in which seats are

depleted by applicants with specific claims, is a lever to achieve distributional goals that has

effects comparable to priorities under the deferred acceptance algorithm. While Boston gives

priority to neighborhood applicants in half of the seats at each school, the intended effect of

this policy is almost fully lost because of the precedence order of the seats; its outcome is nearly

equivalent to that of a mechanism without any neighborhood priority. This fact shows how

the precedence order can undermine the intended role of priorities. A change in precedence,

holding fixed the current 50-50 school seat split, corresponds to almost three-quarters of the

effect of switching from 0% to 100% neighborhood priority. We formally establish that either

increasing the number of neighborhood priority seats at a school or adjusting the precedence of

neighborhood seats have the same qualitative effect: an increase in the number of neighborhood

students assigned to that school. Decisions about precedence have distributional effects with

little impact on the overall number of students who receive their top choices and therefore are

inseparable from decisions about priorities.
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1 Introduction

School choice reforms aspire to sever the link between the housing market and access to good schools.

In residence-based public school systems, families can purchase access by living in communities with

desirable schools, leaving children from families less able or willing to live in these neighborhoods

without this opportunity. By allowing families the option to choose outside their neighborhoods,

choice plans offer the potential to more widely distribute access to sought-after schools. Opening

up competition, however, requires policies that specify how seats for students from both inside and

outside of neighborhoods will be rationed. Many U.S. cities have provisions so that both groups

have a shot at attending in-demand schools.

Whether seen through the prism of riots over court-ordered busing, contentious discussions on

zone definitions within cities, or squabbles over the size of explicit reservations at particular schools,

the tension between those who want to attend their neighborhood schools and those who want to

leave their neighborhoods is at the heart of many school choice debates. For example, Boston’s

current system of student assignment emerged out of a federal judge’s 1974 decision to mandate

racial balance across schools by busing students across neighborhoods. This system has recently

been the center of an intense city-wide discussion following the 2012 State of the City address by

Boston Mayor Thomas Menino.1 In the speech, Menino (2012) articulated support for the faction

in favor of greater neighborhood assignment:

“Something stands in the way of taking our [public school] system to the next level: a

student assignment process that ships our kids to schools across our city. Pick any street.

A dozen children probably attend a dozen different schools. Parents might not know each

other; children might not play together. They can’t carpool, or study for the same tests.

[...] Boston will have a radically different school assignment process – one that puts priority

on children attending schools closer to their homes.”

Critics expressed concerns that families from disadvantaged neighborhoods would be shut out of

good schools if the neighborhood component of assignment is given more weight. This counterpoint

is summarized by a community activist (Seelye 2012):

“A plan that limits choice and that is strictly neighborhood-based gets us to a system that

is more segregated than it is now.”

Understanding the implications of policies striving for a compromise between these two factions

presents challenges without an adequate assignment mechanism. A first ingredient for determining

access to good schools is the set of applicants’ claims or property rights for school seats. The

controversial issue of who among the applicants is deserving not only involves traditional eco-

nomic considerations, but also hotly-contested moral and ethical concerns inherent in problems

of distributive justice. As a result, these aspects of school assignment have mostly been taken

1For more on this debate, see the materials available at http://bostonschoolchoice.org and press accounts by

Goldstein (2012) and Handy (2012).
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as given in the literature on school choice mechanism design and have not been the focus of de-

sign efforts in the field.2 A second ingredient is how students’ claims are processed through the

assignment mechanism. The interpretation of student property rights and issues related to their

processing is perhaps one reason why the theoretical literature on student assignment (Balinski

and Sönmez 1999, Abdulkadiroğlu and Sönmez 2003) took nearly forty years to develop following

pioneering contributions on two-sided matching (Gale and Shapley 1962).

Choice plans based on variants of the student-proposing deferred acceptance algorithm allow

for the design of property rights to be considered in isolation from the mechanics of determining

the allocation. Other mechanisms often lack this complete separation between property rights and

participant choices. For instance, in the old (pre-2005) Boston mechanism, if two students have

equal priority for a school, their preference ranking of the school determines whose claim is more

justified. In the deferred acceptance algorithm, in contrast, the notion of a property right does not

depend on student choices. As a result, by setting school priorities, such as giving higher claims

to sibling or neighborhood applicants, districts can precisely define property rights for applicants

independent of demand under mechanisms based on deferred acceptance.

Specifying priorities is only one part of determining access, however. Another aspect involves

specific set-asides for particular types of applicants. Currently, Boston Public Schools (BPS) splits

schools equally into two pieces: at one half students from the neighborhood obtain priority, while

at the other half neighborhood priority does not play a role. Boston’s 50-50 school seat split

emerged after the city adopted a race-neutral plan for assignment in 1999 and has been in place

for the last 12 years (Daley 1999a).3 When students rank a school, they are considered for both

types of slots.4 The processing order of these slots, or their precedence, determines how seats are

depleted by applicants. Daley (1999b) reports that the 50-50 plan was initially seen as “striking

an uneasy compromise between neighborhood school advocates and those who want choice,” while

the Superintendent had hoped that the plan “will satisfy both factions, those who want to send

children to schools close by and those who want choice.”

We begin our investigation by using data on choices and assignments from Boston Public Schools

to examine whether the current mechanism indeed represents a compromise. We compare the cur-

rent BPS outcome to two alternatives: one where none of the seats have the neighborhood, i.e.

“walk-zone” priority, and one where all seats have walk-zone priority. Given the 50-50 split and

its motivation, it is natural to expect that the outcome will be close to the middle of these two

opposite policies. However, Table 1 shows that the current BPS mechanism is surprisingly close to

the outcome where walk-zone priority is not used at all. Only 3% of Grade K1 applicants obtain a

different assignment under Boston’s current implementation than they would under open competi-

2For example, a December 2003 community engagement process in Boston considered six different proposals for

alternative neighborhood zone definitions. However, the only recommendation adopted by the school committee was

to switch the assignment algorithm (Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005).
3The 50-50 school seat split was not altered when Boston changed their assignment mechanism in 2005 to one

based on the student-proposing deferred acceptance algorithm (Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005,

Abdulkadiroğlu, Pathak, Roth, and Sönmez 2006, Pathak and Sönmez 2008).
4Throughout this paper, we use slot and seat interchangeably.
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tion with no walk-zone priorities, as indicated by the column labeled 0% Walk. Furthermore, this

pattern is not simply a feature of student demand. Compared to the alternative where all seats

have walk-zone priority, labeled 100% Walk, the number of students assigned to a school in their

walk zone increases by 19% and 17% for the two main elementary school entry points (Grades K1

and K2). Although motivated as a compromise between the two factions, BPS’s 50-50 school seat

split is much closer to open competition than the impression a 50-50 split might at first suggest.

This paper is about understanding this puzzle: Why does BPS’s mechanism result in an as-

signment so close to one without any neighborhood priority, even though half of school seats give

priority to neighborhood students? To answer this question, we develop a framework for school

choice mechanism design where both priority and precedence play key roles. The 50-50 division

of slots between a priority structure with and without neighborhood priorities reveals little about

the proximity of the outcome to completely open competition and 100% Walk without specifying

how the allocation process proceeds when a student is qualified for both types of slots. Building on

Kominers and Sönmez (2012), we establish two new comparative static results: (1) given a fixed

slot precedence order, replacing an open slot with a neighborhood slot at a school weakly increases

the number of neighborhood students assigned to that school, and (2) given a fixed split of seats

into neighborhood and open slots, switching the precedence order position of a neighborhood slot

with the position of an open slot weakly increases the number of neighborhood students assigned

to that school.

While these features are intuitive, the rich slot-specific priority structure of our economy implies

that they do not follow from immediate generalizations of the respect for improvements property in

simpler models without the slot structure (Balinski and Sönmez 1999). These results show that the

precedence order has a significant influence on the eventual assignment and in extreme cases can

virtually eliminate the intended effect of having variations in slots’ priorities. We further specialize

to a two-school model where we show that above mentioned priority and precedence order changes

not only weakly increase the number of neighborhood assignments at the school having the change,

but also weakly increase the neighborhood assignments across all schools. This impact is entirely

distributional as both instruments leave the aggregate number of students who obtain a top choice

unchanged.

Next, we empirically examine the extent to which the comparative statics from the simpler

model provide practical insight for the richer set of priorities in Boston’s school choice plan. After

demonstrating that Boston’s current implementation of the 50-50 split is far from the midpoint

between neighborhood and choice proponents, we show that an alternative precedence order where

non-neighborhood slots are depleted before neighborhood slots increases the number of students

who attend a walk-zone school by 8% in Grade K1. This represents more than two-thirds of

the maximal achievable difference between completely eliminating walk-zone priority and having

walk-zone priority apply at all school seats. As a result, in Boston, precedence order details have

quantitative impacts comparable to the entire range of possible adjustments to the number of

walk-zone slots. Finally, we examine alternative precedence orders which implement intermediate

positions between the two extremes of depleting all neighborhood seats first and depleting open
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seats first. Adopting one of these intermediate precedence orders would restore the “compromise”

role of the 50-50 school seat split. This is, perhaps, the most important policy implication of our

paper.

This paper contributes to a broader agenda, examined in a number of recent papers, that intro-

duces concerns for diversity into the literature on school choice mechanism design (see, e.g., Bud-

ish, Che, Kojima, and Milgrom (2011), Echenique and Yenmez (2012), Erdil and Kumano (2012),

Hafalir, Yenmez, and Yildirim (2012), Kojima (2012), and Kominers and Sönmez (2012)). When an

applicant ranks a school with many seats, it is similar to expressing indifference among the school’s

seats. Therefore, our work parallels recent papers examining the implications of indifferences in

school choice problems (Erdil and Ergin 2008, Abdulkadiroğlu, Pathak, and Roth 2009, Pathak

and Sethuraman 2011). However, the question of school-side indifferences, the focus of prior work,

is entirely distinct from the issue of indifferences in student preferences. Tools used to resolve

indifferences for schools (like random lotteries) do not immediately apply for the student side.

Another somewhat related paper is Roth (1985), who considers interpreting a college admissions

model (many-to-one), through an expansion of a marriage model (one-to-one), where the many

side is split into pieces and applicants rank pieces in a given order. We show using data from

Boston Public Schools that improper implementation of this interpretation can result in uninten-

tionally undermining the intention of particular priority policies. Finally, this paper builds on the

theoretical literature on matching with contracts (Crawford and Knoer 1981, Kelso and Crawford

1982, Hatfield and Milgrom 2005, Ostrovsky 2008, Hatfield and Kojima 2010, Echenique 2012) and

the applied motivation shares much with recent work on matching in the military (Sönmez and

Switzer 2011, Sönmez 2011).

The paper proceeds as follows. Section 2 introduces the model and illustrates the roles of

precedence and priority. Section 3 reports on an empirical investigation of these issues in the

context of Boston’s school choice plan. The last section concludes. All proofs are relegated to the

appendix.

2 Model

There is a finite set of students I and a finite set of schools A. Each school a has a finite set of

slots Sa. We use the notation a0 to denote a “null school” to represent the possibility of being

unmatched; we assume that this option is always available to all students. Let S ≡
⋃

a∈A S
a denote

the set of all slots (excluding those at the null school). We assume that |S| ≥ |I|, so that there

are enough (real) slots for all students. Each student i has a strict preference relation P i over A.

Throughout the paper we fix the set of students I, the set of schools A, the set of schools’ slots S,

and the students’ preferences (P i)i∈I .

For any school a ∈ A, each slot s ∈ Sa has a linear priority order πs over students in I. This

linear priority order captures the “property rights” of the students for this slot in the sense that

the higher a student is ranked under πs, the stronger claims he has for the slot s of school a.

Following the current practice in BPS, we allow slot priorities to be heterogeneous across slots of a
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given school. A subtle consequence of this within-school heterogeneity is that we must determine

how slots are assigned when a student is “qualified” for multiple slots with different priorities at

a school. The last primitive of the model regulates this selection in a linear way: For each school

a ∈ A, the slots in Sa are ordered according to a (linear) order of precedence .a. Given a school

a ∈ A and two of its slots s, s′ ∈ Sa, the expression s .a s′ means that slot s is to be filled before

slot s′ at school a whenever possible.

A matching µ : I → A is a function which assigns a school to each student such that no schools

is assigned to more students than its total number of slots. Let µi denote the assignment of student

i, and µa denote the set of students assigned to school a.

Our model generalizes the school choice model of Abdulkadiroğlu and Sönmez (2003) in that it

allows for heterogenous priorities across the slots of a given school. Nevertheless, a mechanism based

on the celebrated student-proposing deferred acceptance algorithm easily extends to this model once

the choice function of each school is constructed for given slot priorities and order of precedence.

Given a school a ∈ A with a set of slots Sa, a list of slot priorities (πs)s∈Sa , an order of

precedence .a with

s1
a .

a s2
a .

a · · · .a s|Sa|
a ,

and a set of students J ⊆ I, the choice of school a from the set of students J is denoted by

Ca(J), and is obtained as follows: Slots at school a are filled one at a time following the order of

precedence .a. The highest priority student in J under πs
1
a , say student j1, is chosen for slot s1

a of

school a; the highest priority student in J \ {j1} under πs
2
a is chosen for slot s2

a of school a, and so

on.

For a given list of slot priorities (πs)s∈S and an order of precedence .a at each school a ∈ A, the

outcome of the student-proposing deferred acceptance mechanism (DA) can be obtained

as follows:

Step 1 : Each student i applies to her top choice under P i. Each school a with a set of Step 1

applicants Ja
1 tentatively holds the applicants in Ca(Ja

1 ), and rejects the rest.

In general at Step `,

Step ` : Each student who is rejected at Step ` − 1 applies to her next choice school. Each

school a considers its new applicants together with those on hold from Step `−1, and uses its choice

function Ca to determine which students are tentatively held and which students are rejected.

The algorithm terminates when no additional student is rejected.

2.1 A Mix of Neighborhood-Based and Open Priority Structures

In this paper we are particularly interested in the slot priority structure used at Boston Public

Schools. There is a master priority order πo that is uniform across all schools. This master priority

order is obtained via an even lottery and is often referred to as the random-tiebreaker. At

each school in Boston, slot priorities depend on students’ walk-zone and sibling statuses and the

random-tiebreaker πo. For our theoretical analysis, we will consider a simplified version which only
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depends on walk-zone status and the random-tiebreaker. We show in our empirical analysis of

Section 3 that this is a good approximation for Boston Public Schools.

For any school a ∈ A, there is a subset Ia ⊂ I of walk-zone students that is determined with

a concrete formula. There are two types of slots:

1. Walk-zone slots: For each walk-zone slot at a school a, any walk-zone student i ∈ Ia has

priority over any non-walk-zone student j ∈ I \ Ia, and the priority order within these two

groups is determined with the random tie-breaker πo.

2. Open slots: πs = πo for each open slot s.

For any school a ∈ A, define Sa
w to be the set of walk-zone slots and Sa

o to be the set of open

slots. BPS currently uses a DA where half of the slots at each school are walk-zone slots, while

the remaining half are open slots. This structure has been historically interpreted as a compromise

between the proponents of neighborhood assignment and the proponents of school choice.

An important comparative statics exercise concerns the impact of replacing an open slot with a

walk-zone slot under DA for a given order of precedence. One might naturally expect such a change

to weakly increase the number of students who are assigned to a walk-zone school. Surprisingly,

this is not correct in general as we show in the next example.

Example 1. There are four schools A = {k, l,m, n}. Each school has two available slots. There

are eight students I = {i1, i2, i3, i4, i5, i6, i7, i8}. Let Ia be the students living in the walk-zone of

school a ∈ A. There are two walk-zone students at each school. Let Ik = {i1, i2}, Il = {i3, i4},
Im = {i5, i6} and In = {i7, i8}. The random tie-breaker πo orders the students as:

πo : i1 � i8 � i3 � i4 � i5 � i6 � i7 � i2.

The preference profile is:

P i1 P i2 P i3 P i4 P i5 P i6 P i7 P i8

k k l l m m n k

l l k k k k k l

m m m m l l l m

n n n n n n m n

.

First consider the case where each school has one walk-zone slot and one open slot. Also assume

that the walk-zone slot has higher precedence than the open slot at each school.

The outcome of DA for this case is:

µ =

(
i1 i2 i3 i4 i5 i6 i7 i8

k n l l m m n k

)
.

Observe that six students (i.e. students i1, i3, i4, i5, i6, i7) are assigned to their walk-zone schools in

this scenario.
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Next we replace the open slot at school k with a walk-zone slot, so that both slots at school k

are walk-zone slots. Each remaining school has one slot with walk-zone priority and one slot with

open priority, with the walk-zone slot having higher precedence than the open slot.

The outcome of DA for the second case is:

µ′ =

(
i1 i2 i3 i4 i5 i6 i7 i8

k k l m m n n l

)
.

Observe that five students (i.e. students i1, i2, i3, i5, i7) are assigned to their walk-zone schools in

the second case. That is, the total number of walk-zone assignments decreases when the open slot

at school k is replaced with a walk-zone slot. �

Nevertheless, as we present next, replacement of an open slot with a walk-zone slot at a given

school a weakly increases the number of walk-zone students assigned to school a (even though it

may decrease the total number of walk-zone assignments).

Proposition 1. For any given order of precedence of slots, replacing an open slot with a walk-zone

slot at school a weakly increases the number of walk-zone students who are assigned slots of school

a under DA.

When a school district increases the fraction of walk-zone slots, one of the policy motives behind

this change is to increase the fraction of students assigned to walk-zone schools. As we have shown

in Proposition 1, replacing an open slot with a walk-zone slot serves this goal through its “first-

order effect” in the school directly affected by the change, although the overall effect across all

schools might in theory be in the opposite direction. Nevertheless, our empirical analysis in the

next section using data from BPS suggests that the first-order effect dominates – the overall effect

is in the expected direction.

While the role of the number of walk-zone slots as a policy tool is quite clear, the role of the

order of precedence is much more subtle. Indeed, the choice of the order of precedence is often

considered a minor technical detail, and until now it has never entered policy discussions. In this

paper, we show not only that the choice of the order of precedence has important distributional

implications, but that its effect is very substantial in the case of BPS.

Qualitatively the effect of decreasing the order of precedence of a walk-zone slot is similar to the

effect of replacing an open slot with a walk-zone slot. While this may appear counter-intuitive at

first, the reason is simple: By decreasing the order of precedence of a walk-zone slot, one increases

the odds that a walk-zone student who has high enough priority for both types of slots is assigned to

an open slot rather than a walk-zone slot. This in turn increases the competition for the open slots

and decreases the competition for the walk-zone slots. Our next result formalizes this observation.

Proposition 2. Fix the set of walk-zone slots and the set of open slots at each school. Then,

switching the order of precedence position of a walk-zone slot at school a with that of a subsequent

open slot at school a weakly increases the number of walk-zone students who are assigned to school

a under DA.
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Given Example 1, it is not surprising to see that the aggregate effect of such a change across

all schools may contradict its “first order” effect. Example 2 we present next is a modified version

of Example 1 making this point.

Example 2. To illustrate the conceptual relation between priority swaps and changes in the order

of precedence, Example 2 closely follows Example 1. The only difference is a small modification in

the second case. There are four schools A = {k, l,m, n}. Each school has two available slots. There

are eight students I = {i1, i2, i3, i4, i5, i6, i7, i8}. Let Ia be the students living in the walk zone of

school a ∈ A. There are two walk-zone students at each school. Let Ik = {i1, i2}, Il = {i3, i4},
Im = {i5, i6} and In = {i7, i8}. The random tie-breaker πo orders the students as:

πo : i1 � i8 � i3 � i4 � i5 � i6 � i7 � i2.

The preference profile is:

P i1 P i2 P i3 P i4 P i5 P i6 P i7 P i8

k k l l m m n k

l l k k k k k l

m m m m l l l m

n n n n n n m n

.

First consider the case where each school has one walk-zone slot and one open slot. Also assume

that the walk-zone slot has higher precedence than the open slot at each school.

The outcome of DA for this case is:

µ =

(
i1 i2 i3 i4 i5 i6 i7 i8

k n l l m m n k

)
.

Observe that six students (i.e. students i1, i3, i4, i5, i6, i7) are assigned to their walk-zone schools in

this scenario.

Next change the order of precedence at school k so that its open slot has higher precedence

than its walk-zone slot. Each remaining school maintains the original order of precedence with the

walk-zone slot higher precedence than the open slot.

The outcome of DA for the second case is:

µ′ =

(
i1 i2 i3 i4 i5 i6 i7 i8

k k l m m n n l

)
.

Observe that five students (i.e. students i1, i2, i3, i5, i7) are assigned to their walk-zone schools in

the second case. That is, the total number of walk-zone assignments decreases as the precedence

of the walk-zone slot at school k is reduced. �
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2.2 Additional Results for the Case of Two Schools

In this section, we obtain sharper theoretical results by focusing on the case of two schools (|A| = 2).

We assume that each student belongs to one walk zone and that students rank both schools. This

case is motivated in part by the commonly discussed policy objective of giving students from poorer

neighborhoods access to desirable schools in richer neighborhoods.

We have the following additional results for this case.

Proposition 3. Suppose there are two schools. For either school and any order of precedence of

its slots, replacing an open slot with a walk-zone slot weakly increases the total number of walk-zone

assignments under DA.

An immediate implication of Proposition 3 is the following intuitive result justifying the ideal

policies of the two polar factions.

Corollary 1. Suppose there are two schools and the number of slots is fixed at both schools. Under

DA:

• The minimum number of walk-zone assignments across all priority and precedence policies is

obtained when all slots have open slot priority, and

• the maximum number of walk-zone assignments across all priority and precedence policies is

obtained when all slots have walk-zone priority.

Proposition 4. Suppose there are two schools. Fix the set of walk-zone slots and the set of open

slots at each school. Then, switching the order of precedence position of a walk-zone slot at school

a with that of a subsequent open slot at school a weakly increases the total number of walk-zone

assignments under DA.

While the precedence alone does not cover the entire spectrum of outcomes reached via priority

adjustment, it may cover a significant part as we present in our empirical analysis in Section 3.

Moreover, the fraction of students who receive their first choices, second choices, and so forth show

virtually no response to changes in the fraction of walk-zone slots or the order of precedence. Our

next result provides a theoretical basis for this empirical observation.

Proposition 5. Suppose there are two schools. The number of students assigned to their top choice

schools is independent of both the number of walk-zone slots and the choice of precedence order.

An important policy implication of our last result is that the division of slots between walk-

zone priority and open priority as well the order of precedence selection has little bearing on

the aggregate number of students who receive their top choices; thus, the impact of these DA

calibrations on student welfare is mostly distributional.
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3 Empirical Analysis

Examples 1 and 2 illustrate that determining how many students attend a walk-zone school for

particular priority structures or precedence orders is challenging without additional structure on

priorities or preferences. These examples motivate the two-priority-type model presented in the

last section. When we further simplify our model to two schools, Propositions 3 and 4 show that

changes to either precedence or priority weakly increase the total number of students who obtain

a walk-zone assignment.

To examine whether these comparative static predictions capture the main features of school

choice with richer priority structures, we use data on submitted preferences from Boston Public

Schools. In contrast to our two-priority-type model, there are three additional priority groups in

Boston: (1) guaranteed applicants, who are typically continuing on at their current school, (2)

sibling-walk applicants, who have siblings currently attending a school and live in the walk zone,

and (3) sibling applicants, who have siblings attending a school and live outside the walk zone. In

Boston, guaranteed students are ordered ahead of sibling-walk applicants, who in turn are ordered

ahead of sibling applicants for both school halves. A single random number is used to order students

within a priority group.

We use data covering four years from 2009-2012 when BPS employed a mechanism based on the

student-proposing deferred acceptance algorithm. Students interested in enrolling in or switching

schools are asked to list schools each January for the first round. Students entering kindergarten

can either apply for elementary school at Grade K1 or Grade K2 depending on whether they are

four or five years old. Since the mechanism is based on the student-proposing deferred acceptance

algorithm and there is no restriction on the number of schools that can be ranked, the assignment

mechanism is strategy-proof.5 BPS also informs families of this property on the application form

where it advises families to “list your school choice in your true order of preference. If you list a

popular school first, you won’t hurt your chances of getting your second choice school if you don’t

get your first choice” (BPS 2012). Since the mechanism is strategy-proof, we can isolate the effects

of changes in priorities and precedence holding submitted preferences fixed.

As a check on our understanding of the data, we verify that we can recreate the assignments

produced by BPS. Table A1 reports the fraction of students who have the same exact assignment

under BPS and our recreation of the BPS assignment. Across four years and three applicant

grades, we can match 98% of the assignments, with little variation across grades and years.6 For

what follows, we therefore take our recreation of BPS as representing the BPS assignment.

The motivating puzzle for this paper is shown in Table 1, which reports a comparison of the

assignment produced by BPS, which relies on a 50-50 split of slots, to two extreme alternatives

5For analysis of the effects of restricting the number of choices which can be submitted, see (Haeringer and

Klijn 2009, Calsamiglia, Haeringer, and Kljin 2010, Pathak and Sönmez 2011).
6Based on discussions with BPS, we learned that the reason why we do not exactly recreate the BPS assignment

is that we do not have access to BPS’s exact capacity file, and instead must construct it ex-post based on the final

assignment. There are small differences between this measure of capacity and the capacity input to the algorithm

due to the handling of unassigned students who are administratively assigned.
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representing the ideal positions of these factions: (1) a priority structure without walk-zone prior-

ities at any slot and (2) a priority structure where walk-zone priority applies at all slots. We refer

to these two policies as 0% Walk and 100% Walk, and we simulate their outcomes using the

same random numbers as BPS. Table 1 shows that the BPS assignment is very close to the former

of these two polar alternatives and it differs for only 3% of students. One might suspect that

this phenomenon to be driven by strong preferences among students for neighborhood schools.7

Such preferences would bring the outcomes of all assignment policies close to each other. However,

comparing the BPS outcome to 100% Walk, nearly 20% of students in Grade K1 obtain a different

assignment. Therefore, the remarkable proximity of the current BPS outcome to the ideal of school

choice proponents is not merely a reflection of negligible stakes in the choice of these policies. The

increase in the number of students obtaining a walk-zone assignment shows that the comparative

static prediction for priority changes presented in Proposition 3 is relevant for the more general

environment of BPS. At Grade K2 and Grade 6, the fraction of students who obtain a different

assignment under the 100% Walk alternative is 17% and 10%, respectively. The differences are

smaller at higher grades because more students are continuing and therefore obtain guaranteed

priority. On average, 4.5% of K2 applicants have guaranteed priority at their first choice, while

13% of Grade 6 students do. Hence, despite the adoption of a seemingly neutral 50-50 split, Table

1 shows the proximity of the BPS outcome to the 0% Walk outcome is present across different years

and grades.

Another way to measure the relationship between the BPS assignment and 0% Walk is from

the school perspective. In Figure 1, we compare the BPS assignment to 0% Walk and 100% Walk,

and plot the fraction of students who obtain the same assignment with either extreme. In this

figure, for instance, a value of 1 means that each student at the school receives the same outcome

as in the BPS assignment. At 30 out of 63 Grade K1 schools, the assignments are exactly the same

between 0% Walk and BPS. In contrast, the assignments are the same at only 5 schools between

100% Walk and BPS. Figures 2 and 3 report the same school-by-school comparisons for Grade K2

and Grade 6, and reinforce the pattern in Figure 1.

In Table 2, we consider the effects of alternative priority and precedence policies by reporting

the number of students who are assigned to a school where they obtain walk-zone priority. The

difference in fraction from the walk zone between 0% Walk (column 2) and the BPS assignment

(column 4) is small. For Grades K1, K2, and 6, and taking 0% Walk as the benchmark only

1.0%, 1.2% and 0.6% more students obtain a walk-zone assignment under the BPS assignment,

respectively. Table 2 also shows that the BPS assignment produces an outcome very close to

that produced under the precedence policy Walk-NonWalk, which has all applicants first apply

to walk-zone slots before applying to open slots.8 The difference between columns (3) and (4)

averages 0.6% across the three grades.

7Overall, 55.5% percent of students in our dataset rank a school where they obtain sibling-walk or walk priority

first.
8Actual BPS implementation is a minor variant of Walk-NonWalk precedence where applicants with sibling priority

and outside the walk zone apply to the open slots before applying to the walk-zone slots.
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The close relationship between the BPS assignment and that produced by Walk-NonWalk prece-

dence order provides a route towards understanding why the role of walk-zone priority is so limited

under the current BPS practice. Under the Walk-NonWalk precedence order, applicants deplete

slots at the walk-zone half first. If there are more walk-zone applicants than slots, then applicants’

random numbers determine who obtains slots. Walk-zone applicants who do not obtain slots at the

walk-zone half, therefore, systematically have less favorable random numbers than non-walk-zone

applicants. When these applicants are considered for slots at the open half, their adversely selected

random numbers place them behind applicants without walk-zone priority. As a result, a walk-zone

applicant is unlikely to obtain a slot at the open half. This bias in applicant random numbers –

created by the precedence order – renders the outcomes under Walk-NonWalk precedence very

similar to the assignment that arises when all slots are open. Since the BPS outcome is so close

to a 50-50 split with Walk-NonWalk precedence, this logic underlies why the BPS outcome bears

close resemblance to the outcome without any role for walk-zone priority.

Having established that the BPS assignment is close to the assignment without walk-zone prior-

ity, we now explore alternative implementations of the 50/50 slot split. Corollary 1 to Proposition 3

suggests that the fraction of students who obtain an assignment in the walk zone under the 0%

Walk and 100% Walk policies provides a benchmark for what can be obtained under variations of

priority or precedence policy given student demand. For Grade K1, this range spans from 46.2% to

57.4% walk-zone assignment; the 11.2% interval represents the maximum range attainable through

changes in either priorities or precedence. Columns (3)-(8) report five different implementations

which all maintain the 50/50 school slot split. The Walk-NonWalk precedence represents a prece-

dence policy that is at one end of the spectrum. The NonWalk-Walk precedence, under which

all applicants first apply to open slots before applying to slots in the walk-half, represents the

other end of precedence policy spectrum. The difference between these two policies can be seen

as representing the range of possibilities, all given the 50-50 split, that can arise from alternative

precedence orders.

Changes in precedence order have an impact that is comparable in magnitude to the effect of

changing priorities. For Grade K1, the fraction of students who are assigned to a walk-zone school

for the Walk-NonWalk and NonWalk-Walk precedence policies is 46.5% and 54.8%, respectively.

The 8.3% difference between these two extremes corresponds to three-quarters of the 11.2% po-

tential difference between the two polar cases of 0% Walk and 100% Walk. For Grade K2, the

two opposite precedence policies cover 74% of the 9.3% range involving the two walk-zone priority

policy extremes, while for Grade 6, the two opposite precedence policies cover 67% of the 5.4%

range covering the two walk-zone priority policy extremes. Therefore, decisions about precedence

order have welfare implications much like decisions about priorities.

What are possible precedence order policies with less partisan welfare implications? We report

on three possible variations. First, we consider a precedence order which alternates walk-zone and

open slots. The outcome of this Rotating treatment is shown in column (5). The fraction of

students who are assigned to a school in their walk zone increases by 2.5% relative to the Walk-

NonWalk precedence policy for Grade K1, but it is still biased towards it relative to the NonWalk-
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Walk precedence policy. The reason that Rotating is closer to the Walk-NonWalk precedence is

that alternating slots only partly undoes the bias created by the processing the walk-zone slots

first. The pool of walk-zone applicants with favorable random numbers will be depleted and after

the first few slots are allocated at the school, the bias in the pool of applicants assigned to the open

slots re-emerges.

Another moderate alternative is to process half of the walk-zone slots first, followed by the entire

open half, and then the other half of the walk-zone slots. This precedence order, which we label

Compromise, attempts to reduce the bias created by processing all of the walk-zone slots first. By

processing only half of the walk-zone slots, the competition between walk-zone and non-walk-zone

applicants for open slots is more even. Initially, when the first few open slots are processed, the

applicant pool has adversely selected random numbers, but this bias becomes less important by

the time the last few open slots are processed. As a result, the fraction of applicants who attend

a school for which they obtain walk-zone priority is close the midpoint between Walk-NonWalk

and NonWalk-Walk. The Compromise policy attempts to even out the treatment of walk-zone

applicants through changes in the order of slots.

The last alternative, which we label Balanced, breaks the bias in random numbers created by

precedence order by using two random numbers. The first random number is used for walk-zone

slots, while the second random number is used for open slots. To handle the issue with the differing

pools of applicants from inside and outside the walk zone, we return to the rotating variation where

a walk-zone slot is processed first, then an open slot, followed by a walk-zone slot, and so on. As

a result, the Balanced precedence policy is like Rotating, except there are two distinct random

numbers, one for each type of slot. Table 2 shows that the Balanced precedence policy leads to a

greater number of students obtaining a walk-zone school. It is closer to the NonWalk-Walk outcome

than the Walk-NonWalk outcome. For instance, for Grade K1, 51.7% of students are walkers, which

is 3.1% less than the NonWalk-Walk outcome, but 5.2% greater than the Walk-NonWalk outcome.

On the other hand, for Grade K1, the Balanced policy is close to the mid-point between 0% Walk

and 100% Walk. For Grades K2 and 6, the Balanced policy is also closer to the mid-point between

the two extreme variations on priorities than the mid-point between the two extreme precedence

orders.

To understand how outcomes under the alternatives we consider are influenced by demand

patterns, in Figure 4, we report the fraction of students assigned using walk-zone priority for

underdemanded and overdemanded schools. An underdemanded school is one where there are

fewer first choice applicants than slots, while an overdemanded school is one where there are more

first choice applicants than slots. For Grade K1, roughly half of school programs are overdemanded

and underdemanded with this definition. For Grade K2 and Grade 6, roughly 40% of schools are

overdemanded. In Figures 4, 5, and 6, the fraction of students who are assigned to their walk-zone

schools increases as move from left to right, with the total range greater at overdemanded schools

than underdemanded schools.

Finally, the last issue we examine empirically is whether a version of Proposition 5 approximately

holds for data from 2010-2011. We turn to examining how the overall distribution of choices received
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varies with precedence order in Table 3. This table shows that there is almost no difference in

the aggregate distribution of choice rank received across the variations in precedence. Therefore,

consistent with Proposition 5, changes in precedence are a tool to achieve distributional objectives,

having little overall impact on the total number of students who obtain top choices.

4 Conclusion

The tension between those who want to attend schools in their neighborhoods and those who

want to leave their neighborhoods is a key aspect of school choice policy debates in Boston and

elsewhere. One perspective is in favor of having students attend schools close to their homes.

Another perspective wants to ensure that families have high-quality choices, even if those choices

are outside of students’ neighborhoods. The contribution of this paper is to show that a particular

feature of the assignment mechanism having to do with how school seats are processed by the

assignment algorithm – the precedence order – plays a central role in resolution of the tension

between these two points of view.

In Boston, we demonstrated that the precedence order has quantitative impacts almost as

large as changes in neighborhood priority policy, and is therefore an important lever for achieving

distributional objectives. Even though explicit implementations of precedence have not been part

of prior school choice policy discussions (with the exception of those at BPS, where the current

paper has entered the discussion), it is clear that they should accompany debates about priorities.

Precedence order plays a particularly central role in Boston, but it also seems likely that this feature

of assignment plays an important role in other priority-based assignment problems where priorities

depend on particular slots.

Finally, it is worth noting that our paper uses market design techniques and analysis to show how

to achieve various policy objectives. We do not take a stand on the optimal priority or precedence

policies. Further analysis might investigate the optimal fraction of neighborhood students in a

choice plan.
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A Appendix

A.1 Preliminaries for Proposition 1

For a school a∗ and a slot s∗ ∈ Sa∗ of school a∗, suppose that s∗ is an open slot under priority

structure π, and is a walk-zone slot under priority π̃. Suppose furthermore that πs = π̃s for all

slots s ∈ Sa∗ other than a∗. Let Ca∗ and C̃a∗ respectively be the choice functions for a∗ induced

by the priorities π and π̃, under (fixed) precedence order .a
∗
.

Lemma 1. For any set of students Ī ⊆ I:

1. All students in the walk-zone of a∗ that are chosen from Ī under choice function Ca∗ are

chosen under choice function C̃a∗ (i.e. [(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(C̃a∗(Ī)) ∩ Ia∗ ]).

2. All students not in the walk-zone of a∗ that are from Ī chosen under choice function C̃a∗ are

chosen under choice function Ca∗ (i.e. [(C̃a∗(Ī)) ∩ (I \ Ia∗)] ⊆ [(Ca∗(Ī)) ∩ (I \ Ia∗)]).

Proof. We proceed by induction on the number qa∗ of slots at a∗. The base case qa∗ = 1 is

immediate, as then Sa∗ = {s∗} and Ca∗(Ī) 6= C̃a∗(Ī) if and only if a walk-zone student of a∗

is assigned to s∗ under C̃, but a non-walk-zone student is assigned to s∗ under C, that is, if

C̃a∗(Ī) ⊆ Ia∗ while Ca∗(Ī) ⊆ I \ Ia∗ . It follows immediately from this observation that [(Ca∗(Ī)) ∩
Ia∗ ] ⊆ [(C̃a∗(Ī)) ∩ Ia∗ ] and [(C̃a∗(Ī)) ∩ (I \ Ia∗)] ⊆ [(Ca∗(Ī)) ∩ (I \ Ia∗)].

Now, given the result for the base case qa∗ = 1, we suppose that the result holds for all qa∗ < `

for some ` ≥ 1; we show that this implies the result for qa∗ = `. We suppose that qa∗ = `, and

let s̄ ∈ Sa∗ be the slot which is minimal (i.e., processed last) under the precedence order .a
∗
. A

student eligible for one type of slot is also eligible for the other, and hence s̄ is either full in both

cases or empty in both cases. Moreover, the result follows directly from the inductive hypothesis

in the case if no student is assigned to s̄ (under either priority structure); hence, we assume that

|Ca∗(Ī)| = |C̃a∗(Ī)| = qa∗ = `. (1)

If s̄ = s∗, then the result follows just as in the base case: It is clear from the algorithms defining

Ca∗ and C̃a∗ that the same students are assigned to slots s.a
∗
s∗ = s̄ in the computations of Ca∗(Ī)

and C̃a∗(Ī), as those slots’ priorities and relative precedence ordering fixed. Thus, as in the base

case, Ca∗(Ī) 6= C̃a∗(Ī) if and only if a walk-zone student of a∗ is assigned to s∗ under C̃, but a

non-walk-zone student is assigned to s∗ under C.

If s̄ 6= s∗, then s∗.a
∗
s̄. We let J ⊆ Ī be the set of students assigned to slots in Sa∗ \ {s̄} in the

computation of Ca∗(Ī), and let J̃ ⊆ Ī be the set of students assigned to slots in Sa∗ \ {s̄} in the

computation of C̃a∗(Ī). The inductive hypothesis, in the case qa∗ = `− 1, implies

[J ∩ Ia∗ ] ⊆ [J̃ ∩ Ia∗ ], (2)

[J̃ ∩ (I \ Ia∗)] ⊆ [J ∩ (I \ Ia∗)], (3)

as the first qa∗ slots of a∗ can be treated as a school with slot-set Sa∗ \ {s̄} (under the precedence

order induced by .a
∗
).
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If we have equality in (2) and (3),9 then the set of students available to be assigned to s̄ in

the computation of Ca∗(Ī) is the same as in the computation of C̃a∗(Ī). Thus, since πs̄ = π̃s̄ by

assumption, we have Ca∗(Ī) = C̃a∗(Ī); hence, the desired result follows trivially.

If instead the inclusions in (2) and (3) are strict, then there is some student i ∈ [J̃∩Ia∗ ]\[J∩Ia∗ ]
who is in the walk-zone of a∗ and is assigned to a slot s.a

∗
s̄ in the computation of C̃a∗(Ī) but is not

assigned to such a slot in the computation of Ca∗(Ī). We let ī be the student in [J̃ ∩ Ia∗ ] \ [J ∩ Ia∗ ]
ranked highest under πo; by construction, ī must be the πo-maximal student in [Ī \ J ]∩ Ia∗ . Thus:

• If s̄ is assigned a walk-zone student of a∗ in the computation of Ca∗(Ī), then that student

must be ī. Then, Ca∗(Ī) = J ∪ {̄i}; hence,

[(Ca∗(Ī)) ∩ Ia∗ ] = [(J ∪ {̄i}) ∩ Ia∗ ] ⊆ [J̃ ∩ Ia∗ ] ∪ {̄i},

where the inequality follows from (2). Since ī ∈ [J̃ ∩ Ia∗ ] ⊆ [(C̃a∗(Ī)) ∩ Ia∗ ], it follows that

[(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(C̃a∗(Ī)) ∩ Ia∗ ]. (4)

• If s̄ is assigned a student not in the walk-zone of a∗ in the computation of Ca∗(Ī), then (2)

directly implies (4).

This completes the first half of the induction.

Likewise, if the inclusions in (2) and (3) are strict, then there is some student i ∈ [J ∩ (I \Ia∗)]\
[J̃ ∩ (I \ Ia∗)] who is not in the walk-zone of a∗, is assigned to a slot s.a

∗
s̄ in the computation of

Ca∗(Ī), and is not assigned to such a slot in the computation of C̃a∗(Ī). We let î be the student in

[J ∩ (I \ Ia∗)] \ [J̃ ∩ (I \ Ia∗)] ranked highest under πo; by construction, î must be the πo-maximal

student in [Ī \ J̃ ] ∩ (I \ Ia∗). Thus:

• If s̄ is assigned a student not in the walk zone of a∗ in the computation of C̃a∗(Ī), then that

student must be î. Then, C̃a∗(Ī) = J̃ ∪ {̂i}; hence,

[(C̃a∗(Ī)) ∩ (I \ Ia∗)] = [(J̃ ∪ {̂i}) ∩ (I \ Ia∗)] ⊆ [J ∩ (I \ Ia∗)] ∪ {̂i},

where the inequality follows from (3). Since î ∈ [J ∩(I \Ia∗)] ⊆ [(Ca∗(Ī))∩(I \Ia∗)], it follows

that

[(C̃a∗(Ī)) ∩ (I \ Ia∗)] ⊆ [(Ca∗(Ī)) ∩ (I \ Ia∗)]. (5)

• If s̄ is assigned a walk-zone student of a∗ in the computation of C̃a∗(Ī), then (3) directly

implies (5).

These observations complete the second half of the induction.

9As |J | = |J̃ | by (1), equality holds in one of (2) and (3) if and only if it holds for both inclusions (2) and (3).
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A.2 Preliminaries for Proposition 2

For a school a∗ and a slot s∗w ∈ Sa∗ of school a∗, suppose that s∗w is a walk-zone slot. Suppose

that precedence order .̃ is obtained from . by swapping the positions of s∗w and some open slot

s∗o ∈ Sa∗ that is below s∗w in the order .a
∗

(i.e. s∗w.
a∗s∗o), and leaving the positions of all other slots

unchanged. Let Ca∗ and C̃a∗ respectively be the choice functions for a∗ induced by the precedence

orders . and .̃, under (fixed) slot priorities πs (s ∈ Sa∗).

Lemma 2. For any set of students Ī ⊆ I:

1. All students in the walk-zone of a∗ that are chosen from Ī under choice function Ca∗ are

chosen under choice function C̃a∗ (i.e. [(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(C̃a∗(Ī)) ∩ Ia∗ ]).

2. All students not in the walk-zone of a∗ that are from Ī chosen under choice function C̃a∗ are

chosen under choice function Ca∗ (i.e. [(C̃a∗(Ī)) ∩ (I \ Ia∗)] ⊆ [(Ca∗(Ī)) ∩ (I \ Ia∗)]).

Proof. We proceed by induction on the number qa∗ of slots at a∗.

First, we prove the base case qa∗ = 2.10 We denote by is∗w and is∗o (resp. ĩs∗w and ĩs∗o) the students

respectively assigned to slots s∗w and s∗o in the computation of Ca∗(Ī) (resp. C̃a∗(Ī)). Now:

• If {is∗w , is∗o} ⊂ Ia∗ , then the ordering under πo must take the form

πo : is∗w � is∗o � · · · ,

as otherwise some student i 6= is∗w would have higher rank than is∗o under πo, and would thus

have higher claim than is∗o for (open) slot s∗o under precedence order .a
∗
. But then, is∗w is the

πo-maximal student in Ī and is∗o is the πo-maximal walk-zone student in Ī \ {is∗w}; hence, we

must have ĩs∗o = is∗w and ĩs∗w = is∗o , so that C̃a∗(Ī) = Ca∗(Ī).

• If {is∗w , is∗o} ⊂ (I \ Ia∗), then Ī contains no students in the walk-zone of a∗ (i.e. Ī ∩ Ia∗ = ∅)
and is∗w and is∗o are then just the πo-maximal non-walk-zone students in Ī. In this case, we

find that ĩs∗o = is∗w and ĩs∗w = is∗o ; hence, C̃a∗(Ī) = Ca∗(Ī).

• If is∗w ∈ Ia∗ and is∗o ∈ (I \ Ia∗), then is∗w is the πo-maximal walk-zone student of a∗ in Ī. If is∗w
is also πo-maximal among all students in Ī, then we have ĩs∗o = is∗w . Moreover, in this case

either ĩs∗w ∈ Ia∗ , or ĩs∗w is the only walk-zone student of a∗ in Ī, so that ĩs∗w = is∗o .

Alternatively, if is∗w is not πo-maximal among all students in Ī, then is∗o must be πo-maximal

among all students in Ī, so that ĩs∗o = is∗o and ĩs∗w = is∗w . In either case, we have [(Ca∗(Ī)) ∩
Ia∗ ] = {is∗w} ⊆ [(C̃a∗(Ī))∩Ia∗ ]. Additionally, we have [(C̃a∗(Ī))∩(I\Ia∗)] ⊆ {is∗o} = [(Ca∗(Ī))∩
(I \ Ia∗)].

• We cannot have is∗w ∈ (I \ Ia∗) and is∗o ∈ Ia∗ , as s∗w is a walk-zone slot (and thus gives all

students in Ia∗ higher priority than students in I \ Ia∗) and s∗w.
a∗s∗o.

10Note that the setup requires at least two distinct slots of a∗, so qa∗ = 2 a priori.
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The preceding four cases are exhaustive and the desired result holds in each; thus, we have the base

case.

Now, given the result for the base case qa∗ = 2, we suppose that the result holds for all qa∗ < `

for some ` ≥ 2; we show that this implies the result for qa∗ = `. We observe that it suffices to show

the result in the case that s∗w and s∗o are adjacent under .a
∗
; the result for general positions with

s∗w.
a∗s∗o follows from the adjacency case upon a sequence of adjacent-slot swaps. Thus, we suppose

that s∗w and s∗o are adjacent under .a
∗
, with s∗w.

a∗s∗o, and suppose that qa∗ = `. We let s̄ ∈ Sa∗ be

the slot which is minimal under the precedence order .a
∗
. A student eligible for one type of slot is

also eligible for the other, and hence s̄ is either full in both cases or empty in both cases. Moreover,

the result follows directly from the inductive hypothesis in the case if no student is assigned to s̄

(under either priority structure); hence, we assume that

|Ca∗(Ī)| = |C̃a∗(Ī)| = qa∗ = `. (6)

If s̄ = s∗o, then the result follows just as in the base case, as it is clear from the algorithms defining

Ca∗ and C̃a∗ that the same students are assigned to slots s.a
∗
s∗w.

a∗s∗o = s̄ in the computations of

Ca∗(Ī) and C̃a∗(Ī).

If s̄ 6= s∗o, then s∗w.
a∗s∗o.

a∗ s̄. We let J ⊆ Ī be the set of students assigned to slots in Sa∗ \ {s̄}
in the computation of Ca∗(Ī), and let J̃ ⊆ Ī be the set of students assigned to slots in Sa∗ \ {s̄} in

the computation of C̃a∗(Ī). The inductive hypothesis, in the case qa∗ = `− 1, implies

[J ∩ Ia∗ ] ⊆ [J̃ ∩ Ia∗ ], (7)

[J̃ ∩ (I \ Ia∗)] ⊆ [J ∩ (I \ Ia∗)], (8)

as the first qa∗ slots of a∗ can be treated as a school with slot-set Sa∗ \ {s̄} (under the precedence

order induced by .a
∗
).

If we have equality in (7) and (8),11 then the set of students available to be assigned to s̄ in the

computation of Ca∗(Ī) is the same as in the computation of C̃a∗(Ī); the desired result then follows

trivially.

If instead the inclusions in (7) and (8) are strict, then there is some student i ∈ [J̃∩Ia∗ ]\[J∩Ia∗ ]
who is in the walk-zone of a∗ and is assigned to a slot s.a

∗
s̄ in the computation of C̃a∗(Ī) but is not

assigned to such a slot in the computation of Ca∗(Ī). We let ī be the student in [J̃ ∩ Ia∗ ] \ [J ∩ Ia∗ ]
ranked highest under πo; by construction, ī must be the πo-maximal student in [Ī \ J ]∩ Ia∗ . Thus:

• If s̄ is assigned a walk-zone student of a∗ in the computation of Ca∗(Ī), then that student

must be ī. Then, Ca∗(Ī) = J ∪ {̄i}; hence,

[(Ca∗(Ī)) ∩ Ia∗ ] = [(J ∪ {̄i}) ∩ Ia∗ ] ⊆ [J̃ ∩ Ia∗ ] ∪ {̄i},

where the inequality follows from (7). Since ī ∈ [J̃ ∩ Ia∗ ] ⊆ [(C̃a∗(Ī)) ∩ Ia∗ ], it follows that

[(Ca∗(Ī)) ∩ Ia∗ ] ⊆ [(C̃a∗(Ī)) ∩ Ia∗ ]. (9)

11As |J | = |J̃ | by (6), equality holds in one of (7) or (8) if and only if it holds for both (7) and (8).
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• If s̄ is assigned a student not in the walk-zone of a∗ in the computation of Ca∗(Ī), then (7)

directly implies (9).

Thus, we have completed the first half of the induction.

Likewise, if the inclusions in (7) and (8) are strict, then there is some student i ∈ [J ∩ (I \Ia∗)]\
[J̃ ∩ (I \ Ia∗)] who is not in the walk-zone of a∗, is assigned to a slot s.a

∗
s̄ in the computation of

Ca∗(Ī), and is not assigned to such a slot in the computation of C̃a∗(Ī). We let î be the student in

[J ∩ (I \ Ia∗)] \ [J̃ ∩ (I \ Ia∗)] ranked highest under πo; by construction, î must be the πo-maximal

student in [Ī \ J̃ ] ∩ (I \ Ia∗). Thus:

• If s̄ is assigned a student not in the walk zone of a∗ in the computation of C̃a∗(Ī), then that

student must be î. Then, C̃a∗(Ī) = J̃ ∪ {̂i}; hence,

[(C̃a∗(Ī)) ∩ (I \ Ia∗)] = [(J̃ ∪ {̂i}) ∩ (I \ Ia∗)] ⊆ [J ∩ (I \ Ia∗)] ∪ {̂i},

where the inequality follows from (8). Since î ∈ [J ∩(I \Ia∗)] ⊆ [(Ca∗(Ī))∩(I \Ia∗)], it follows

that

[(C̃a∗(Ī)) ∩ (I \ Ia∗)] ⊆ [(Ca∗(Ī)) ∩ (I \ Ia∗)]. (10)

• If s̄ is assigned a walk-zone student of a∗ in the computation of Ca∗(Ī), then (8) directly

implies (10).

These observations complete the second half of the induction.

A.3 Proof of Propositions 1 and 2

Definition. In the cumulative offer process under choice functions C̄, students propose contracts

to schools in a sequence of steps ` = 1, 2, . . .:

Step 1. Some student i1 ∈ I proposes to his favorite school a1. Set Ā2
a1 = {i1}, and set

Ā2
a = ∅ for each a 6= a1; these are the sets of students available to schools at the

beginning of Step 2. Each school a ∈ A holds C̄a(Ā2
a) and rejects all other students

in Ā2
a.

Step `. Some student i` ∈ I not currently held by any school proposes to his most-preferred

school that has not yet rejected him, a`. Set Ā`+1
a`

= Ā`
a`
∪{i`}, and set Ā`+1

a = Ā`
a

for each a 6= a`. Each school a ∈ A holds C̄a(Ā`+1
a ) and rejects all other students

in Ā`+1
a .

If at any Step `+1 no student is able to propose—that is, if all students not on hold have

proposed to all schools they find acceptable—then the process terminates. The outcome

of the cumulative offer process is the matching µ̄ which assigns each school a ∈ A the

students it holds at the end of the last step before termination: µ̄a = C̄a(Ā`+1
a ).
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In our context, the cumulative offer process outcome is independent of the proposal order and is

equal to the outcome of the student-optimal stable mechanism (see (Kominers and Sönmez 2012)).

We consider a modification of the cumulative offer process in which some students may be

rejected as soon as they propose.

Definition. For sets of students Ra ⊆ I (a ∈ A), let the cumulative offer process with premature

rejection under choice functions C̄ be the following algorithm in which students propose contracts

to schools in a sequence of steps ` = 1, 2, . . .:

Step 1. Some student i1 ∈ I proposes to his favorite school a1. Set Ē2
a1 = {i1}, and set

Ē2
a = ∅ for each a 6= a1; these are the sets of students available to schools at the

beginning of Step 2. Each school a ∈ A holds [(C̄a(Ē2
a)) \Ra] and rejects all other

students in Ē2
a.

Step `. Some student i` ∈ I not currently held by any school proposes to his most-preferred

school that has not yet rejected him, a`. Set Ē`+1
a`

= Ē`
a`
∪{i`}, and set Ē`+1

a = Ē`
a

for each a 6= a`. Each school a ∈ A holds [(C̄a(Ē`+1
a )) \ Ra] and rejects all other

students in Ē`+1
a .

If at any Step `+1 no student is able to propose—that is, if all students not on hold have

proposed to all schools they find acceptable—then the process terminates. The outcome

of the cumulative offer process with premature rejection is the matching µ̄ which assigns

each school a ∈ A the students it holds at the end of the last step before termination:

µ̄a = [(C̄a(Ē`+1
a )) \Ra].

Lemma 3. For each school a ∈ A, let R̄a be the set of students rejected by a during the cumulative

offer process under choice functions C̄. For any choice of sets Ra ⊆ R̄a (a ∈ A) and any sequence

Σ of student→school proposals Σ =
〈
(i1 → a1), (i2 → a2), . . .

〉
that can arise in the cumulative offer

process under choice functions C̄:

1. Proposal sequence Σ is a valid proposal sequence in the cumulative offer process with premature

rejection under choice functions C̄.

2. Under proposal sequence Σ, the outcome of the cumulative offer process with premature re-

jection under choice functions C̄, is the same as the outcome of the cumulative offer process

under choice functions C̄.

Proof. We denote by A`
a (resp. E`

a) the sets of students available to each school a ∈ A at the start

of Step ` ≥ 2 of the cumulative offer process under choice functions C̄ (resp. the cumulative offer

process with premature rejection under choice functions C̄).

It is clear that if proposal sequence Σ is used for the first ` steps of each process, then Am+1
a =

Em+1
a for all m ≤ `. In this case, Σ`+1 = (i`+1 → a`+1) is a valid proposal in Step ` + 1 of
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the cumulative offer process with premature rejection under choice functions C̄.12 And if Σ`+1 =

(i`+1 → a`+1) is proposed in Step ` + 1 of the cumulative offer process with premature rejection

under choice functions C̄, we have E`+2
a = E`+1

a ∪ {i`+1} = A`+2
a for each a ∈ A.

Now, Σ1 is a valid proposal for the first step of each process. Inductive application of the

preceding observations thus shows that Σ is a valid proposal sequence in the cumulative offer process

with premature rejection under choice functions C̄. Moreover, under that proposal sequence we

have E`+1
a = A`+1

a for each ` and a ∈ A; hence, the eventual outcome of the cumulative offer process

with premature rejection must be the same as the outcome of the cumulative offer process.

Now, we prove Propositions 1 and 2 using a completely parallel argument for the two results.

In the sequel, we assume the setup of either Section A.1 or Section A.2, let Ca = C̃a for all

schools a 6= a∗, and let µ and µ̃ respectively denote the cumulative offer process outcomes under

the choice functions C and C̃. We make use of an Adjustment Lemma, which is Lemma 1 for the

case of Proposition 1 and Lemma 2 for the case of Proposition 2.

Proposition 6. Either

• µa∗ = µ̃a∗—the same students are assigned to a∗ under µ and µ̃—or

• na∗(µ̃) > na∗(µ)—a∗ has strictly more walk-zone assignment under µ̃ than under µ.

Proof. We let Ra∗ ⊆ I be the set of students who are rejected from a∗ in both the cumulative offer

process under the choice function C and the cumulative offer process under the choice function C̃,

and let Ra = ∅ for all a 6= a∗. By Lemma 3, µ and µ̃ are the outcomes of the cumulative offer

processes with premature rejection under the choice functions C and C̃, respectively.

We now consider the cumulative offer processes with premature rejection under the choice

functions C and C̃, with orders of proposal chosen to be identical for the maximal number of steps

possible13; we let E`
a and Ẽ`

a be the associated sets of effectively available students. If µa 6= µ̃a,

then there is some Step `′ such that [(Ca∗(E`′+1
a∗ )) \ Ra∗ ] 6= [(C̃a∗(Ẽ`′+1

a∗ )) \ Ra∗ ]; we let ` be the

minimal such `′. We let n ≡ |Ia∗ ∩ [(Ca∗(E`+1
a∗ )) \ Ra∗ ]| be the number of walk-zone students held

by a∗ at Step ` under choice function Ca∗ , and let ñ ≡ |Ia∗ ∩ [(C̃a∗(Ẽ`+1
a∗ )) \ Ra∗ ]| be the number

of walk-zone students held by a∗ at Step ` under choice function C̃a∗ .

By our choice of proposal orders and the minimality of `, we know that E`+1
a∗ = Ẽ`+1

a∗ ; hence,

C̃a∗(E`+1
a∗ ) = C̃a∗(Ẽ`+1

a∗ ). As [Ca∗(E`+1
a∗ ) \Ra∗ ] 6= [C̃a∗(Ẽ`+1

a∗ ) \Ra∗ ], we know that

Ca∗(E`+1
a∗ ) 6= C̃a∗(Ẽ`+1

a∗ ) = C̃a∗(E`+1
a∗ ) (12)

12To see this, it suffices to note that i`+1 is rejected in Step ` of the cumulative offer process under choice functions

C̄; hence,

i`+1 /∈ C̄a(A`+1
a ) (11)

for all a ∈ A. As A`+1
a = E`+1

a for all all a ∈ A, (11) implies that i`+1 is rejected in Step ` of the cumulative offer

process with premature rejection under choice functions C̄, and thus is free to propose in Step ` + 1.
13Such a maximum clearly exists, as the number of steps is bounded above by |I| · |A|.
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We thus see from the first part of the Adjustment Lemma that there is a student i ∈ Ia∗ such that

i /∈ Ca∗(E`+1
a∗ ) but i ∈ C̃a∗(E`+1

a∗ ) = C̃a∗(Ẽ`+1
a∗ );

it follows that

ñ > n. (13)

We let ĩm ∈ [Ia∗ ∩ [(C̃a∗(Ẽ`+1
a∗ )) \ Ra∗ ]] be the student in the walk-zone of a∗ with the lowest

ranking under πo of all students held in Step ` of the cumulative offer process with premature

rejection under the choice functions C̃.

Claim. School a∗ never rejects student ĩm during the running of the cumulative offer process with

premature rejection under the choice functions C̃.

Proof. Since ĩm /∈ Ra∗ , it suffices to show that ĩm is rejected by a∗ by Step ` of the cumulative

offer process with premature rejection under the choice functions C. To see this, we suppose the

contrary, that ĩm ∈ [(Ca∗(E`+1
a∗ )) \Ra∗ ] ⊆ Ca∗(E`+1

a∗ ).

First, we observe that any

i ∈ [Ia∗ ∩ [(C̃a∗(Ẽ`+1
a∗ )) \Ra∗ ]] ⊆ Ẽ`+1

a∗ = E`+1
a∗

ranked higher than ĩm under πo must be in Ca∗(E`+1
a∗ ): Otherwise, we would have ĩm assigned to

some slot s ∈ Sa∗ in the computation of Ca∗(E`+1
a∗ ), while

1. i /∈ Ca∗(E`+1
a∗ ) (by assumption) and

2. iπsĩm (because i, ĩm ∈ Ia∗ and iπoĩm).

We see from the definition of the function Ca∗ that this cannot happen—ĩm cannot be assigned a

slot before i.

The preceding observations imply that

[Ia∗ ∩ [(C̃a∗(Ẽ`+1
a∗ )) \Ra∗ ]] ⊆ [(Ca∗(E`+1

a∗ )) \Ra∗ ]. (14)

Meanwhile, the second part of the Adjustment Lemma shows that [(I \ Ia∗) ∩ (C̃a∗(E`+1
a∗ ))] ⊆

[(I \ Ia∗) ∩ (Ca∗(E`+1
a∗ ))]; hence

[(I \ Ia∗) ∩ [(C̃a∗(Ẽ`+1
a∗ )) \Ra∗ ]] = [(I \ Ia∗) ∩ [(C̃a∗(E`+1

a∗ )) \Ra∗ ]] ⊆ [(Ca∗(E`+1
a∗ )) \Ra∗ ]. (15)

Combining (14) and (15), we see that [(C̃a∗(Ẽ`+1
a∗ )) \ Ra∗ ] ⊆ [(Ca∗(E`+1

a∗ )) \ Ra∗ ], so that we must

have

[(C̃a∗(Ẽ`+1
a∗ )) \Ra∗ ] ( [(Ca∗(E`+1

a∗ )) \Ra∗ ] (16)

since [(C̃a∗(Ẽ`+1
a∗ )) \Ra∗ ] 6= [(Ca∗(E`+1

a∗ )) \Ra∗ ] by (12). But (16) is impossible from the definition

of the function C̃a∗ , as it would imply that there is

1. some slot s ∈ Sa∗ not assigned a student in the computation of C̃a∗(Ẽ`+1
a∗ ) and
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2. some student i ∈ [E`+1
a∗ \Ra∗ ] = [Ẽ`+1

a∗ \Ra∗ ] not assigned to a slot of a∗ in the computation

of C̃a∗(Ẽ`+1
a∗ );

these two condtions cannot hold simultaneously because all slots rank all students as acceptable.

These observations show that the assumption that ĩm ∈ [(Ca∗(E`+1
a∗ )) \ Ra∗ ] leads to a contra-

diction; hence, we have the claim.

The preceding claim implies that all walk-zone students i ∈ [Ia∗ ∩ [(C̃a∗(Ẽ`+1
a∗ )) \Ra∗ ]] held by

a∗ by Step ` of the cumulative offer process with premature rejection under the choice functions C̃

are held by a∗ in all remaining steps of the process, i.e.

µ̃a∗ ⊇ [Ia∗ ∩ [(C̃a∗(Ẽ`+1
a∗ )) \Ra∗ ]].

Thus, we see that

na∗(µ̃) ≥ ñ. (17)

Now, we let im ∈ [(I \ Ia∗) ∩ [(Ca∗(E`+1
a∗ )) \ Ra∗ ]] be the student not in the walk-zone of a∗

with the lowest ranking under πo of all students held in Step ` of the cumulative offer process with

premature rejection under the choice functions C.

Claim. School a∗ never rejects student im during the running of the cumulative offer process with

premature rejection under the choice functions C.

Proof. The argument is completely analogous to that used to prove the preceding claim.

Since im /∈ Ra∗ , it suffices to show that im is rejected by a∗ by Step ` of the cumulative offer

process with premature rejection under the choice functions C̃. To see this, we suppose the contrary,

that im ∈ [(C̃a∗(Ẽ`+1
a∗ )) \Ra∗ ] ⊆ C̃a∗(Ẽ`+1

a∗ ).

First, we observe that any

i ∈ [(I \ Ia∗) ∩ [(Ca∗(E`+1
a∗ )) \Ra∗ ]] ⊆ E`+1

a∗ = Ẽ`+1
a∗

ranked higher than im under πo must be in C̃a∗(Ẽ`+1
a∗ ): Otherwise, we would have im assigned to

some slot s ∈ Sa∗ in the computation of C̃a∗(Ẽ`+1
a∗ ), while

1. i /∈ C̃a∗(Ẽ`+1
a∗ ) (by assumption) and

2. iπsim (because i, im ∈ (I \ Ia∗) and iπoim).

We see from the definition of the function C̃a∗ that this cannot happen—im cannot be assigned a

slot before i.

The preceding observations imply that

[(I \ Ia∗) ∩ [(Ca∗(E`+1
a∗ )) \Ra∗ ]] ⊆ [(C̃a∗(Ẽ`+1

a∗ )) \Ra∗ ]. (18)

Meanwhile, the first part of the Adjustment Lemma shows that [Ia∗ ∩ (Ca∗(Ẽ`+1
a∗ ))] ⊆ [Ia∗ ∩

(C̃a∗(Ẽ`+1
a∗ ))]; hence

[Ia∗ ∩ [(Ca∗(E`+1
a∗ )) \Ra∗ ]] = [Ia∗ ∩ [(Ca∗(Ẽ`+1

a∗ )) \Ra∗ ]] ⊆ [(C̃a∗(Ẽ`+1
a∗ )) \Ra∗ ]. (19)
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Combining (18) and (19), we see that [(Ca∗(E`+1
a∗ )) \ Ra∗ ] ⊆ [(C̃a∗(Ẽ`+1

a∗ )) \ Ra∗ ], so that we must

have

[(Ca∗(E`+1
a∗ )) \Ra∗ ] ( [(C̃a∗(Ẽ`+1

a∗ )) \Ra∗ ] (20)

since [(Ca∗(E`+1
a∗ )) \Ra∗ ] 6= [(C̃a∗(Ẽ`+1

a∗ )) \Ra∗ ] by (12). But (16) is impossible from the definition

of the function Ca∗ , as it would imply that there is

1. some slot s ∈ Sa∗ not assigned a student in the computation of Ca∗(E`+1
a∗ ) and

2. some student i ∈ [Ẽ`+1
a∗ \Ra∗ ] = [E`+1

a∗ \Ra∗ ] not assigned to a slot of a∗ in the computation

of Ca∗(E`+1
a∗ );

these two condtions cannot hold simultaneously because all slots rank all students as acceptable.

These observations show that the assumption that im ∈ [(C̃a∗(Ẽ`+1
a∗ )) \ Ra∗ ] leads to a contra-

diction; hence, we have the claim.

The preceding claim implies that all non-walk-zone students i ∈ [(I \ Ia∗)∩ [(Ca∗(E`+1
a∗ )) \Ra∗ ]]

held by a∗ by Step ` of the cumulative offer process with premature rejection under the choice

functions C are held by a∗ in all remaining steps of the process, i.e.

µa∗ ⊇ [(I \ Ia∗) ∩ [(Ca∗(E`+1
a∗ )) \Ra∗ ]].

Thus, as the quota of a∗ is fixed at qa∗ , we see that

n ≥ na∗(µ). (21)

Combining (13), (17), and (21), we see that

na∗(µ̃) ≥ ñ > n ≥ na∗(µ);

this proves the result.

A.4 The Two-School Model

A.4.1 Preliminaries

Matchings µ and µ̃ are obtained as in Appendix A.3: Either one of the open slots is replaced with a

walk-zone slot, or the precedence position of a walk-zone slot is switched with that of a subsequent

open slot to obtain C̃ from C, and µ̃ and µ are, respectively, the associated cumulative offer process

outcomes.

Lemma 4. We have |µ̃a| = |µa| and |µ̃b| = |µb|. That is, the number of slots filled at each school

is the same under µ as under µ̃.

Proof. If both of the schools a and b have an empty slot under either matching, stability implies

that all students get their first choices under each matching; hence µ̃ = µ and the result holds

immediately. Likewise, if neither school has an empty slot under either matching, the result holds
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immediately since then |µ̃a| = |µa| = |Sa| and |µ̃b| = |µb| = |Sb|. Hence the only non-trivial case is

when, under one of the matchings, one school is full but the other is not.

Without loss of generality, we suppose that under matching µ, school a has an empty slot

whereas school b has all its slots full. Then not only does each student who is assigned a slot at

school b under matching µ prefer school b to school a, but also there are at least as many students

with a first choice of school b as the number of slots at school b. Thus by stability school b must

fill all its slots under matching µ̃ as well; hence, |µ̃b| = |µb| = |Sb|. By assumption,

• there are at least as many slots as students, and

• all students find both schools acceptable;

therefore, we see that

|µ̃a| = |I| − |µ̃b| = |I| − |µb| = |µa|.

This observation completes the proof.

A.4.2 Proof of Propositions 3 and 4

We prove Propositions 3 and 4 using a completely parallel argument for the two results. We make

use of an Adjustment Proposition, which is is Proposition 1 for the case of Proposition 3, and

Proposition 2 for the case of Proposition 4.

Proposition 7. There is weakly more walk-zone assignment under µ̃ than under µ, that is,

na(µ̃) + nb(µ̃) ≥ na(µ) + nb(µ).

Proof. Without loss of generality, we assume the priority structure of school a has changed (i.e. that

a = a∗ in the setup of Appendix A.3).

If µ̃a = µa, then we have

µ̃b = I \ µ̃a = I \ µa = µb,

as by assumption

• there are at least as many slots as students, and

• all students find both schools acceptable.

Thus, in this case the result is immediate.

If µ̃a 6= µa,

|µ̃a ∩ Ia| = na(µ̃) > na(µ) = |µa ∩ Ia|

by the Adjustment Proposition. Therefore Lemma 4 implies that

|µ̃a ∩ (I \ Ia)| = |µ̃a| − |µ̃a ∩ Ia| < |µa| − |µa ∩ Ia| = |µa ∩ (I \ Ia)|,

which in turn implies that

|µ̃a ∩ Ib| < |µa ∩ Ib|
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as I \ Ia = Ib by assumption. Thus, we see that

nb(µ̃) = |µ̃b ∩ Ib| = |Ib| − |µ̃a ∩ Ib| > |Ib| − |µa ∩ Ib| = |µb ∩ Ib| = nb(µ)

as all students (and in particular all students in Ib) are matched under both µ and µ̃. Hence in this

case

na(µ̃) + nb(µ̃) > na(µ) + nb(µ);

this completes the proof.

A.4.3 Proof of Proposition 5

Let r1
a denote the number of students who rank school a as first choice, and let r1

b denote the

number of students who rank school b as first choice.

We can obtain the outcome of the DA by either the student proposing deferred acceptance

algorithm or the cumulative offer process. We utilize the former in this proof.

By assumption, |Sa|+ |Sb| ≥ |I|. Thus, as each student has a first choice,

|Sa|+ |Sb| ≥ r1
a + r1

b .

Hence, either:

1. |Sa| ≥ r1
a and |Sb| ≥ r1

b , or

2. |Sa| > r1
a and |Sb| < r1

b , or

3. |Sa| < r1
a and |Sb| > r1

b .

In the first case, the student proposing deferred acceptance algorithm terminates in one step and

all students receive their first choices under both µ and µ̃. Thus, the result is immediate in this

case.

The analyses of the second and third cases are analogous, so it suffices to consider the case that

|Sa| > r1
a and |Sb| < r1

b .

Claim. For this case, under both µ and µ̃,

• the number of students receiving their first choices is equal to |Sb|+ r1
a, and

• the number of students receiving their second choices is equal to r1
b − |Sb|.

Proof. We consider the construction of either µ or µ̃ through the student proposing deferred accep-

tance algorithm, and observe that school b receives r1
b > |Sb| offers in Step 1, holding |Sb| of these

while rejecting r1
b − |Sb|. School a, meanwhile, receives r1

a < |Sa| offers and holds all of them. In

Step 2, all students rejected by school b apply to school a, bringing the total number of applicants
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at school a to r1
a + (r1

b − |Sb|). As r1
a + (r1

b − |Sb|) ≤ |Sa| by assumption, no student is rejected by

school a, and the algorithm terminates in Step 2.14 Hence, under both µ and µ̃,

• |Sb| students are assigned to school b as their first choice,

• r1
a students are assigned to school a as their first choice, and

• r1
b − |Sb| students are assigned to school a as their second choice.

These observations show the claim.

The preceding claim shows the result for the second case; since an analogous argument shows

the result for the third case, this completes the proof.

14While it is well-known that stability may be in conflict with Pareto efficiency in general school choice environments

(cf. Balinski and Sönmez (1999), Ergin (2002), Abdulkadiroğlu and Sönmez (2003), Kesten (2006), and Kesten

(2010)), the above argument shows that DA is Pareto efficient in our two-school environment.
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Grade K1 Grade K2

# students 0% Walk 100% Walk # students 0% Walk 100% Walk # students 0% Walk 100% Walk
(1) (2) (3) (4) (5) (6) (7) (8) (9)

2009 1770 46 336 1715 28 343 2348 54 205
3% 19% 2% 20% 2% 9%

2010 1977 68 392 1902 62 269 2308 41 171
3% 20% 3% 14% 2% 7%

2011 2071 50 387 1821 90 293 2073 4 225
2% 19% 5% 16% 0% 11%

2012 2515 88 504 2301 101 403 2057 24 247
3% 20% 4% 18% 1% 12%

All 8333 252 1619 7739 281 1308 8786 123 848
3% 19% 4% 17% 1% 10%

Table 1. Difference between the Current Boston Mechanism and Alternative Walk Zone Splits
Grade 6

Difference relative to current BPS Difference relative to current BPS

Notes. Table reports fraction of applicants whose assignments differ between the mechanism currently employed in Boston and two alternative mechanisms:  one with a priority structure without 
walk‐zone priorities at any seats (0% Walk), and the other with a priority structure with walk‐zone priorities at all seats (100% Walk).

Difference relative to current BPS



# students Balanced
(1) (2) (3) (4) (5) (6) (7) (8) (9)

2009‐ 8333 3849 3879 3930 4080 4227 4305 4570 4787
2012 46.2% 46.5% 47.2% 49.0% 50.7% 51.7% 54.8% 57.4%

2009‐ 7739 3657 3685 3753 3842 3900 4037 4214 4377
2012 47.3% 47.6% 48.5% 49.6% 50.4% 52.2% 54.5% 56.6%

2009‐ 8786 3439 3476 3484 3542 3657 3691 3797 3907
2012 39.1% 39.6% 39.7% 40.3% 41.6% 42.0% 43.2% 44.5%
Notes. Table reports fraction of applicants assigned to walk‐zone schools under several alternative assignment procedures.  0% Walk implements the student‐proposing deferred acceptance 
mechanism with no walk zone priority; 100% implements the student‐proposing deferred acceptance mechanism with all slots having walk‐zone priority.  Columns (3)‐(8) hold the 50/50 school seat 
split fixed.  Walk‐NonWalk implements the precedence order in which all walk‐zone slots are ahead of non‐walk zone slots.  Actual BPS implements the current BPS system.  Rotating implements the 
precedence ordering alternating between walk‐zone and non walk‐zone slots.  Compromise implements the precedence order in which exactly half of the walk‐zone slots come before all non‐walk 
zone slots, which are in turn followed by the half of the walk‐zone slots.  Balanced implements Rotating, but uses two random numbers for each student, one for walk‐zone slots and the other for non‐
walk zone slots.  NonWalk‐Walk implements the precedence order in which all non‐walk zone slots are ahead of walk‐zone slots.  

NonWalk‐WalkWalk‐NonWalk

II. Grade K2

III. Grade 6

Actual BPS

I. Grade K1

Table 2. Number of Students Assigned to Walk Zone School
Priorities = 50% Walk
Changing Precedence

Priorities = 
0% Walk

Priorities = 
100% Walk

CompromiseRotating



Choice

Received Walk‐NonWalk Current BPS Compromise Balanced NonWalk‐Walk

(1) (2) (3) (4) (5) (6) (7)

1 920 917 923 925 917 921 905

2 234 233 227 237 233 241 234

3 173 175 177 166 183 165 169

4 98 97 94 98 90 95 103

5 56 56 59 60 60 58 60

6 21 20 18 19 23 24 29

7 19 21 20 14 20 18 21

8 11 12 12 11 11 10 12

9 11 11 11 9 6 7 8

10 5 5 5 3 4 6 4

523 524 525 529 524 526 526

1 870 872 880 881 870 885 888

2 306 306 300 296 310 292 292

3 198 195 192 186 188 189 184

4 83 85 86 79 77 84 83

5 44 42 39 47 40 37 34

6 4 4 5 9 6 7 7

7 4 3 3 2 6 4 2

8 3 3 5 3 5 5 7

9 1 1 1 1 2 2 1

10 1 1 1 1 1 1 1

307 309 309 316 316 315 322

1 1273 1271 1271 1265 1233 1246 1231

2 397 399 399 395 396 410 419

3 177 177 177 183 198 186 184

4 43 43 43 46 65 52 59

5 19 20 20 21 17 17 16

6 4 3 3 2 2 1 1

7 0 0 0 1 0 0

8 3 3 3 2 1 2 2

9 0 0 0 0 0 0

157 157 157 158 161 159 161

Notes. Table reports the distribution of choice ranks arising under different priority and precedence policies.  Unassigned or Adminstrative Assignment means student is not assigned to 

any of the listed choices; some students will be adminstratively assigned after Round 1.

Unassigned or 

Admin. Assigned

Table 3. Choices Received by Students in 2010‐2011

Priorities = 

100% Walk

Priorities = 

0% Walk Changing Precedence

Priorities = 50% Walk

III. Grade 6

II. Grade K2

Unassigned or 

Admin. Assigned

Unassigned or 

Admin. Assigned

I. Grade K1



year grade total

32009 K1 1770 1718 97.1
32010 K1 1977 1907 96.5
32011 K1 2071 2044 98.7
32012 K1 2515 2478 98.5

32009 K2 1715 1649 96.2
32010 K2 1902 1855 97.5
32011 K2 1821 1754 96.3
32012 K2 2301 2220 96.5

32009 6 2348 2309 98.3
32010 6 2308 2275 98.6
32011 6 2073 2069 99.8
32012 6 2057 2008 97.6

Table A1. Match with BPS Assignment
matching 
students

Notes. Table reports comparison between BPS final assignment and 
authors' recreation of the assignment for Round 1.

exact match
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Figure 1. Comparing Assignments under Current BPS Mechanism vs. 
 0 and 100% Walk Zone Priority for Grade K1 in 2010-2011 
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Figure 2. Comparing Assignments under Current BPS Mechanism vs. 
 0 and 100% Walk Zone Priority for Grade K2 in 2010-2011 
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Figure 3. Comparing Assignments under Current BPS Mechanism vs.  
0% and 100% Walk Zone Priority for Grade 6 in 2010-2011 
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Figure 4. Walk Zone Assignment for Grade K1 in 2010-2011 
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Figure 5. Walk Zone Assignment for Grade K2 in 2010-2011 
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Figure 6. Walk Zone Assignment for Grade 6 in 2010-2011 
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